1
|
Werner T, Añazco T, Osses-Mendoza P, Castro-Álvarez A, Salas CO, Bridi R, Stark H, Espinosa-Bustos C. First Report on Cationic Triphenylphosphonium Compounds as Mitochondriotropic H 3R Ligands with Antioxidant Properties. Antioxidants (Basel) 2024; 13:1345. [PMID: 39594487 PMCID: PMC11591188 DOI: 10.3390/antiox13111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were synthesized as H3R ligands with antioxidant properties to regulate excessive mitochondrial oxidative stress and contribute to potential new therapeutic approaches for neurodegenerative diseases. Radioligand displacement studies revealed high affinity for H3R with Ki values in the low to moderate two-digit nanomolar range for all compounds. Compound 6e showed the highest affinity (Ki H3R = 14.1 nM), comparable to that of pitolisant. Antioxidative effects were evaluated as radical-scavenging properties using the ORAC assay, in which all derivatives showed low to moderate activity. On the other hand, cytotoxic effects in SH-SY5Y neuroblastoma cells were investigated using the colorimetric alamar blue assay, which revealed significant effects on cell viability with an unequivocally structure-toxicity relationship. Finally, docking and molecular simulation studies were used to determine the H3R binding form, which will allow us to further modify the compounds to establish a robust structure-activity relationship and find a lead compound with therapeutic utility in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Tito Añazco
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| | - Paula Osses-Mendoza
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| | - Alejandro Castro-Álvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| |
Collapse
|
2
|
Tomović Pavlović K, Ilić BS, Leitzbach L, Anichina KK, Yancheva D, Živković A, Mavrova AT, Stark H, Šmelcerović A. Bis(benzimidazol-2-yl)amine-Based DPP-4 Inhibitors Potentially Suitable for Combating Diabetes and Associated Nervous System Alterations. Chem Biodivers 2024; 21:e202401227. [PMID: 39001610 DOI: 10.1002/cbdv.202401227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 10/16/2024]
Abstract
Bis(benzimidazol-2-yl)amine scaffold is not present in dipeptidyl peptidase-4 (DPP-4) inhibitors published so far. Herein, the inhibitory potential of bis(benzimidazol-2-yl)amine derivatives against DPP-4 was evaluated. In non-competitive inhibition mode, three representatives 5, 6, and 7 inhibited DPP-4 in vitro with IC50 values below 50 μM. The assessed binding pocket of DPP-4 for these benzimidazoles includes the S2 extensive subsite's residues Phe357 and Arg358. None of the lead compounds showed cytotoxicity to human neuroblastoma SH-SY5Y cells at concentrations lower than 10 μM. None showed significant binding affinity at dopamine D2, D3, and histamine H1, H3 receptors, at concentrations lower than 10 μM, leading to preferable outcomes due to mutually opposite effects of these neurotransmitters on each other. The potential beneficial effects on dopamine synthesis and the survival of dopaminergic neurons could be mediated by DPP-4 inhibition. These effective noncompetitive DPP-4 inhibitors, with inhibitory potential better than reference diprotin A (relative inhibitory potency compared to diprotin A is 3.39 and 1.54 for compounds 7 and 5, respectively), with the absence of cytotoxicity to SH-SY5Y cells, are valuable candidates for further evaluation for the treatment of diabetes and associated disruption of neuronal homeostasis.
Collapse
Affiliation(s)
- Katarina Tomović Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Budimir S Ilić
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Luisa Leitzbach
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Kameliya K Anichina
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
| | - Denitsa Yancheva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., build. 9, 1113, Sofia, Bulgaria
| | - Aleksandra Živković
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Anelia Ts Mavrova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| |
Collapse
|
3
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Staszewski M, Iwan M, Werner T, Bajda M, Godyń J, Latacz G, Korga-Plewko A, Kubik J, Szałaj N, Stark H, Malawska B, Więckowska A, Walczyński K. Guanidines: Synthesis of Novel Histamine H 3R Antagonists with Additional Breast Anticancer Activity and Cholinesterases Inhibitory Effect. Pharmaceuticals (Basel) 2023; 16:ph16050675. [PMID: 37242458 DOI: 10.3390/ph16050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Magdalena Iwan
- Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Joanna Kubik
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
5
|
Multitargeting Histamine H 3 Receptor Ligands among Acetyl- and Propionyl-Phenoxyalkyl Derivatives. Molecules 2023; 28:molecules28052349. [PMID: 36903593 PMCID: PMC10005104 DOI: 10.3390/molecules28052349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.
Collapse
|
6
|
Aranha CMSQ, Reiner-Link D, Leitzbach LR, Lopes FB, Stark H, Fernandes JPS. Multitargeting approaches to cognitive impairment: Synthesis of aryl-alkylpiperazines and assessment at cholinesterases, histamine H 3 and dopamine D 3 receptors. Bioorg Med Chem 2023; 78:117132. [PMID: 36542960 DOI: 10.1016/j.bmc.2022.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Multitargeting ligands on enzymes and receptors may generate a profile for a potential treatment of cognitive impairment. Considering this, a set of 21 substituted aryl-alkyl-piperazines were designed, prepared and tested for their binding affinities at histamine H3 and dopamine D3 receptors (H3R and D3R, respectively) as well as acetyl- and butyrylcholinesterases (AChE/BChE) as potentially synergistic profile. Initial screening of the compounds at H3R and D3R was done at 1 or 10 µM and 100 µM at AChE and BChE assays. The most promising compounds were then evaluated in full concentration-response curves to estimate the Ki and IC50 values. Results showed that several compounds were ligands at H3R (n = 10), D3R (n = 6), AChE (n = 3), and BChE (n = 9). Compounds LINS05006 (Ki H3R 2.8 µM; D3R 0.7 µM; IC50 BChE 26.3 µM) and LINS05015 (Ki H3R 1.1 µM; D3R 3.1 µM; IC50 AChE 97.8 µM; BChE 43.7 µM) are highlighted since presented affinity in three different. These results suggest that methylpiperazine moiety led to balanced activity at all three classes of targets, and longer linker provided the best affinities. These compounds presented high ligand efficiency values (LE > 0.3) and may have adequate pharmacokinetic profile as suggested by calculated physicochemical properties.
Collapse
Affiliation(s)
- Cecília M S Q Aranha
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - David Reiner-Link
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Luisa R Leitzbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Flavia B Lopes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
7
|
The Novel Pimavanserin Derivative ST-2300 with Histamine H3 Receptor Affinity Shows Reduced 5-HT2A Binding, but Maintains Antidepressant- and Anxiolytic-like Properties in Mice. Biomolecules 2022; 12:biom12050683. [PMID: 35625611 PMCID: PMC9138994 DOI: 10.3390/biom12050683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
The therapy of depression is challenging and still unsatisfactory despite the presence of many antidepressant drugs on the market. Consequently, there is a continuous need to search for new, safer, and more effective antidepressant therapeutics. Previous studies have suggested a potential association of brain histaminergic/serotoninergic signaling and antidepressant- and anxiolytic-like effects. Here, we evaluated the in vivo antidepressant- and anxiolytic-like effects of the newly developed multiple-active ligand ST-2300. ST-2300 was developed from 5-HT2A/2C inverse agonist pimavanserin (PIM, ACP-103) and incorporates a histamine H3 receptor (H3R) antagonist pharmacophore. Despite its parent compound, ST-2300 showed only moderate serotonin 5-HT2A antagonist/inverse agonist affinity (Ki value of 1302 nM), but excellent H3R affinity (Ki value of 14 nM). In vivo effects were examined using forced swim test (FST), tail suspension test (TST), and the open field test (OFT) in C57BL/6 mice. Unlike PIM, ST-2300 significantly increased the anxiolytic-like effects in OFT without altering general motor activity. In FST and TST, ST-2300 was able to reduce immobility time similar to fluoxetine (FLX), a recognized antidepressant drug. Importantly, pretreatment with the CNS-penetrant H3R agonist (R)-α-methylhistamine reversed the antidepressant-like effects of ST-2300 in FST and TST, but failed to reverse the ST-2300-provided anxiolytic effects in OFT. Present findings reveal critical structural features that are useful in a rational multiple-pharmacological approach to target H3R/5-HT2A/5-HT2C.
