1
|
Ge J, Fang C, Tan H, Zhan M, Gu M, Ni J, Yang G, Zhang H, Ni J, Zhang K, Xu B. Endogenous Zinc-Ion-Triggered In Situ Gelation Enables Zn Capture to Reprogram Benign Hyperplastic Prostate Microenvironment and Shrink Prostate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307796. [PMID: 38096869 DOI: 10.1002/adma.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Benign prostatic hyperplasia (BPH) as the leading cause of urination disorder is still a refractory disease, and there have no satisfied drugs or treatment protocols yet. With identifying excessive Zn2+ , inflammation, and oxidative stress as the etiology of aberrant hyperplasia, an injectable sodium alginate (SA) and glycyrrhizic acid (GA)-interconnected hydrogels (SAGA) featuring Zn2+ -triggered in situ gelation are developed to load lonidamine for reprogramming prostate microenvironment and treating BPH. Herein, SAGA hydrogels can crosslink with Zn2+ in BPH via coordination chelation and switch free Zn2+ to bound ones, consequently alleviating Zn2+ -arisen inflammation and glycolysis. Beyond capturing Zn2+ , GA with intrinsic immunoregulatory property can also alleviate local inflammation and scavenge reactive oxygen species (ROS). Intriguingly, Zn2+ chelation-bridged interconnection in SAGA enhances its mechanical property and regulates the degradation rate to enable continuous lonidamine release, favoring hyperplastic acini apoptosis and further inhibiting glycolysis. These multiple actions cooperatively reprogram BPH microenvironment to alleviate characteristic symptoms of BPH and shrink prostate. RNA sequencing reveals that chemotaxis, glycolysis, and tumor necrosis factor (TNF) inflammation-related pathways associated with M1-like phenotype polarization are discerned as the action rationales of such endogenous Zn2+ -triggered in situ hydrogels, providing a candidate avenue to treat BPH.
Collapse
Affiliation(s)
- Jianchao Ge
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| | - Chao Fang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China
- Central Laboratory and Department of Urology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Haisong Tan
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| | - Ming Zhan
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| | - Meng Gu
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| | - Jianshu Ni
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| | - Guangcan Yang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Haipeng Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Jinliang Ni
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China
- Central Laboratory and Department of Urology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Bin Xu
- Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
2
|
Actis Dato AB, Martinez VR, Velez Rueda JO, Portiansky EL, De Giusti V, Ferrer EG, Williams PAM. Improvement of the cardiovascular effect of methyldopa by complexation with Zn(II): Synthesis, characterization and mechanism of action. J Trace Elem Med Biol 2024; 81:127327. [PMID: 37890445 DOI: 10.1016/j.jtemb.2023.127327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND the antihypertensive drug α-methyldopa (MD) stands as one of the extensively used medications for managing hypertension during pregnancy. Zinc deprivation has been associated with many diseases. In this context, the synthesis of a Zn coordination complex [Zn(MD)(OH)(H2O)2]·H2O (ZnMD) provide a promising alternative pathway to improve the biological properties of MD. METHODS ZnMD was synthesized and physicochemically characterized. Fluorescence spectral studies were conducted to examine the binding of both, the ligand and the metal with bovine serum albumin (BSA). MD, ZnMD, and ZnCl2 were administered to spontaneous hypertensive rats (SHR) rats during 8 weeks and blood pressure and echocardiographic parameters were determined. Ex vivo assays were conducted to evaluate levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO). Cross-sectional area (CSA) and collagen levels of left ventricular cardiomyocytes were also assessed. Furthermore, the expression of NAD(P)H oxidase subunits (gp91phox and p47phox) and Superoxide Dismutase 1 (SOD1) was quantified through western blot analysis. RESULTS The complex exhibited a moderate affinity for binding with BSA showing a spontaneous interaction (indicated by negative ΔG values) and moderate affinity (determined by affinity constant values). The binding process involved the formation of Van der Waals forces and hydrogen bonds. Upon treatment with MD and ZnMD, a reduction in the systolic blood pressure in SHR was observed, being ZnMD more effective than MD (122 ± 8.1 mmHg and 145 ± 5.6 mmHg, at 8th week of treatment, respectively). The ZnMD treatment prevented myocardial hypertrophy, improved the heart function and reduced the cardiac fibrosis, as evidenced by parameters such