1
|
Costa TJ, Fontes MT, Barros PR, Hope MC, Webb RC, Wenceslau CF, Enos RT, McCarthy CG. Overexpression of adipose tissue ERα enhances PVAT anticontractility via NOX4-derived H 2O 2 and is protective against high-fat diet-induced dysfunction. Am J Physiol Heart Circ Physiol 2025; 328:H1065-H1072. [PMID: 40127093 DOI: 10.1152/ajpheart.00180.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Menopause has unequivocally been associated with cardiovascular risk and obesity. Loss of estrogen bioavailability is a hallmark of menopause. Estrogen is generally considered vasculoprotective, with estrogen receptor α (ERα) being the predominant receptor subtype that mediates these positive effects. Similarly, estrogen and ERα are known to stimulate white adipose tissue metabolism. However, it is unknown whether ERα could exert a beneficial effect on mesenteric perivascular adipose tissue (PVAT). PVAT is a heterogeneous tissue that surrounds most peripheral blood vessels. In physiological conditions, PVAT has an anticontractile effect on the vasculature. However, in several diseases, PVAT switches its phenotype to become procontractile. To date, the role of ERα in PVAT function in health and disease is unknown. Therefore, we hypothesized that overexpression of adipose tissue ERα (ERαOE) would 1) increase the anticontractile effect of PVAT in chow diet conditions and 2) protect mice against a high-fat diet (HFD)-induced PVAT dysfunction. To test this hypothesis, mesenteric resistance arteries, with and without PVAT, were isolated from female ERαOE mice, which had either been on a regular chow diet or an HFD for 19 wk. We observed that ERαOE amplifies the anticontractile effect of mesenteric PVAT via NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) in chow conditions, and ERαOE is protective against a dysfunctional PVAT that is observed after an HFD, via the same anticontractile mechanism. Collectively, these data demonstrate that ERα is vasculoprotective in the context of PVAT. Harnessing this signaling could be important for reducing cardiovascular risk in postmenopausal women.NEW & NOTEWORTHY We have revealed for the first time that overexpression of adipose tissue estrogen receptor α (ERαOE) amplifies the anticontractile effect of mesenteric PVAT via the biosynthesis of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2), and this overexpression is protective against HFD-induced PVAT dysfunction. Collectively, these data demonstrate an important mechanism by which ERα signaling is vasculoprotective in the context of PVAT.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Paula R Barros
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Marion C Hope
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| |
Collapse
|
2
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
3
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, Manfrini O, Antonopoulos AS, Oikonomou E, Padró T, Trifunovic-Zamaklar D, De Luca G, Guzik T, Cenko E, Djordjevic-Dikic A, Crea F. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J 2023; 44:3827-3844. [PMID: 37599464 PMCID: PMC10568001 DOI: 10.1093/eurheartj/ehad484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is a modifiable cardiovascular risk factor, but adipose tissue (AT) depots in humans are anatomically, histologically, and functionally heterogeneous. For example, visceral AT is a pro-atherogenic secretory AT depot, while subcutaneous AT represents a more classical energy storage depot. Perivascular adipose tissue (PVAT) regulates vascular biology via paracrine cross-talk signals. In this position paper, the state-of-the-art knowledge of various AT depots is reviewed providing a consensus definition of PVAT around the coronary arteries, as the AT surrounding the artery up to a distance from its outer wall equal to the luminal diameter of the artery. Special focus is given to the interactions between PVAT and the vascular wall that render PVAT a potential therapeutic target in cardiovascular diseases. This Clinical Consensus Statement also discusses the role of PVAT as a clinically relevant source of diagnostic and prognostic biomarkers of vascular function, which may guide precision medicine in atherosclerosis, hypertension, heart failure, and other cardiovascular diseases. In this article, its role as a 'biosensor' of vascular inflammation is highlighted with description of recent imaging technologies that visualize PVAT in clinical practice, allowing non-invasive quantification of coronary inflammation and the related residual cardiovascular inflammatory risk, guiding deployment of therapeutic interventions. Finally, the current and future clinical applicability of artificial intelligence and machine learning technologies is reviewed that integrate PVAT information into prognostic models to provide clinically meaningful information in primary and secondary prevention.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Marija Vavlukis
- Medical Faculty, University Clinic for Cardiology, University Ss’ Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto Eringa
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Olivia Manfrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alexios S Antonopoulos