Collapse
|
8
|
Gajic M, Knez D, Sosič I, Mravljak J, Meden A, Košak U, Leitzbach L, George S, Hofmann B, Zivkovic A, Steinhilber D, Stark H, Gobec S, Smelcerovic A, Anderluh M. Repurposing of 8-Hydroxyquinoline-based Butyrylcholinesterase and Cathepsin B Ligands as Potent Non-peptidic Deoxyribonuclease I Inhibitors. ChemMedChem 2022; 17:e202100694. [PMID: 34994078 DOI: 10.1002/cmdc.202100694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Indexed: 11/06/2022]
Abstract
A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors, was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported up to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while 2 nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 µM and 20 µM, respectively. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3, histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.
Collapse
Affiliation(s)
| | - Damijan Knez
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | - Izidor Sosič
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | - Janez Mravljak
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | - Anže Meden
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | - Urban Košak
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | - Luisa Leitzbach
- Heinrich Heine University Duesseldorf, Institute for Pharmaceutical and Medicinal Chemistry, GERMANY
| | - Sven George
- Goethe-University of Frankfurt, Institute of Pharmaceutical Chemistry, GERMANY
| | - Bettina Hofmann
- Goethe-University of Frankfurt, Institute of Pharmaceutical Chemistry, GERMANY
| | - Aleksandra Zivkovic
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, GERMANY
| | - Dieter Steinhilber
- Goethe-University of Frankfurt, Institute of Pharmaceutical Chemistry, GERMANY
| | - Holger Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, GERMANY
| | - Stanislav Gobec
- University of Ljubljana, Department of Medicinal Chemistry, SLOVENIA
| | | | - Marko Anderluh
- University of Ljubljana, Faculty of Pharmacy, Askerceva cesta 7, 1000, Ljubljana, SLOVENIA
| |
Collapse
|
9
|
Falkenstein M, Reiner-Link D, Zivkovic A, Gering I, Willbold D, Stark H. Histamine H 3 receptor antagonists with peptidomimetic (keto)piperazine structures to inhibit Aβ oligomerisation. Bioorg Med Chem 2021; 50:116462. [PMID: 34695709 DOI: 10.1016/j.bmc.2021.116462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Alzheimeŕs disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where β-amyloid structures (Aβ) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aβ-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Ian Gering
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
10
|
Staszewski M, Nelic D, Jończyk J, Dubiel M, Frank A, Stark H, Bajda M, Jakubik J, Walczyński K. Guanidine Derivatives: How Simple Structural Modification of Histamine H 3R Antagonists Has Led to the Discovery of Potent Muscarinic M 2R/M 4R Antagonists. ACS Chem Neurosci 2021; 12:2503-2519. [PMID: 34100603 PMCID: PMC8291587 DOI: 10.1021/acschemneuro.1c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
This article describes
the discovery of novel potent muscarinic
receptor antagonists identified during a search for more active histamine
H3 receptor (H3R) ligands. The idea was to replace
the flexible seven methylene linker with a semirigid 1,4-cyclohexylene
or p-phenylene substituted group of the previously
described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications
of the histamine H3R antagonist led to the emergence of
additional pharmacological effects, some of which unexpectedly showed
strong antagonist potency at muscarinic receptors. This paper reports
the routes of synthesis and pharmacological characterization of guanidine
derivatives, a novel chemotype of muscarinic receptor antagonists
binding to the human muscarinic M2 and M4 receptors
(hM2R and hM4R, respectively) in nanomolar concentration
ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine)
at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| | - Dominik Nelic
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jan Jakubik
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
11
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Discovery of Potential, Dual-Active Histamine H 3 Receptor Ligands with Combined Antioxidant Properties. Molecules 2021; 26:molecules26082300. [PMID: 33921144 PMCID: PMC8071534 DOI: 10.3390/molecules26082300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
In an attempt to find new dual acting histamine H3 receptor (H3R) ligands, we designed a series of compounds, structurally based on previously described in our group, a highly active and selective human histamine H3 receptor (hH3R) ligand KSK63. As a result, 15 obtained compounds show moderate hH3R affinity, the best being the compound 17 (hH3R Ki = 518 nM). Docking to the histamine H3R homology model revealed two possible binding modes, with key interactions retained in both cases. In an attempt to find possible dual acting ligands, selected compounds were tested for antioxidant properties. Compound 16 (hH3R Ki = 592 nM) showed the strongest antioxidant properties at the concentration of 10−4 mol/L. It significantly reduced the amount of free radicals presenting 50–60% of ascorbic acid activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, as well as showed antioxidative properties in the ferric reducing antioxidant power (FRAP) assay. Despite the yet unknown antioxidation mechanism and moderate hH3R affinity, 16 (QD13) constitutes a starting point for the search of potential dual acting H3R ligands-promising tools for the treatment of neurological disorders associated with increased neuronal oxidative stress.
Collapse
|
13
|
Grosicki M, Adami M, Micheloni C, Głuch-Lutwin M, Siwek A, Latacz G, Łażewska D, Więcek M, Reiner-Link D, Stark H, Chlopicki S, Kieć-Kononowicz K. Eosinophils adhesion assay as a tool for phenotypic drug screening - The pharmacology of 1,3,5 - Triazine and 1H-indole like derivatives against the human histamine H 4 receptor. Eur J Pharmacol 2020; 890:173611. [PMID: 33017589 DOI: 10.1016/j.ejphar.2020.173611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Histamine is a pleiotropic biogenic amine, having affinity towards four distinct histamine receptors. The existing pharmacological studies suggest the usefulness of histamine H4 receptor ligands in the treatment of many inflammatory and immunomodulatory diseases, including allergic rhinitis, asthma, atopic dermatitis, colitis or pruritus. Up to date, several potent histamine H4 receptor ligands were developed, none of which was registered as a drug yet. In this study, a series of potent indole-like and triazine derivatives were tested, in radioligand displacement and functional assays at histamine H4 receptor, as well as in human eosinophils adhesion assay to endothelium. For selected compounds permeability, cytotoxicity, metabolic and in vivo studies were conducted. Adhesion assay differentiated the activity of different groups of compounds with a known affinity towards the histamine H4 receptor. Most of the tested compounds downregulated the number of adherent cells. However, adhesion assay revealed additional properties of tested compounds that had not been detected in radioligand displacement and aequorin-based functional assays. Furthermore, for some tested compounds, these abnormal effects were confirmed during the in vivo studies. In conclusion, eosinophils adhesion assay uncovered pharmacological activity of histamine H4 receptor ligands that has been later confirmed in vivo, underscoring the value of well-suited cell-based phenotypic screening approach in drug discovery.