as left ventricular mass, fractional shortening, and histological studies. In contrast, MD did not show noticeable differences in these parameters. ZnMD regulates negatively the oxidative damage by reducing levels of ROS and lipid peroxidation, as well as the cardiac NAD(P)H oxidase, and increasing SOD1 expression, while MD did not show significant effect. Moreover, cardiac nitric oxide levels were greater in the ZnMD therapy compared to MD treatment. CONCLUSION Both MD and ZnMD have the potential to be transported by albumin. Our findings provide important evidence suggesting that this complex could be a potential therapeutic drug for the treatment of hypertension and cardiac hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Agustin B Actis Dato
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Valeria R Martinez
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| | - Jorge O Velez Rueda
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900 La Plata, Argentina
| | - Verónica De Giusti
- CIC-CONICET-UNLP, Facultad de Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N◦ 1465, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Zieminska E, Ruszczynska A, Augustyniak J, Toczylowska B, Lazarewicz JW. Zinc and Copper Brain Levels and Expression of Neurotransmitter Receptors in Two Rat ASD Models. Front Mol Neurosci 2021; 14:656740. [PMID: 34267627 PMCID: PMC8277171 DOI: 10.3389/fnmol.2021.656740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper are important trace elements necessary for the proper functioning of neurons. Impaired zinc and/or copper metabolism and signaling are implicated in many brain diseases, including autism (ASD). In our studies, autistic-like behavior in rat offsprings was induced by application to pregnant mothers valproic acid or thalidomide. Zinc and copper contents were measured in serum and brain structures: hippocampus, cerebral cortex, and cerebellum. Our research shows no interconnections in the particular metal concentrations measured in autistic animal brains and their sera. Based on patient researches, we studied 26 genes belonging to disturbed neurotransmitter pathways. In the same brain regions, we examined the expression of genes encoding proteins of cholinergic, adrenergic, serotonin, and dopamine receptors. In both rats’ ASD models, 17 out of the tested gene expression were decreased. In the cerebellum and cerebral cortex, expression of genes encoding cholinergic, adrenergic, and dopaminergic receptors decreased, whereas in the hippocampus only expression of serotoninergic receptors genes was downregulated. The changes in metals content observed in the rat brain can be secondary phenomena, perhaps elements of mechanisms that compensate for neurotransmission dysfunctions.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Lazarewicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Huang XP, Kenakin TP, Gu S, Shoichet BK, Roth BL. Differential Roles of Extracellular Histidine Residues of GPR68 for Proton-Sensing and Allosteric Modulation by Divalent Metal Ions. Biochemistry 2020; 59:3594-3614. [PMID: 32865988 DOI: 10.1021/acs.biochem.0c00576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR68, an orphan G-protein coupled receptor, senses protons, couples to multiple G-proteins, and is also activated or inhibited by divalent metal ions. It has seven extracellular histidine residues, although it is not clear how these histidine residues play a role in both proton-sensing and metal ion modulation. Here we demonstrate that divalent metal ions are allosteric modulators that can activate or inhibit proton activity in a concentration- and pH-dependent manner. We then show that single histidine mutants have differential and varying degrees of effects on proton-sensing and metal ion modulation. Some histidine residues play dual roles in proton-sensing and metal ion modulation, while others are important in one or the other but not both. Two extracellular disulfide bonds are predicted to constrain histidine residues to be spatially close to each other. Combining histidine mutations leads to reduced proton activity and resistance to metal ion modulation, while breaking the less conserved disulfide bond results in a more severe reduction in proton-sensing over metal modulation. The small-molecule positive allosteric modulators (PAMs) ogerin and lorazepam are not affected by these mutations and remain active at mutants with severely reduced proton activity or are resistant to metal ion modulation. These results suggest GPR68 possesses two independent allosteric modulation systems, one through interaction with divalent metal ions at the extracellular surface and another through small-molecule PAMs in the transmembrane domains. A new GPR68 model is developed to accommodate the findings which could serve as a template for further studies and ligand discovery by virtual ligand docking.