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | | | - Giuseppe De Luca
- Division of Cardiology, AOU Policlinico G. Martino, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Cardiologia Ospedaliera, Nuovo Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Tomasz Guzik
- Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Edina Cenko
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ana Djordjevic-Dikic
- Medical Faculty, Cardiology Clinic, University Clinical Center, University of Belgrade, Serbia
| | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
5
|
Ahmed A, Bibi A, Valoti M, Fusi F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells 2023; 12:cells12081196. [PMID: 37190105 DOI: 10.3390/cells12081196] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and contributing critically to cardiovascular disease onset and progression. In the context of vascular tone regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines, prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT is a prerequisite to the development of PVAT-targeted therapies.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Aasia Bibi
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, 73100 Lecce, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Cui F, Mi H, Guan Y, Zhu Y, Wang R, Tian Y, Yang K, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates vascular reactivity through upregulating adiponectin expression of PVAT in metabolic syndrome rats. Can J Physiol Pharmacol 2023; 101:160-170. [PMID: 36716441 DOI: 10.1139/cjpp-2022-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cumulating evidence demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had beneficial effects on the body. This study investigated the role of perivascular adipose tissue (PVAT) in ameliorating effect of CIHH on vascular reactivity by adiponectin in mesenteric artery of metabolic syndrome (MS) rats. Main methods: 6-week-old male Sprague-Dawley rats were randomly divided into four groups: control (CON), MS model, CIHH treatment, and MS + CIHH treatment group. The size of adipocytes in PVAT was measured by scanning electron microscopy. Serum adiponectin was measured. The microvessel recording technique was used to observe the effect of CIHH on contraction and relaxation in mesenteric artery rings. Also, the expressions of interleukin-1β, tumor necrosis factor-α, adiponectin, AdipoR1, AdipoR2, APPL1, and endothelial nitric oxide synthase (eNOS) were assayed by Western blotting. Key findings: in MS rats, adipocyte size increased, serum adiponectin decreased, contraction reaction increased while relaxation reaction decreased, the expression of pro-inflammatory cytokines was upregulated, while adiponectin was downregulated in PVAT, and the expressions of AdipoR1, AdipoR2, APPL, and phosphorylated-eNOS were downregulated in mesenteric artery. All aforementioned abnormalities of MS were ameliorated in MS + CIHH rats. We concluded that CIHH treatment improves vascular reactivity through upregulating adiponectin expression and downregulating pro-inflammatory cytokine expression of PVAT in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China.,Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Haichao Mi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Yan Zhu
- Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Ruotong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Kaifan Yang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| |
Collapse
|
7
|
Balbino-Silva CS, Couto GK, Lino CA, de Oliveira-Silva T, Lunardon G, Huang ZP, Festuccia WT, Barreto-Chaves ML, Wang DZ, Rossoni LV, Diniz GP. miRNA-22 is involved in the aortic reactivity in physiological conditions and mediates obesity-induced perivascular adipose tissue dysfunction. Life Sci 2023; 316:121416. [PMID: 36690245 DOI: 10.1016/j.lfs.2023.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown. AIM To investigate the role of miRNA-22 on vascular reactivity and its impact on obesity-induced PVAT dysfunction. MAIN METHODS Wild-type and miRNA-22 knockout (KO) mice were fed a control or a high-fat (HF) diet. To characterize the vascular response, concentration-responses curves to noradrenaline were performed in PVAT- or PVAT+ thoracic aortic rings in absence and presence of L-NAME. Expression of adipogenic and thermogenic markers and NOS isoforms were evaluated by western blotting or qPCR. KEY FINDINGS HF diet and miRNA-22 deletion reduced noradrenaline-induced contraction in PVAT- aortic rings. Additionally, miRNA-22 deletion increased noradrenaline-induced contraction in PVAT+ aortic rings without affecting its sensitivity; however, this effect was not observed in miRNA-22 KO mice fed a HF diet. Interestingly, miRNA-22 deletion reduced the contraction of aortic rings to noradrenaline via a NOS-dependent mechanism. Moreover, HF diet abolished the NOS-mediated anticontractile effect of PVAT, which was attenuated by miRNA-22 deletion. Mechanistically, we found that PVAT from miRNA-22 KO mice fed a HF diet presented increased protein expression of nNOS. SIGNIFICANCE These results suggest that miRNA-22 is important for aorta reactivity under physiological circumstances and its deletion attenuates the loss of the NOS-mediated anticontractile effect of PVAT in obesity.