Collapse
Key Words
- 1,3,5 – Triazine derivatives
- 1H-Indole like derivatives
- 1H-indole like derivatives
- Adhesion
- Endothelium
- Eosinophils
- Histamine
- Histamine receptors
- JN-25 (4-[(E)-2-(3-chlorophenyl)ethenyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- JN-35 (4-(4-methylpiperazin-1-yl)-6-(3-phenylpropyl)-1,3,5-triazin-2-amine)
- JNJ10191584 (5-chloro-1H-benzo[d]imidazol-2-yl)(4-methylpiperazin-1-yl)methanone) Pub- Chem CID: 10446295)
- JNJ7777120 (5-chloro-1H-indol-2-yl)(4-methylpiperazin-1-yl)methanone) Pub- Chem CID: 4908365)
- KP-9D (2-(4-chlorophenyl)-4-(4-methylpiperazin-1-yl)-1,3,5-triazine)
- MWJ-3 (5-chloro-7-nitro-1H-indol-2-yl)(4-methylpiperazin-1-yl)methanone Pub- Chem CID: 70692530)
- TR-18 (4-(4-bromophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-7 (4-(4-chlorophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-AF-45 (4-(4-methylpiperazin-1-yl)-6-neopentyl-1,3,5-triazin-2-amine)
- TR-AF-49 (4-(cyclohexylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-DL-20 (4-(1-cyclohexenylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Krakow, Poland
| | - Maristella Adami
- University of Parma, Department of Medicine and Surgery, Via Gramsci 14, 43126, Parma, Italy
| | - Cristina Micheloni
- University of Parma, Department of Medicine and Surgery, Via Gramsci 14, 43126, Parma, Italy
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, Medyczna 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Więcek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - David Reiner-Link
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
14
|
Łażewska D, Olejarz-Maciej A, Reiner D, Kaleta M, Latacz G, Zygmunt M, Doroz-Płonka A, Karcz T, Frank A, Stark H, Kieć-Kononowicz K. Dual Target Ligands with 4- tert-Butylphenoxy Scaffold as Histamine H 3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int J Mol Sci 2020; 21:ijms21103411. [PMID: 32408504 PMCID: PMC7279487 DOI: 10.3390/ijms21103411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Abstract
Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 MedycznaStr, 30-688 Kraków, Poland;
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| |
Collapse
|
15
|
Bajda M, Łażewska D, Godyń J, Zaręba P, Kuder K, Hagenow S, Łątka K, Stawarska E, Stark H, Kieć-Kononowicz K, Malawska B. Search for new multi-target compounds against Alzheimer's disease among histamine H 3 receptor ligands. Eur J Med Chem 2019; 185:111785. [PMID: 31669851 DOI: 10.1016/j.ejmech.2019.111785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023]
Abstract
Multi-target-directed ligands seem to be an interesting approach to the treatment of complex disorders such as Alzheimer's disease. The aim of the present study was to find novel multifunctional compounds in a non-imidazole histamine H3 receptor ligand library. Docking-based virtual screening was applied for selection of twenty-six hits which were subsequently evaluated in Ellman's assay for the inhibitory potency toward acetyl- (AChE) and butyrylcholinesterase (BuChE). The virtual screening with high success ratio enabled to choose multi-target-directed ligands. Based on docking results, all selected ligands were able to bind both catalytic and peripheral sites of AChE and BuChE. The most promising derivatives combined the flavone moiety via a six carbon atom linker with a heterocyclic moiety, such as azepane, piperidine or 3-methylpiperidine. They showed the highest inhibitory activities toward cholinesterases as well as well-balanced potencies against H3R and both enzymes. Two derivatives were chosen - 5 (IC50 = 0.46 μM (AChE); 0.44 μM (BuChE); Ki = 159.8 nM (H3R)) and 17 (IC50 = 0.50 μM (AChE); 0.76 μM (BuChE); Ki = 228.2 nM (H3R)), and their inhibition mechanism was evaluated in kinetic studies. Both compounds displayed non-competitive mode of AChE and BuChE inhibition. Compounds 5 and 17 might serve as good lead structures for further optimization and development of novel multi-target anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Ewelina Stawarska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
16
|
Lutsenko K, Hagenow S, Affini A, Reiner D, Stark H. Rasagiline derivatives combined with histamine H3 receptor properties. Bioorg Med Chem Lett 2019; 29:126612. [DOI: 10.1016/j.bmcl.2019.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
17
|
Domínguez‐Álvarez E, Łażewska D, Szabó Z, Hagenow S, Reiner D, Gajdács M, Spengler G, Stark H, Handzlik J, Kieć‐Kononowicz K. The Search for Histamine H
4
Receptor Ligands with Anticancer Activity among Novel (Thio)urea Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Enrique Domínguez‐Álvarez
- Instituto de Química Orgánica GeneralConsejo Superior de Investigaciones Científicas (IQOG-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Dorota Łażewska
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| | - Zsanett Szabó
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - David Reiner
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - Márió Gajdács
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| |
Collapse
|
18
|
Schaller D, Hagenow S, Stark H, Wolber G. Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLoS One 2019; 14:e0218820. [PMID: 31237914 PMCID: PMC6592549 DOI: 10.1371/journal.pone.0218820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
In this study, we report a ligand-guided homology modeling approach allowing the analysis of relevant binding site residue conformations and the identification of two novel histamine H3 receptor ligands with binding affinity in the nanomolar range. The newly developed method is based on exploiting an essential charge interaction characteristic for aminergic G-protein coupled receptors for ranking 3D receptor models appropriate for the discovery of novel compounds through virtual screening.