Collapse
Affiliation(s)
| | | | - Shuo Gu
- Department of Pharmaceutical Science, University of California, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Science, University of California, San Francisco, California 94158, United States
| | | |
Collapse
|
5
|
Link R, Veiksina S, Tahk MJ, Laasfeld T, Paiste P, Kopanchuk S, Rinken A. The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J Neurochem 2019; 153:346-361. [PMID: 31792980 DOI: 10.1111/jnc.14933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/06/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Reet Link
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Massink A, Amelia T, Karamychev A, IJzerman AP. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Med Res Rev 2019; 40:683-708. [PMID: 31495942 PMCID: PMC7028016 DOI: 10.1002/med.21633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023]
Abstract
The function of G protein‐coupled receptors (GPCRs) can be modulated by compounds that bind to other sites than the endogenous orthosteric binding site, so‐called allosteric sites. Structure elucidation of a number of GPCRs has revealed the presence of a sodium ion bound in a conserved allosteric site. The small molecule amiloride and analogs thereof have been proposed to bind in this same sodium ion site. Hence, this review seeks to summarize and reflect on the current knowledge of allosteric effects by amiloride and its analogs on GPCRs. Amiloride is known to modulate adenosine, adrenergic, dopamine, chemokine, muscarinic, serotonin, gonadotropin‐releasing hormone, GABAB, and taste receptors. Amiloride analogs with lipophilic substituents tend to be more potent modulators than amiloride itself. Adenosine, α‐adrenergic and dopamine receptors are most strongly modulated by amiloride analogs. In addition, for a few GPCRs, more than one binding site for amiloride has been postulated. Interestingly, the nature of the allosteric effect of amiloride and derivatives varies considerably between GPCRs, with both negative and positive allosteric modulation occurring. Since the sodium ion binding site is strongly conserved among class A GPCRs it is to be expected that amiloride also binds to class A GPCRs not evaluated yet. Investigating this typical amiloride‐GPCR interaction further may yield general insight in the allosteric mechanisms of GPCR ligand binding and function, and possibly provide new opportunities for drug discovery.
Collapse
Affiliation(s)
- Arnault Massink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Tasia Amelia
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Alex Karamychev
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
7
|
Satała G, Duszyńska B, Lenda T, Nowak G, Bojarski AJ. Allosteric Inhibition of Serotonin 5-HT 7 Receptors by Zinc Ions. Mol Neurobiol 2017; 55:2897-2910. [PMID: 28455702 PMCID: PMC5842505 DOI: 10.1007/s12035-017-0536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
The allosteric regulation of G protein-coupled receptors (GPCRs) is a well-known phenomenon, but there are only a few examples of allosteric modulation within the metabotropic serotonergic receptor family. Recently, we described zinc non-competitive interactions toward agonist binding at serotonin 5-HT1A receptors, in which biphasic effects, involving potentiation at sub-micromolar concentrations (10 μM) and inhibition at sub-millimolar concentrations (500 μM) of Zn2+ in radioligand binding assays, were consistent with both the agonist and antagonist-like effects of zinc ions observed in in vivo studies. Here, we showed new data demonstrating zinc allosteric inhibition of both agonist and antagonist binding at human recombinant 5-HT7 receptors stably expressed in HEK293 cells as observed by radioligand binding studies as well as zinc neutral antagonism displayed by the concentration of 10 μM in the functional LANCE assay. The allosteric nature of the effect of Zn on 5-HT7 receptors was confirmed (1) in saturation studies in which zinc inhibited the binding of potent orthosteric 5-HT7 receptor radioligands, the agonist [3H]5-CT, and the two antagonists [3H]SB-269970 and [3H]mesulergine, showing ceiling effect and differences in the magnitude of negative cooperativity (α = 0.15, 0.06, and 0.25, respectively); (2) in competition experiments in which 500 μM of zinc inhibited all radioligand displacements by non-labeled orthosteric ligands (5-CT, SB-269970, and clozapine), and the most significant reduction in affinity was observed for the 5-CT agonist (4.9–16.7-fold) compared with both antagonists (1.4–3.9-fold); and (3) in kinetic experiments in which 500 μM zinc increased the dissociation rate constants for [3H]5-CT and [3H]mesulergine but not for [3H]SB-269970. Additionally, in the functional LANCE test using the constitutively active HEK293 cell line expressing the 5-HT7 receptor, 10 μM zinc had features of neutral antagonism and increased the EC50 value of the 5-CT agonist by a factor of 3.2. Overall, these results showed that zinc can act as a negative allosteric inhibitor of 5-HT7 receptors. Given that the inhibiting effects of low concentrations of zinc in the functional assay represent the most likely direction of zinc activity under physiological conditions, among numerous zinc-regulated proteins, the 5-HT7 receptor can be considered a serotonergic target for zinc modulation in the CNS.