Collapse
Affiliation(s)
- Camila S Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele K Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
The Vasoactive Effect of Perivascular Adipose Tissue and Hydrogen Sulfide in Thoracic Aortas of Normotensive and Spontaneously Hypertensive Rats. Biomolecules 2022; 12:biom12030457. [PMID: 35327649 PMCID: PMC8946625 DOI: 10.3390/biom12030457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to investigate the vasoregulatory role of perivascular adipose tissue (PVAT) and its mutual interaction with endogenous and exogenous H2S in the thoracic aorta (TA) of adult normotensive Wistar rats and spontaneously hypertensive rats (SHRs). In SHRs, hypertension was associated with cardiac hypertrophy and increased contractility. Regardless of the strain, PVAT revealed an anticontractile effect; however, PVAT worsened endothelial-dependent vasorelaxation. Since H2S produced by both the vascular wall and PVAT had a pro-contractile effect in SHRs, H2S decreased the sensitivity of adrenergic receptors to noradrenaline in Wistar rats. While H2S had no contribution to endothelium-dependent relaxation in Wistar rats, in SHRs, H2S produced by the vascular wall had a pro-relaxant effect. We observed a larger vasorelaxation induced by exogenous H2S donor in SHRs than in Wistar rats. Additionally, in the presence of PVAT, this effect was potentiated. We demonstrated that PVAT of the TA aggravated endothelial function in SHRs. However, H2S produced by the TA vascular wall had a pro-relaxation effect, and PVAT revealed anti-contractile activity mediated by the release of an unknown factor and potentiated the vasorelaxation induced by exogenous H2S. All these actions could represent a form of compensatory mechanism to balance impaired vascular tone regulation.
Collapse
|
9
|
Cruz-López EO, Uijl E, Danser AHJ. Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role? J Cardiovasc Pharmacol 2021; 78:S53-S62. [PMID: 34840262 DOI: 10.1097/fjc.0000000000001027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
10
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
11
|
Renin-angiotensin system overactivation in perivascular adipose tissue contributes to vascular dysfunction in heart failure. Clin Sci (Lond) 2021; 134:3195-3211. [PMID: 33215657 DOI: 10.1042/cs20201099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Perivascular adipose tissue (PVAT) dysfunction is associated with vascular damage in cardiometabolic diseases. Although heart failure (HF)-induced endothelial dysfunction is associated with renin-angiotensin system (RAS) activation, no data have correlated this syndrome with PVAT dysfunction. Thus, the aim of the present study was to investigate whether the hyperactivation of the RAS in PVAT participates in the vascular dysfunction observed in rats with HF after myocardial infarction surgery. Wire myograph studies were carried out in thoracic aorta rings in the presence and absence of PVAT. An anticontractile effect of PVAT was observed in the rings of the control rats in the presence (33%) or absence (11%) of endothelium. Moreover, this response was substantially reduced in animals with HF (5%), and acute type 1 angiotensin II receptor (AT1R) and type 2 angiotensin II receptor (AT2R) blockade restored the anticontractile effect of PVAT. In addition, the angiotensin-converting enzyme 1 (ACE1) activity (26%) and angiotensin II levels (51%), as well as the AT1R and AT2R gene expression, were enhanced in the PVAT of rats with HF. Associated with these alterations, HF-induced lower nitric oxide bioavailability, oxidative stress and whitening of the PVAT, which suggests changes in the secretory function of this tissue. The ACE1/angiotensin II/AT1R and AT2R axes are involved in thoracic aorta PVAT dysfunction in rats with HF. These results suggest PVAT as a target in the pathophysiology of vascular dysfunction in HF and provide new perspectives for the treatment of this syndrome.
Collapse
|
12
|
Barp CG, Bonaventura D, Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters. Front Physiol 2021; 12:640021. [PMID: 33643076 PMCID: PMC7902489 DOI: 10.3389/fphys.2021.640021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has recently entered in the realm of cardiovascular diseases as a putative target for intervention. Notwithstanding its relevance, there is still a long way before the role of PVAT in physiology and pathology is fully understood. The general idea that PVAT anti-contractile effect is beneficial and its pro-contractile effect is harmful is being questioned by several reports. The role of some PVAT important products or systems such as nitric oxide (NO), reactive oxygen species (ROS), and RAS may vary depending on the context, disease, place of production, etc., which adds doubts on how mediators of PVAT anti- and pro-contractile effects are called to action and their final result. This short review will address some points regarding NO, ROS, and RAS in the beneficial and harmful roles of PVAT.