Collapse
Affiliation(s)
- David Schaller
- Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Gerhard Wolber
- Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Szczepańska K, Karcz T, Siwek A, Kuder KJ, Latacz G, Bednarski M, Szafarz M, Hagenow S, Lubelska A, Olejarz-Maciej A, Sobolewski M, Mika K, Kotańska M, Stark H, Kieć-Kononowicz K. Structural modifications and in vitro pharmacological evaluation of 4-pyridyl-piperazine derivatives as an active and selective histamine H 3 receptor ligands. Bioorg Chem 2019; 91:103071. [PMID: 31362197 DOI: 10.1016/j.bioorg.2019.103071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
A novel series of 4-pyridylpiperazine derivatives with varying alkyl linker length and eastern part substituents proved to be potent histamine H3 receptor (hH3R) ligands in the nanomolar concentration range. While paying attention to their alkyl linker length, derivatives with a six methylene linker tend to be more potent than their five methylene homologues. Moreover, in the case of both phenoxyacetyl- and phenoxypropionyl- derivatives, an eight methylene linkers possess lower activity than their seven methylene homologues. However, in global analysis of collected data on the influence of alkyl linker length, a three methylene homologues appeared to be of highest hH3R affinity among all described 4-pyridylpiperazine derivatives from our group up to date. In the case of biphenyl and benzophenone derivatives, compounds with para- substituted second aromatic ring were of higher affinity than their meta analogues. Interestingly, benzophenone derivative 18 showed the highest affinity among all tested compounds (hH3R Ki = 3.12 nM). The likely protein-ligand interactions, responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at H3R, as well as drug-like properties of selected ligands were evaluated using in vitro methods.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marek Bednarski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Michał Sobolewski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil Mika
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
20
|
Salem A, Almahmoudi R, Hagström J, Stark H, Nordström D, Salo T, Eklund KK. Human β-Defensin 2 Expression in Oral Epithelium: Potential Therapeutic Targets in Oral Lichen Planus. Int J Mol Sci 2019; 20:ijms20071780. [PMID: 30974892 PMCID: PMC6479702 DOI: 10.3390/ijms20071780] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Human β-defensin 2 (hBD-2) is a potent antimicrobial peptide that participates in defense against invading bacteria. We recently showed that bacterial components and histamine, through histamine H4 receptor (H4R), are involved in the pathogenesis of the potentially malignant lesion, oral lichen planus (OLP). However, the underlying mechanisms remain unknown. We, therefore, investigated the role of hBD2–histamine crosstalk signaling in promoting OLP pathology. Biopsies from OLP and oral tongue squamous cell carcinoma (OTSCC) patients, and healthy controls were used. Two OTSCC cell lines and normal human oral keratinocytes (HOKs) were used. HBD-2 and other targets were mapped by immunostaining and analyzed by ImageJ2 software. The highly sensitive droplet-digital PCR technology and qRT-PCR were utilized to study the clinically derived and in vitro samples, respectively. H4R was challenged with the specific agonist HST-10 and inverse agonist ST-1007. HBD-2 was highly induced in OLP lesions. In contrast, hBD2 expression was attenuated in OTSCC tissues, while very low levels of hBD-2 messenger RNA (mRNA) were observed in OTSCC cells. Together with tumor necrosis factor-α (TNF-α), histamine upregulated hBD-2 mRNA expression in HOKs. Activation of H4R seems to modulate the expression of epithelial hBD-2. These findings suggest the involvement of hBD-2 in the pathogenesis of OLP and may, thus, be harnessed for therapeutic interventions in OLP.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Clinical Medicine, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaana Hagström
- Department of Pathology, Helsinki University Hospital, Helsinki, Finland and Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Dan Nordström
- Department of Internal Medicine, Helsinki University and Helsinki Hospital, 00014 Helsinki, Finland.
| | - Tuula Salo
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland.
- Cancer and Translational Medicine Research Unit, University of Oulu, FI-90014 Oulu, Finland.
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Internal Medicine, Helsinki University and Helsinki Hospital, 00014 Helsinki, Finland.
- Department of Rheumatology, Helsinki University and Helsinki University Hospital, and Orton Orthopedic Hospital and Research Institute, 00014 Helsinki, Finland.
| |
Collapse
|
21
|
Reiner D, Stark H. Ligand binding kinetics at histamine H3 receptors by fluorescence-polarization with real-time monitoring. Eur J Pharmacol 2019; 848:112-120. [DOI: 10.1016/j.ejphar.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023]
|
22
|
Szczepańska K, Karcz T, Kotańska M, Siwek A, Kuder KJ, Latacz G, Mogilski S, Hagenow S, Lubelska A, Sobolewski M, Stark H, Kieć-Kononowicz K. Optimization and preclinical evaluation of novel histamine H 3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives. Bioorg Med Chem 2018; 26:6056-6066. [PMID: 30448256 DOI: 10.1016/j.bmc.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands, a series of new acetyl and propionyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer, composed of six various 4N-substituted piperazine moieties were evaluated for their binding properties at human histamine H3 receptors (hH3R). In vitro test results proved the 4-pyridylpiperazine moiety as crucial element for high hH3R affinity (hH3R Ki = 5.2-115 nM). Moreover introduction of carbonyl group containing residues in the lipophilic part of molecules instead of branched alkyl substituents resulted in increased affinity in correlation to previously described series, whereas propionyl derivatives showed slightly higher affinities than those of acetyl (16 and 22vs.4 and 10; hH3R Ki = 5.2 and 15.4 nM vs. 10.2 and 115 nM, respectively). These findings were confirmed by molecular modelling studies, demonstrating multiple ligand-receptor interactions. Furthermore, pharmacological in vivo test results of compound 4 clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound. Likewise, its protective action against hyperglycemia and the development of overweight has been shown. In order to estimate drug-likeness of compound 4, in silico and experimental evaluation of metabolic stability in human liver microsomes was performed.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf , Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Michał Sobolewski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf , Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
23
|
Differential effects of functionally different histamine H 4 receptor ligands on acute irritant dermatitis in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1387-1397. [PMID: 30145688 DOI: 10.1007/s00210-018-1553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The anti-inflammatory effects of histamine H4 receptor (H4R) antagonists opened new therapeutic options for the treatment of inflammatory/allergic diseases, but the role of H4R in inflammation is far from being solved. Aim of the present study was to investigate the role of structurally related H4R ligands of the aminopyrimidine class with different efficacies and functionalities (neutral antagonist ST-994, partial agonist ST-1006, inverse agonist ST-1012, and partial inverse agonist ST-1124) on croton oil-induced ear edema and pruritus in mice. The H4R ligands were administered subcutaneously before topical application of croton oil. While ST-1006 and ST-1124 were ineffective at any dose tested (10-100 mg/kg), both ST-994 and ST-1012 (30 and 100 mg/kg) significantly reduced croton oil-induced ear edema. Moreover, ST-994, ST-1006, and ST-1124, but not ST-1012, significantly inhibited croton oil-induced ear pruritus at 30 mg/kg. In accordance with results obtained with the reference H4R antagonist JNJ7777120 (100 mg/kg), histological examination of inflamed ear tissue indicated that treatment with ST-994 (30 mg/kg) led to a significant reduction in the inflammatory severity score and in the number of eosinophils infiltrating the tissue, while the number of degranulated mast cells in inflamed tissues was increased in comparison with the number of intact mast cells. These data indicate that croton oil-induced ear inflammation and pruritus seem to be clearly, but variably, affected by the H4R ligands tested. The potential advantage of dual effect of the H4R neutral antagonist ST-994 has to be carefully considered as a new therapeutic approach to the treatment of inflammatory diseases.
