1
|
Effects of caveolae depletion and urothelial denudation on purinergic and cholinergic signaling in healthy and cyclophosphamide-induced cystitis in the rat bladder. Auton Neurosci 2018; 213:60-70. [PMID: 30005741 DOI: 10.1016/j.autneu.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
Cholesterol rich membrane invaginations, caveolae, have important roles in various cellular activities, one of them being signal transduction. This signaling pathway seems to be affected during various bladder disorders and the current study aimed to elucidate the plausible involvement of caveolae mediated signal transduction during cyclophosphamide induced cystitis. Furthermore, the urothelial cholinergic part of ATP-evoked contractions and its possible link to caveolae were investigated. Cholinergic, as well as purinergic, contractile responses in rat urinary bladders were examined using a classic organ bath set-up with full-thickness strip preparations or a whole bladder model that enabled luminal administration of substances. Furthermore, sub groups with and without urothelium were examined. The expression of caveolin-1 was also tested using western blot and immunofluorescence. Caveolae cholesterol depletion by methyl-β-cyclodextrin entailed a significant decrease of ATP-evoked bladder contractility. Interestingly, after muscarinic blockade the ATP induced contractions were significantly reduced in the same manner. Furthermore, this atropine-sensitive part of ATP-evoked responses was absent in denuded as well as inflamed bladders. A tendency towards a reduced expression of caveolin-1 was observed in rats with experimental cystitis. The cholinergic part of ATP-induced contractile responses seemed to be affected by urothelium denudation as well as caveolae depletion. Removing one of these structures nullifies the effect of the other, suggesting an important interaction between the urothelium and the caveolar structures. These effects are absent in inflamed animals and might be one pathophysiological aspect behind BPS/IC.
Collapse
|
2
|
Montenegro MF, Cabezas-Herrera J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors. FASEB J 2016; 31:544-555. [PMID: 28148778 DOI: 10.1096/fj.201600609r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
The observation of acetylcholinesterase (AChE) type H (AChEH), which is the predominant AChE variant in visceral organs and immune cells, in lipid rafts of muscle supports functional reasons for the raft targeting of glypiated AChEH The search for these reasons revealed that liver AChE activity is mostly confined to rafts and that the liver is able to make N-extended AChE variants and target them to rafts. These results prompted us to test whether AChE and muscarinic receptors existed in the same raft. Isolation of flotillin-2-rich raft fractions by their buoyancy in sucrose gradients, followed by immunoadsorption and matrix-assisted laser desorption ionization-time of flight-mass spectrometry application, gave the following results: 1) most hepatic AChE activity emanates from AChE-H mRNA, and its product, glypiated AChEH, accumulates in rafts; 2) N-extended N-AChE readthrough variant, nonglypiated N-AChEH, and N-AChE tailed variant were all identified in liver rafts; and 3) M3 AChRs were observed in rafts, and coprecipitation of raft-confined N-AChE and M3 receptors by using anti-M3 antibodies showed that enzyme and receptor reside in the same raft unit. A raft domain that harbors tightly packed muscarinic receptor and AChE may represent a molecular device that, by means of which, the intensity and duration of cholinergic inputs are regulated.-Montenegro, M. F., Cabezas-Herrera, J., Campoy, F. J., Muñoz-Delgado, E., Vidal, C. J. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.
Collapse
Affiliation(s)
- María Fernanda Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - F Javier Campoy
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| |
Collapse
|
3
|
Cristofaro V, Yalla SV, Sullivan MP. Altered Caveolar Mediated Purinergic Signaling in Spontaneously Hypertensive Rats with Detrusor Overactivity. J Urol 2012; 188:1017-26. [DOI: 10.1016/j.juro.2012.04.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/27/2022]
Affiliation(s)
- Vivian Cristofaro
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Subbarao V. Yalla
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Maryrose P. Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Sullivan MP, Cristofaro V, Radisavljevic ZM, Yalla SV. Regional distribution and molecular interaction of caveolins in bladder smooth muscle. BJU Int 2012; 110:E1163-72. [PMID: 22897417 DOI: 10.1111/j.1464-410x.2012.11410.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Caveolae are specialised regions of bladder smooth muscle (BSM) cell membranes where specific signalling pathways are regulated. Caveolin proteins are involved in caveolar biogenesis and function as signal transduction regulators. Expression of caveolin-1, -2, and -3 has been previously identified in the bladder; however, the distribution and relative expression of these proteins have not been defined. The present data show significant differences in the spatial distribution of caveolin proteins throughout the bladder wall. Region dependent variations in the co-localisation of caveolin subtypes in detrusor SM were also detected. These findings support the premise that the unique spatial pattern of caveolin proteins associated with BSM cells may enable regionally distinct functional responses to common stimuli. OBJECTIVE • To determine the regional expression profile of caveolin isoforms (integral membrane proteins abundant in caveolae), the spatial relationships among caveolin proteins within specific smooth muscle (SM) regions and the extent of their molecular interactions in bladder SM (BSM). MATERIALS AND METHODS • Regional differences in the expression of caveolin family members were determined by quantitative reverse transcriptase-polymerase chain reaction and Western blot of RNA and protein extracted from the base, body and dome of rat bladders. • To evaluate the distribution of caveolin-1 (Cav-1), Cav-2 and Cav-3 within the bladder, longitudinal tissue sections from the base to dome were processed for confocal microscopy and quantified for intensity of immunoreactivity (IR) and extent of co-localisation. • Interactions among Cav-1, Cav-2 and Cav-3 were determined by co-immunoprecipitation. RESULTS • Differential expression of Cav-1 and Cav-3 was detected among bladder regions, with lowest expression in the bladder base relative to the dome. • Cav-1 was highly expressed in all regions, although an increase in IR from submucosa to serosa was detected in each region. • The distribution of Cav-2 IR generally paralleled Cav-1, but progressively decreased from submucosa to serosa in each region. • Cav-3 expression predominated in the medial region of BSM increasing progressively from base to dome, but was poorly expressed in the outer SM layer particularly in the dome. • Cav-1 co-precipitated extensively with both Cav-2 and Cav-3. Co-precipitation between Cav-3 and Cav-2 was also detected. CONCLUSIONS • The isoform-specific spatial distribution and distinct molecular interactions among caveolins in BSM may contribute to the contractile heterogeneity of BSM cells and facilitate differential modulation of responses to local stimuli. • As BSM caveolae regulate key signalling processes involved in contraction, altered expression of caveolin proteins may generate a regional imbalance in contraction/relaxation responses, thus leading to bladder dysfunction.