Collapse
Affiliation(s)
- Grzegorz Satała
- Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| | - Beata Duszyńska
- Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| | - Gabriel Nowak
- Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| | | |
Collapse
|
8
|
Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity. Neural Plast 2017; 2017:3682752. [PMID: 28299207 PMCID: PMC5337390 DOI: 10.1155/2017/3682752] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Preclinical and clinical studies have demonstrated that zinc possesses antidepressant properties and that it may augment the therapy with conventional, that is, monoamine-based, antidepressants. In this review we aim to discuss the role of zinc in the pathophysiology and treatment of depression with regard to the monoamine hypothesis of the disease. Particular attention will be paid to the recently described zinc-sensing GPR39 receptor as well as aspects of zinc deficiency. Furthermore, an attempt will be made to give a possible explanation of the mechanisms by which zinc interacts with the monoamine system in the context of depression and neural plasticity.
Collapse
|
9
|
Sato S, Huang XP, Kroeze WK, Roth BL. Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc. Mol Pharmacol 2016; 90:726-737. [PMID: 27754899 PMCID: PMC5118639 DOI: 10.1124/mol.116.106112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we identified two previously described kinase inhibitors-3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(3-methyl-1H-pyrazol-5-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (LY2784544) and 1H-benzimidazole-4-carboxylic acid, 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-(4-morpholinyl)- (GSK2636771)-as novel GPR39 agonists by unbiased small-molecule-based screening using a β-arrestin recruitment screening approach (PRESTO-Tango). We characterized the signaling of LY2784544 and GSK2636771 and compared their signaling patterns with a previously described "GPR39-selective" agonist N-[3-chloro-4-[[[2-(methylamino)-6-(2-pyridinyl)-4- pyrimidinyl]amino]methyl]phenyl]methanesulfonamide (GPR39-C3) at both canonical and noncanonical signaling pathways. Unexpectedly, all three compounds displayed probe-dependent and pathway-dependent allosteric modulation by concentrations of zinc reported to be physiologic. LY2784544 and GS2636771 at GPR39 in the presence of zinc were generally as potent or more potent than their reported activities against kinases in whole-cell assays. These findings reveal an unexpected role of zinc as an allosteric potentiator of small-molecule-induced activation of GPR39 and expand the list of potential kinase off-targets to include understudied G protein-coupled receptors.
Collapse
Affiliation(s)
- Seiji Sato
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wesley K Kroeze
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Bryan L Roth
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A. Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 2015; 353:246-60. [PMID: 25650376 DOI: 10.1124/jpet.114.221606] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of receptors encoded by the human genome, and represent the largest class of current drug targets. Over the last decade and a half, it has become widely accepted that most, if not all, GPCRs possess spatially distinct allosteric sites that can be targeted by exogenous substances to modulate the receptors' biologic state. Although many of these allosteric sites are likely to serve other (e.g., structural) roles, they nonetheless possess appropriate properties to be serendipitously targeted by synthetic molecules. However, there are also examples of endogenous substances that can act as allosteric modulators of GPCRs. These include not only the obvious example, i.e., the G protein, but also a variety of ions, lipids, amino acids, peptides, and accessory proteins that display different degrees of receptor-specific modulatory effects. This also suggests that some GPCRs may possess true "orphan" allosteric sites for hitherto unappreciated endogenous modulators. Of note, the increasing identification of allosteric modulator lipids, inflammatory peptides, and GPCR-targeted autoantibodies indicates that disease context plays an important role in the generation of putative endogenous GPCR modulators. If an endogenous allosteric substance can be shown to play a role in disease, this could also serve as an impetus to pursue synthetic neutral allosteric ligands as novel therapeutic agents.
Collapse
Affiliation(s)
- Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
12
|
Christopoulos A. Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 2014; 86:463-78. [PMID: 25061106 DOI: 10.1124/mol.114.094342] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is now widely accepted that G protein-coupled receptors (GPCRs) are highly dynamic proteins that adopt multiple active states linked to distinct functional outcomes. Furthermore, these states can be differentially stabilized not only by orthosteric ligands but also by allosteric ligands acting at spatially distinct binding sites. The key pharmacologic characteristics of GPCR allostery include improved selectivity due to either greater sequence divergence between receptor subtypes and/or subtype-selective cooperativity, a ceiling level to the effect, probe dependence (whereby the magnitude and direction of the allosteric effect change with the nature of the interacting ligands), and the potential for biased signaling. Recent chemical biology developments are beginning to demonstrate how the incorporation of analytical pharmacology and operational modeling into the experimental workflow can enrich structure-activity studies of allostery and bias, and have also led to the discovery of a new class of hybrid orthosteric/allosteric (bitopic) molecules. The potential for endogenous allosteric modulators to play a role in physiology and disease remains to be fully appreciated but will likely represent an important area for future studies. Finally, breakthroughs in structural and computational biology are beginning to unravel the mechanistic basis of GPCR allosteric modulation at the molecular level.