Collapse
|
24
|
Khanfar MA, Reiner D, Hagenow S, Stark H. Design, synthesis, and biological evaluation of novel oxadiazole- and thiazole-based histamine H 3R ligands. Bioorg Med Chem 2018; 26:4034-4046. [PMID: 29960729 DOI: 10.1016/j.bmc.2018.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Histamine H3 receptor (H3R) is largely expressed in the CNS and modulation of the H3R function can affect histamine synthesis and liberation, and modulate the release of many other neurotransmitters. Targeting H3R with antagonists/inverse agonists may have therapeutic applications in neurodegenerative disorders, gastrointestinal and inflammatory diseases. This prompted us to design and synthesize azole-based H3R ligands, i.e. having oxadiazole- or thiazole-based core structures. While ligands of oxadiazole scaffold were almost inactive, thiazole-based ligands were very potent and several exhibited binding affinities in a nanomolar concentration range. Ligands combining 4-cyanophenyl moiety as arbitrary region, para-xylene or piperidine carbamoyl linkers, and/or pyrrolidine or piperidine basic heads were found to be the most active within this series of thiazole-based H3R ligands. The most active ligands were in silico screened for ADMET properties and drug-likeness. They fulfilled Lipinski's and Veber's rules and exhibited potential activities for oral administration, blood-brain barrier penetration, low hepatotoxicity, combined with an overall good toxicity profile.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany; Faculty of Pharmacy, University of Jordan, P.O Box 13140, Amman 11942, Jordan; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - David Reiner
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
25
|
Alachkar A, Latacz G, Siwek A, Lubelska A, Honkisz E, Gryboś A, Łażewska D, Handzlik J, Stark H, Kiec-Kononowicz K, Sadek B. Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacol Biochem Behav 2018; 170:14-24. [PMID: 29729290 DOI: 10.1016/j.pbb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
Novel non-imidazole histamine H3 receptor (H3R) antagonists (2-8) were developed and assessed for in-vitro antagonist binding affinities at the human histamine H1-H4R. These novel H3R antagonists (2-8) were examined in-vivo for anticonvulsant effects in three different convulsion models in male adult rats. Compound 6 significantly and dose-dependently exhibited decreased duration of tonic hind limb extension (THLE) in the maximal electroshock (MES)- and fully protected animals against pentylenetetrazole (PTZ)-induced convulsion, following acute systemic administration (5, 10, and 20 mg/kg, i.p.). Contrary, all compounds 2-8 showed moderate protection in the strychnine (STR)-induced convulsion model following acute pretreatment (10 mg/kg, i.p.). Moreover, the acute systemic administration of H3R antagonist 6 (10 mg/kg, i.p.) significantly prolonged latency time for MES convulsions. Furthermore, the anticonvulsant effect observed with compound 6 in MES-model was entirely abrogated when rats were co-injected with the brain penetrant H1R antagonist pyrilamine (PYR) but not the brain penetrant H2R antagonist zolantidine (ZOL). However, PYR and ZOL failed to abolish the full protection provided by the H3R antagonist 6 in PTZ- and STR-models. No mutagenic or antiproliferative effects or potential metabolic interactions were shown for compound 6 when assessing its antiproliferative activities and metabolic profiling applying in-vitro methods. These findings demonstrate the potential of non-imidazole H3R antagonists as novel antiepileptic drugs (AEDs) either for single use or in addition to currently available epilepsy medications.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Ewelina Honkisz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
26
|
Łażewska D, Kaleta M, Hagenow S, Mogilski S, Latacz G, Karcz T, Lubelska A, Honkisz E, Handzlik J, Reiner D, Satała G, Filipek B, Stark H, Kieć-Kononowicz K. Novel naphthyloxy derivatives – Potent histamine H3 receptor ligands. Synthesis and pharmacological evaluation. Bioorg Med Chem 2018; 26:2573-2585. [DOI: 10.1016/j.bmc.2018.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
27
|
Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H 3R ligands. Eur J Med Chem 2018; 152:223-234. [PMID: 29723785 DOI: 10.1016/j.ejmech.2018.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 11/21/2022]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands, a series of twenty four new tert-butyl and tert-pentyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer were evaluated for their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for 4-pyridyl derivatives 4, 10, 16 and 22 (Ki = 16.0-120 nM). As it has been shown in docking studies, those specific heteroaromatic 4-N piperazine substituents might interact with one of the key receptor interacting amino acids. Moreover, the most promising compounds exhibited anticonvulsant activity in the maximal electroshock-induced seizure (MES) model in mice. Furthermore, the blood-brain barrier penetration, the functional H3R antagonist potency as well as the pro-cognitive properties in the passive avoidance test were demonstrated for compound 10. In order to estimate drug-likeness of compound 10,in silico and experimental evaluation of metabolic stability in human liver microsomes was performed. In addition, paying attention to the results obtained within this study, the 4-pyridyl-piperazino moiety has been established as a new bioisosteric piperidine replacement in H3R ligands.
Collapse
|
28
|
Novel indanone derivatives as MAO B/H 3R dual-targeting ligands for treatment of Parkinson's disease. Eur J Med Chem 2018; 148:487-497. [PMID: 29477889 DOI: 10.1016/j.ejmech.2018.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/24/2022]
Abstract
The design of multi-targeting ligands was developed in the last decades as an innovative therapeutic concept for Parkinson's disease (PD) and other neurodegenerative disorders. As the monoamine oxidase B (MAO B) and the histamine H3 receptor (H3R) are promising targets for dopaminergic regulation, we synthetized dual-targeting ligands (DTLs) as non-dopaminergic receptor approach for the treatment of PD. Three series of compounds were developed by attaching the H3R pharmacophore to indanone-related MAO B motifs, leading to development of MAO B/H3R DTLs. Among synthesized indanone DTLs, compounds bearing the 2-benzylidene-1-indanone core structure showed MAO B preferring inhibition capabilities along with nanomolar hH3R affinity. Substitution of C5 and C6 position of the 2-benzylidene-1-indanones with lipophilic substituents revealed three promising candidates exhibiting inhibitory potencies for MAO B with IC50 values ranging from 1931 nM to 276 nM and high affinities at hH3R (Ki < 50 nM). Compound 3f ((E)-5-((4-bromobenzyl)oxy)-2-(4-(3-(piperidin-1-yl)propoxy)benzylidene)-2,3-dihydro-1H-inden-1-one, MAO B IC50 = 276 nM, hH3R Ki = 6.5 nM) showed highest preference for MAO B over MAO A (SI > 36). Interestingly, IC50 determinations after preincubation of enzyme and DTLs revealed also nanomolar MAO B potency for 3e (MAO B IC50 = 232 nM), a structural isomer of 3f, and 3d (MAO B IC50 = 541 nM), suggesting time-dependent inhibition modes. Reversibility of inhibition for all three compounds were confirmed by dilution studies in excess of substrate. Thus, indanone-substituted derivatives are promising lead structures for the design of MAO B/hH3R DTLs as novel therapeutic approach of PD therapy.
Collapse
|
29
|
Corrêa MF, Barbosa ÁJR, Teixeira LB, Duarte DA, Simões SC, Parreiras-E-Silva LT, Balbino AM, Landgraf RG, Bouvier M, Costa-Neto CM, Fernandes JPS. Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H 3 and H 4 Receptors with Anti-inflammatory Potential. Front Pharmacol 2017; 8:825. [PMID: 29184503 PMCID: PMC5694482 DOI: 10.3389/fphar.2017.00825] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The histamine receptors (HRs) are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson’s, and Alzheimer’s diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01 series) molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40), while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06). In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg) than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.