Collapse
Affiliation(s)
- Maryrose P Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA.
| | | | | | | |
Collapse
|
5
|
Ekman M, Rippe C, Sadegh MK, Dabestani S, Mörgelin M, Uvelius B, Swärd K. Association of muscarinic M3 receptors and Kir6.1 with caveolae in human detrusor muscle. Eur J Pharmacol 2012; 683:238-45. [DOI: 10.1016/j.ejphar.2012.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/19/2012] [Accepted: 02/26/2012] [Indexed: 01/04/2023]
|
6
|
Sadegh MK, Ekman M, Rippe C, Uvelius B, Swärd K, Albinsson S. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission. PLoS One 2012; 7:e35882. [PMID: 22558254 PMCID: PMC3338793 DOI: 10.1371/journal.pone.0035882] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO) mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c). It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+) channels in the detrusor.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Biomedical Centre, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome. Am J Hum Genet 2011; 89:668-74. [PMID: 22077972 PMCID: PMC3213389 DOI: 10.1016/j.ajhg.2011.10.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 01/23/2023] Open
Abstract
Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice.
Collapse
|
8
|
Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, Unruh H, Gerthoffer WT, Zaagsma J, Meurs H, Halayko AJ. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J Cell Mol Med 2011; 15:2430-42. [PMID: 21199324 PMCID: PMC3822954 DOI: 10.1111/j.1582-4934.2010.01246.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/14/2010] [Indexed: 12/18/2022] Open
Abstract
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gerald L Stelmack
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gordon Dueck
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Mark M Mutawe
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Dedmer Schaafsma
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Helmut Unruh
- Section of Thoracic Surgery, University of ManitobaWinnipeg, Manitoba, Canada
| | - William T Gerthoffer
- Department of Pharmacology, University of Nevada School of MedicineReno, NV, USA
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Sathish V, Abcejo AJ, VanOosten SK, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 in cytokine-induced enhancement of intracellular Ca(2+) in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301:L607-14. [PMID: 21803870 DOI: 10.1152/ajplung.00019.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)](i)) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca(2+)](i) signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca(2+)](i) regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca(2+)](i) in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca(2+)](i) in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca(2+)](i) responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR(1) receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca(2+)](i).
Collapse
|
10
|
Sadegh MK, Ekman M, Rippe C, Sundler F, Wierup N, Mori M, Uvelius B, Swärd K. Biomechanical properties and innervation of the female caveolin-1-deficient detrusor. Br J Pharmacol 2011; 162:1156-70. [PMID: 21091642 DOI: 10.1111/j.1476-5381.2010.01115.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Caveolin-1-deficiency is associated with substantial urogenital alterations. Here, a mechanical, histological and biochemical characterization of female detrusors from wild-type and caveolin-1-deficient (KO) mice was made to increase the understanding of detrusor changes caused by lack of caveolae. EXPERIMENTAL APPROACH Length-tension relationships were generated, and we recorded responses to electrical field stimulation, the muscarinic receptor agonist carbachol and the purinoceptor agonist ATP. Tyrosine nitration and the contents of caveolin-1, cavin-1, muscarinic M₃ receptors, phospholipase C(β1), muscle-specific kinase (MuSK) and L-type Ca(2+) channels were determined by immunoblotting. Innervation was assessed by immunohistochemistry. KEY RESULTS Bladder to body weight ratio was not changed, nor was there any change in the optimum circumference for force development. Depolarization- and ATP-induced stress was reduced, as was carbachol-induced stress between 0.1 and 3 µM, but the supramaximal relative (% K(+)) response to carbachol was increased, as was M₃ expression. The scopolamine-sensitive component of the electrical field stimulation response was impaired, and yet bladder nerves contained little caveolin-1. The density of cholinergic nerves was unchanged, whereas CART- and CGRP-positive nerves were reduced. Immunoblotting revealed loss of MuSK. CONCLUSIONS AND IMPLICATIONS Ablation of caveolae in the female detrusor leads to generalized impairment of contractility, ruling out prostate hypertrophy as a contributing factor. Cholinergic neuroeffector transmission is impaired without conspicuous changes in the density of cholinergic nerves or morphology of their terminals, but correlating with reduced expression of MuSK.
Collapse
|
11
|
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L920-9. [PMID: 21421751 DOI: 10.1152/ajplung.00322.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shakirova Y, Swärd K, Uvelius B, Ekman M. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder. Eur J Pharmacol 2010; 649:362-8. [DOI: 10.1016/j.ejphar.2010.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/05/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
|