Collapse
Affiliation(s)
- Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Barman PP, Cheng H, Hancox JC, James AF. Nickel inhibits β-1 adrenoceptor mediated activation of cardiac CFTR chloride channels. Biochem Biophys Res Commun 2013; 432:46-51. [PMID: 23376720 PMCID: PMC3686155 DOI: 10.1016/j.bbrc.2013.01.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 11/24/2022]
Abstract
Cardiac ventricular myocytes exhibit a protein kinase A-dependent Cl(-) current (ICl.PKA) mediated by the cystic fibrosis transmembrane conductance regulator (CFTR). There is conflicting evidence regarding the ability of the divalent cation nickel (Ni(2+)), which has been used widely in vitro in the study of other cardiac ionic conductances, to inhibit ICl.PKA. Here the action of Ni(2+) on ICl.PKA activated by β-adrenergic stimulation has been elucidated. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. Externally applied Ni(2+) blocked ICl.PKA activated by 1 μM isoprenaline with a log IC50 (M) of -4.107 ± 0.075 (IC50=78.1 μM) at +100 mV and -4.322 ± 0.107 (IC50=47.6 μM) at -100 mV. Thus, the block of ICl.PKA by Ni(2+) was not strongly voltage dependent. Ni(2+) applied internally via the patch-pipette was ineffective at inhibiting isoprenaline-activated ICl,PKA, but in the same experiments the current was suppressed by external Ni(2+) application, indicative of an external site of Ni(2+) action. In the presence of 1 μM atenolol isoprenaline was ineffective at activating ICl.PKA, but in the presence of the β2-adrenoceptor inhibitor ICI 118,551 isoprenaline still activated Ni(2+)-sensitive ICl.PKA. Collectively, these data demonstrate that Ni(2+) ions produce marked inhibition of β1-adrenoceptor activated ventricular ICl.PKA at submillimolar [Ni(2+)]: an action that is likely to involve an interaction between Ni(2+) and β1-adrenoceptors. The concentration-dependence for ICl.PKA inhibition seen here indicates the potential for confounding effects on ICl,PKA to occur even at comparatively low Ni(2+) concentrations, when Ni(2+) is used to study other cardiac ionic currents under conditions of β-adrenergic agonism.
Collapse
Affiliation(s)
| | | | - Jules C. Hancox
- Cardiovascular Research Laboratories, School of Physiology & Pharmacology and Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew F. James
- Cardiovascular Research Laboratories, School of Physiology & Pharmacology and Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H. G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 2013; 8:e53347. [PMID: 23335960 PMCID: PMC3546042 DOI: 10.1371/journal.pone.0053347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
The G-protein coupled receptor 83 (GPR83) is an orphan G-protein coupled receptor for which the natural ligand(s) and signaling pathway(s) remain to be identified. Previous studies suggest a role of GPR83 in the regulation of thermogenesis and the control of circulating adiponectin. The aim of this study was to gain insights into the molecular underpinnings underlying GPR83 signaling. In particular, we aimed to assess the underlying G-protein activated signaling pathway of GPR83 and how this pathway is affected by mutational activation and zinc(II) challenge. Finally, we assessed the capacity of GPR83 for homodimerization. Our results show for the first time that mouse (m) GPR83 has high basal Gq/11 activity without affecting Gi or Gs signaling. Furthermore, we found that, under physiological conditions, zinc(II) (but not calcium(II) and magnesium(II)) potently activates mGPR83, thus identifying zinc(II) as an endogenous molecule with agonistic capability to activate mGPR83. In line with the observation that zinc(II)-ions activate mGPR83, we identified a cluster of ion-binding sensitive amino acids (e.g. His145, His204, Cys207, Glu217) in an activation sensitive receptor region of mGPR83. The occurrence of a constitutive activating mutant and a zinc(II)-binding residue at the N-terminal part corroborate the importance of this region in mGPR83 signal regulation. Finally, our results indicate that mGPR83 forms homodimers, which extend the current knowledge and molecular facets of GPR83 signaling.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin L. Piechowski
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Brian Finan
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juliane Pratzka
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Grüters
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Tschöp
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
- Department of Metabolic Diseases, Technical University, Munich, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|