Collapse
Affiliation(s)
- Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Álefe J R Barbosa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Larissa B Teixeira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego A Duarte
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aleksandro M Balbino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Richardt G Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
30
|
Łażewska D, Kaleta M, Schwed JS, Karcz T, Mogilski S, Latacz G, Olejarz A, Siwek A, Kubacka M, Lubelska A, Honkisz E, Handzlik J, Filipek B, Stark H, Kieć-Kononowicz K. Biphenyloxy-alkyl-piperidine and azepane derivatives as histamine H 3 receptor ligands. Bioorg Med Chem 2017; 25:5341-5354. [PMID: 28797771 DOI: 10.1016/j.bmc.2017.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
Novel biphenyloxy-alkyl derivatives of piperidine and azepane were synthesized and evaluated for their binding properties at the human histamine H3 receptor. Two series of compounds were obtained with a meta- and a para-biphenyl moiety. The alkyl chain spacer contained five and six carbon atoms. The highest affinity among all compounds was shown by 1-(6-(3-phenylphenoxy)hexyl)azepane (13) with a Ki value of 18nM. Two para-biphenyl derivatives, 1-(5-(4-phenylphenoxy)pentyl)piperidine (14; Ki=25nM) and 1-(5-(4-phenylphenoxy)pentyl)azepane (16; Ki=34nM), classified as antagonists in a cAMP accumulation assay (IC50=4 and 9nM, respectively), were studied in detail. Compounds 14 and 16 blocked RAMH-induced dipsogenia in rats (ED50 of 2.72mg/kg and 1.75mg/kg respectively), and showed high selectivity (hH4R vs hH3R>600-fold) and low toxicity (hERG inhibition: IC50>1.70µM; hepatotoxicity IC50>12.5µM; non-mutagenic up to 10µM). Furthermore, the metabolic stability was evaluated in vitro on human liver microsomes (HLMs) and/or rat liver microsomes (RLMs). Metabolites produced were analyzed and tentatively identified by UPLC-MS techniques. The results demonstrated easy hydroxylation of the biphenyl ring.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - J Stephan Schwed
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamic, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Monika Kubacka
- Department of Pharmacodynamic, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamic, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
31
|
Frank A, Abu-Lafi S, Adawi A, Schwed JS, Stark H, Rayan A. From medicinal plant extracts to defined chemical compounds targeting the histamine H 4 receptor: Curcuma longa in the treatment of inflammation. Inflamm Res 2017. [PMID: 28647836 DOI: 10.1007/s00011-017-1075-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES The aim was to evaluate the activity of seven medicinal, anti-inflammatory plants at the hH4R with focus on defined chemical compounds from Curcuma longa. MATERIALS Activities were analyzed with membrane preparations from Sf9 cells, transiently expressing the hH4R, Gαi2 and Gβ1γ2 subunits. METHODS From the methanolic extract of C. longa curcumin (1), demethoxycurcumin (2) and bis(4-hydroxy-cinnamoyl)methane (3) were isolated, purified with HPLC (elution-time 10.20, 9.66, 9.20 min, respectively) and together with six additional extracts, were characterized via radioligand binding studies at the hH4R. RESULTS Compounds from C. longa were the most potent ligands at the hH4R. They exhibited estimated K i values of 4.26-6.26 µM (1.57-2.31 µg/mL) (1); 6.66--8.97 µM (2.26-3.04 µg/mL) (2) and 10.24-14.57 µM (3.16-4.49 µg/mL) (3) (95% CI). The estimated K i value of the crude extract of curcuma was 0.50-0.81 µg/mL. Fractionated curcumin and the crude extract surpassed the effect of pure curcumin with a K i value of 5.54 µM or 2.04 µg/mL [95% CI (4.47-6.86 µM), (1.65-2.53 µg/mL)]. CONCLUSION Within this study, defined compounds of C. longa were recognized as potential ligands and reasonable lead structures at the hH4R. The mode of anti-inflammatory action of curcumin was further elucidated and the role of extracts in traditional phytomedicine was strengthened.
Collapse
Affiliation(s)
- Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Saleh Abu-Lafi
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002, Abu-Dies, Palestine
| | - Azmi Adawi
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200, Shefa-'Amr, Israel
| | - Johannes S Schwed
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Anwar Rayan
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200, Shefa-'Amr, Israel.,Drug Discovery Informatics Lab, Qasemi Research Center, Al-Qasemi Academic College, P.O. Box 124, 30100, Baka EL-Garbya, Israel
| |
Collapse
|
32
|
Kuder KJ, Łażewska D, Kaleta M, Latacz G, Kottke T, Olejarz A, Karcz T, Fruziński A, Szczepańska K, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. Synthesis and biological activity of novel tert-amylphenoxyalkyl (homo)piperidine derivatives as histamine H 3R ligands. Bioorg Med Chem 2017; 25:2701-2712. [PMID: 28372935 DOI: 10.1016/j.bmc.2017.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands a series of twenty new tert-amyl phenoxyalkylamine derivatives (2-21) was synthesized. Compounds of four to eight carbon atoms spacer alkyl chain were evaluated on their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for pentyl derivatives 6-8 (Ki=8.8-23.4nM range) and among them piperidine derivative 6 with Ki=8.8nM. Structures 6, 7 were also classified as antagonists in cAMP accumulation assay (with EC50=157 and 164nM, respectively). Moreover, new compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Seven compounds (2-4, 9, 11, 12 and 20) showed anticonvulsant activity at maximal electroshock (MES) test in the dose of 30mg/kg at 0.5h. In the subcutaneous pentetrazole (scMET) test compound 4 showed protection at 100 and 300mg/kg dose at mice, however compounds showed high neurotoxicity in rotarod test at used doses. Also, molecular modeling studies were undertaken, to explain affinity of compounds at hH3R (taking into the consideration X-ray analysis of compound 18). In order to estimate "drug-likeness" of selected compounds in silico and experimental evaluation of lipophilicity, metabolic stability and cytotoxicity was performed.
Collapse
Affiliation(s)
- Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tim Kottke
- Institute of Pharmaceutical Chemistry, Biozentrun, ZAFES, Frankfurt/Main 60438, Germany
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Andrzej Fruziński
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 str., Łódź 90-924, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Janina Karolak-Wojciechowska
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 str., Łódź 90-924, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
33
|
Corrêa MF, Varela MT, Balbino AM, Torrecilhas AC, Landgraf RG, Troncone LRP, Fernandes JPDS. 1-[(2,3-Dihydro-1-benzofuran-2-yl) methyl]piperazines as novel anti-inflammatory compounds: Synthesis and evaluation on H 3 R/H 4 R. Chem Biol Drug Des 2017; 90:317-322. [PMID: 28109127 DOI: 10.1111/cbdd.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022]
Abstract
The histamine receptors (HRs) are members of G-protein-coupled receptor superfamily and traditional targets of huge therapeutic interests. Recently, H3 R and H4 R have been explored as targets for drug discovery, including in the search for dual-acting H3 R/H4 R ligands. The H4 R, the most recent histamine receptor, is a promising target for novel anti-inflammatory agents in several conditions such as asthma and other chronic inflammatory diseases. Due to similarity with previously reported ligands of HRs, a set of 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines were synthesized and evaluated in competitive binding assays as H3 R/H4 R ligands herein. The results showed the compounds presented affinity (Ki ) for H3 R/H4 R in micromolar range, and they are more selective to H3 R. All the compounds showed no important cytotoxicity to mammalian cells. The phenyl-substituted compound LINS01005 has shown the higher affinity of the set for H4 R, but no considerable selectivity toward this receptor over H3 R. LINS01005 showed interesting anti-inflammatory activity in murine asthma model, reducing the eosinophil counts in bronchoalveolar lavage fluid, as well as the COX-2 expression. The presented compounds are valuable prototypes for further improvements to achieve better anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelle Fidelis Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Marina Themoteo Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Richardt Gama Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | | |
Collapse
|
34
|
Hanoon HD, Kowsari E, Abdouss M, Ghasemi MH, Zandi H. Highly efficient and simple protocol for synthesis of 2,4,5-triarylimidazole derivatives from benzil using fluorinated graphene oxide as effective and reusable catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2847-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Sadek B, Saad A, Latacz G, Kuder K, Olejarz A, Karcz T, Stark H, Kieć-Kononowicz K. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3879-3898. [PMID: 27932863 PMCID: PMC5135077 DOI: 10.2147/dddt.s116192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of twelve novel non-imidazole-based ligands (3–14) was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R). The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3–14) tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES)-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally), whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ) model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR) but not the brain-penetrant H2R antagonist zolantidine (ZOL), demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR) model. Moreover, the experimental and in silico estimation of properties such as metabolism was performed for five selected test compounds. Also, lipophilicity using planar reversed-phase thin-layer chromatography method was included for better understanding of the molecular properties of the tested compounds. Additionally, the absorption, distribution, metabolism, and elimination and toxicity parameters were evaluated for the most promising compounds 2, 4, 6, 7, and 14 utilizing in vitro methods. These interesting results highlight the potential of H3R ligands as new antiepileptic drugs or as adjuvants to available epilepsy medications.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Holger Stark
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
36
|
|
37
|
Synthesis and evaluation of a 2-benzothiazolylphenylmethyl ether class of histamine H4 receptor antagonists. Bioorg Med Chem Lett 2016; 26:5263-5266. [PMID: 27692832 DOI: 10.1016/j.bmcl.2016.09.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of a new class of histamine H4 receptor ligands, distinct from the previously reported chemotypes, are described. A virtual screening of our corporate compound collection identified a hit with an undesired dual H3R/H4R activity. Chemical exploration led to the discovery of a more potent and selective 2-benzothiazolylphenylmethyl ether lead compound.
Collapse
|
38
|
Khanfar MA, Affini A, Lutsenko K, Nikolic K, Butini S, Stark H. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Front Neurosci 2016; 10:201. [PMID: 27303254 PMCID: PMC4884744 DOI: 10.3389/fnins.2016.00201] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet DuesseldorfDuesseldorf, Germany; Faculty of Pharmacy, The University of JordanAmman, Jordan
| | - Anna Affini
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Kiril Lutsenko
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena Siena, Italy
| | - Holger Stark
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| |
Collapse
|
39
|
Pontiki E, Hadjipavlou-Litina D. QSAR models on H4 receptor antagonists associated with inflammation and anaphylaxis. J Biomol Struct Dyn 2016; 35:968-1005. [DOI: 10.1080/07391102.2016.1166986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki 54124, Greece
| |
Collapse
|
40
|
Mocking TAM, Bosma R, Rahman SN, Verweij EWE, McNaught-Flores DA, Vischer HF, Leurs R. Molecular Aspects of Histamine Receptors. HISTAMINE RECEPTORS 2016. [DOI: 10.1007/978-3-319-40308-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Kuder K, Łażewska D, Latacz G, Schwed JS, Karcz T, Stark H, Karolak-Wojciechowska J, Kieć-Kononowicz K. Chlorophenoxy aminoalkyl derivatives as histamine H(3)R ligands and antiseizure agents. Bioorg Med Chem 2015; 24:53-72. [PMID: 26690914 DOI: 10.1016/j.bmc.2015.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
A series of twenty new chlorophenoxyalkylamine derivatives (9-28) was synthesized and evaluated on their binding properties at the human histamine H3 receptor (hH3R). The spacer alkyl chain contained five to seven carbon atoms. The highest affinities have shown the 4-chloro substituted derivatives 10 and 25 (Ki=133 and 128 nM, respectively) classified as antagonists in cAMP accumulation assay (EC50=72 and 75 nM, respectively). Synthesized compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Two compounds (4-chloro substituted derivatives: 20 and 26) were the most promising and showed in the MES seizure model in rats (after ip administration) ED50 values of 14 mg/kg and 13.18 mg/kg, respectively. Protective indexes (PI=TD50/ED50) were 3.2 for 20 and 3.8 for 26. Moreover, molecular modeling and docking studies were undertaken to explain affinity at hH3R of target compounds, and the experimentally and in silico estimation of properties like lipophilicity and metabolism was performed. Antiproliferative effects have been also investigated in vitro for selected compounds (10 and 25). These compounds neither possessed significant antiproliferative and antitumor activity, nor modulated CYP3A4 activity up to concentration of 10 μM.
Collapse
Affiliation(s)
- Kamil Kuder
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Johannes Stephan Schwed
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Janina Karolak-Wojciechowska
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 Str., 90-924 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
42
|
Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology 2015; 106:56-73. [PMID: 26581501 DOI: 10.1016/j.neuropharm.2015.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Histamine, a biogenic amine, is considered as a principle mediator of multiple physiological effects through binding to its H1, H2, H3, and H4 receptors (H1-H4Rs). Currently, the HRs have gained attention as important targets for the treatment of several diseases and disorders ranging from allergy to Alzheimer's disease and immune deficiency. Accordingly, medicinal chemistry studies exploring histamine-like molecules and their physicochemical properties by binding and interacting with the four HRs has led to the development of a diversity of agonists and antagonists that display selectivity for each HR subtype. An overview on H1-R4Rs and developed ligands representing some key steps in development is provided here combined with a short description of structure-activity relationships for each class. Main chemical diversities, pharmacophores, and pharmacological profiles of most innovative H1-H4R agonists and antagonists are highlighted. Therefore, this overview should support the rational choice for the optimal ligand selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Kamińska K, Ziemba J, Ner J, Schwed JS, Łażewska D, Więcek M, Karcz T, Olejarz A, Latacz G, Kuder K, Kottke T, Zygmunt M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. (2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands. Eur J Med Chem 2015; 103:238-51. [DOI: 10.1016/j.ejmech.2015.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
|
44
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2015; 67:601-55. [PMID: 26084539 PMCID: PMC4485016 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
45
|
Mogilski S, Kubacka M, Redzicka A, Kazek G, Dudek M, Malinka W, Filipek B. Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: Possible mechanisms of action. Pharmacol Biochem Behav 2015; 133:99-110. [PMID: 25847619 DOI: 10.1016/j.pbb.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/21/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the analgesic as well as anti-inflammatory activities of the new pyrrolo[3,4-d]pyridazinone derivatives. Moreover, the present study attempted to assess some of the mechanisms involved in the pharmacological activity of these compounds. In the previous studies it was shown that these compounds were highly active in the phenylbenzoquinone-induced 'writhing syndrome' test and had much lower activity in the hot plate, which indicates that mainly peripheral mechanisms of analgesia are involved in their effects. In these extended studies the analgesic activity of two tested compounds (4c, 4f) was confirmed in some animal models of pain. The studied compounds showed a significant and dose-related antinociceptive effect in the models of pain induced by formalin, capsaicin and glutamic acid. Both compounds decreased the edema formation and one of them (4c) attenuated mechanical hyperalgesia in carrageenan-induced paw inflammation in rats. Furthermore, both compounds inhibited cell migration, plasma exudation and nociceptive reaction in zymosan A-induced mouse peritonitis. In the subsequent studies, including experiments on isolated organs (ileum, trachea, aorta), radioligand assays and biochemical tests, it was demonstrated that analgesic and anti-inflammatory effects of the investigated structures are largely due to their competitive antagonism for histamine H1 receptor. The influence on the level of cAMP in inflammatory cells (shown in RAW 264.7 macrophages) and subsequent inhibition of cytokine (TNFα, IL-1β) release can also be one of the important mechanisms of their action. Moreover some additional mechanisms may also be involved in the eventual analgesic effect of tested pyrrolo[3,4-d]pyridazinone derivatives.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland.
| | - Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Aleksandra Redzicka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Wiesław Malinka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
46
|
Chen Y, Paavola J, Stegajev V, Stark H, Chazot PL, Wen JG, Konttinen YT. Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes. Eur J Pharmacol 2015; 754:173-8. [PMID: 25746421 DOI: 10.1016/j.ejphar.2015.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/15/2015] [Indexed: 12/31/2022]
Abstract
Histamine is a neurotransmitter and chemical mediator in multiple physiological processes. Histamine H3 receptor is expressed in the nervous system, heart, and gastrointestinal tract; however, little is known about H3 receptor in skeletal muscle. The aim of this study was to investigate the role of H3 receptor in skeletal myotubes. The expression of H3 receptor and myosin heavy chain (MHC), a late myogenesis marker, was assessed by real-time PCR and immunostaining in C2C12 skeletal myogenesis and adult mid-urethral skeletal muscle tissues. H3 receptor mRNA showed a significant increase upon differentiation of C2C12 into myotubes: 1-, 26-, 91-, and 182-fold at days 0, 2, 4, and 6, respectively. H3 receptor immunostaining in differentiated C2C12 cells and adult skeletal muscles was positive and correlated with that of MHC. The functional role of H3receptor in differentiated myotubes was assessed using an H3 receptor agonist, (R)-a-methylhistamine ((R)-α-MeHA). Ca(2+) imaging, stimulated by electric pacing, was decreased by 55% after the treatment of mature C2C12 myotubes with 1μM (R)-α-MeHA for 10min and 20min, while treatment with 100nm (R)-α-MeHA for 5min caused 45% inhibition. These results suggested that H3 receptor may participate in the maintenance of the relaxed state and prevention of over-contraction in mature differentiated myotubes. The elucidation of the role of H3R in skeletal myogenesis and adult skeletal muscle may open a new direction in the treatment of skeletal muscle disorders, such as muscle weakness, atrophy, and myotonia in motion systems or peri-urethral skeletal muscle tissues.
Collapse
Affiliation(s)
- Yan Chen
- Department of Urology, Institute of Clinic Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China; Department of Medicine, Helsinki University Central Hospital, Biomedicum 1, PO Box 700, FIN-00029 Helsinki, Finland; Department of Anatomy, University of Helsinki, Biomedicum 1, PO Box 63, FIN-00029 Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Vasili Stegajev
- Department of Medicine, Helsinki University Central Hospital, Biomedicum 1, PO Box 700, FIN-00029 Helsinki, Finland; Department of Anatomy, University of Helsinki, Biomedicum 1, PO Box 63, FIN-00029 Helsinki, Finland
| | - Holger Stark
- Goethe University, Institute of Pharmaceutical Chemistry, ZAFES/OSF/NeFF, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Paul L Chazot
- School of Biological & Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, Durham, UK
| | - Jian Guo Wen
- Department of Urology, Institute of Clinic Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China.
| | - Yrjö T Konttinen
- Department of Medicine, Helsinki University Central Hospital, Biomedicum 1, PO Box 700, FIN-00029 Helsinki, Finland; ORTON Orthopedic Hospital of the ORTON Foundation, Tenholantie 10, 00280 Helsinki, Finland; COXA Hospital for Joint Replacement, Biokatu 6 B, 33520 Tampere, Finland.
| |
Collapse
|
47
|
Salem A, Al-Samadi A, Stegajev V, Stark H, Häyrinen-Immonen R, Ainola M, Hietanen J, Konttinen YT. Histamine H4 receptor in oral lichen planus. Oral Dis 2014; 21:378-85. [PMID: 25207698 DOI: 10.1111/odi.12290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. MATERIALS AND METHODS Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. RESULTS H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. CONCLUSION Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines.
Collapse
Affiliation(s)
- A Salem
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Department of Oral Pathology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells. Apoptosis 2014; 19:1702-11. [DOI: 10.1007/s10495-014-1036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Sadek B, Schreeb A, Schwed JS, Weizel L, Stark H. Drug-likeness approach of 2-aminopyrimidines as histamine H3 receptor ligands. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1499-513. [PMID: 25278747 PMCID: PMC4179762 DOI: 10.2147/dddt.s66179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A small series of compounds containing derivatives of 2,4-diamino- and 2,4,6-triaminopyrimidine (compounds 2–7) was synthesized and tested for binding affinity to human histamine H3 receptors (hH3Rs) stably expressed in HEK-293 cells and human H4Rs (hH4Rs) co-expressed with Gαi2 and Gβ1γ2 subunits in Sf9 cells. Working in part from the lead compound 6-(4-methylpiperazin-1-yl)-N4-(3-(piperidin-1-yl)propyl)pyrimidine-2,4-diamine (compound 1) with unsatisfactory affinity and selectivity to hH3Rs, our structure-activity relationship studies revealed that replacement of 4-methylpiperazino by N-benzylamine and substitution of an amine group at the 2-position of the 2-aminopyrimidine core structure with 3-piperidinopropoxyphenyl moiety as an hH3R pharmacophore resulted in N4-benzyl-N2-(4-(3-(piperidin-1-yl)propoxy)phenyl)pyrimidine-2,4-diamine (compound 5) with high hH3R affinity (ki =4.49±1.25 nM) and H3R receptor subtype selectivity of more than 6,500×. Moreover, initial metric analyses were conducted based on their target-oriented drug-likeness for predictively quantifying lipophilicity, ligand efficiency, lipophilicity-dependent ligand efficiency, molecular size-independent efficiency, and topological molecular polar surface. As to the development of potential H3R ligands, results showed that integration of the hH3R pharmacophore in hH4R-affine structural scaffolds resulted in compounds with high hH3R affinity (4.5–650 nM), moderate to low hH4R affinity (4,500–30,000 nM), receptor subtype selectivity (ratio hH4R/hH3R; 8–6,500), and promising calculated drug-likeness properties.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annemarie Schreeb
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany ; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
50
|
Lipani L, Odadzic D, Weizel L, Schwed JS, Sadek B, Stark H. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs. Eur J Med Chem 2014; 86:578-88. [PMID: 25218907 DOI: 10.1016/j.ejmech.2014.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 11/25/2022]
Abstract
The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively.
Collapse
Affiliation(s)
- Luca Lipani
- Department of Drug Sciences, University of Catania, Viale A. Doria, 6, I-95125 Catania, Italy; Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dalibor Odadzic
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johannes-Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, United Arab Emirates.
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|