Collapse
Affiliation(s)
- Clarissa Germano Barp
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Victorio JA, da Costa RM, Tostes RC, Davel AP. Modulation of Vascular Function by Perivascular Adipose Tissue: Sex Differences. Curr Pharm Des 2020; 26:3768-3777. [PMID: 32611295 DOI: 10.2174/1381612826666200701211912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
In addition to the endothelium, the perivascular adipose tissue (PVAT) has been described to be involved
in the local modulation of vascular function by synthetizing and releasing vasoactive factors. Under
physiological conditions, PVAT has anticontractile and anti-inflammatory effects. However, in the context of
hypertension, obesity and type 2 diabetes, the PVAT pattern of anticontractile adipokines is altered, favoring
oxidative stress, inflammation and, consequently, vascular dysfunction. Therefore, dysfunctional PVAT has become
a target for therapeutic intervention in cardiometabolic diseases. An increasing number of studies have
revealed sex differences in PVAT morphology and in the modulatory effects of PVAT on endothelial function
and vascular tone. Moreover, distinct mechanisms underlying PVAT dysfunction may account for vascular abnormalities
in males and females. Therefore, targeting sex-specific mechanisms of PVAT dysfunction in cardiovascular
diseases is an evolving strategy for cardiovascular protection.
Collapse
Affiliation(s)
- Jamaira A. Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas-SP, Brazil
| | - Rafael M. da Costa
- Special Academic Unit of Health Sciences, Federal University of Goias-Jatai, Jatai-GO, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Ana P. Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas-SP, Brazil
| |
Collapse
|
14
|
Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI, Sata M. Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. Eur J Pharmacol 2020; 875:173040. [PMID: 32114052 DOI: 10.1016/j.ejphar.2020.173040] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-/-) mice. Male streptozotocin (STZ) - induced diabetic ApoE-/- mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE-/- mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E2 and thromboxane B2 (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE-/- mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan.
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| |
Collapse
|
15
|
Antonopoulos AS, Papanikolaou P, Tousoulis D. The Role of Perivascular Adipose Tissue in Microvascular Function and Coronary Atherosclerosis. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Taylor LE, Ramirez LA, Musall JB, Sullivan JC. Tipping the scales: Are females more at risk for obesity- and high-fat diet-induced hypertension and vascular dysfunction? Br J Pharmacol 2019; 176:4226-4242. [PMID: 31271650 DOI: 10.1111/bph.14783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is a common metabolic disorder that has become a widespread epidemic in several countries. Sex and gender disparities in the prevalence of cardiovascular disease (CVD) have been well documented with premenopausal women having a lower incidence of CVD than age-matched men. However, women are more likely than men to suffer from obesity, which can predispose them to a greater risk of CVD. The mechanisms underlying high-fat diet (HFD)- or obesity-induced hypertension are not well defined, although immune system activation and inflammation have been implicated in several studies. Further, the sex of the subject can have a profound influence on the immune response to hypertensive stimuli. Therefore, the purpose of this review is to examine the effects of sex and gender on the role of the immune system in HFD-induced hypertension and vascular dysfunction. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Lia E Taylor
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lindsey A Ramirez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jacqueline B Musall
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
17
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
18
|
Influence of Age on Anticontractile Effect of Perivascular Adipose Tissue in Normotensive and Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9314260. [PMID: 30800212 PMCID: PMC6360033 DOI: 10.1155/2019/9314260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023]
Abstract
Perivascular adipose tissue (PVAT) and its vasomodulatory effects play an important role in the physiology and pathophysiology of blood vessels. Alterations in PVAT associated with reduction in its anticontractile influence are proven to contribute to vascular dysfunction in hypertension. The aim of this study was to examine whether the changes in PVAT properties could participate in progression of vascular abnormalities in developing spontaneously hypertensive rats (SHR). Normotensive Wistar-Kyoto (WKY) rats and SHR, both in 5th and in 12th week of age, were used. Systolic blood pressure was similar between WKY rats and SHR in 5th week of age; however, in 12th week, it was significantly increased in SHR comparing to WKY rats. The amount of retroperitoneal fat was higher in WKY rats in both age groups, whereas body weight was higher in WKY rats only in 12th week, when compared to age-matched SHR. From isolated superior mesenteric arteries, two ring preparations were prepared for isometric tension recording, one with PVAT intact and other with PVAT removed. In WKY rats as well as in SHR, arterial contractile responses to noradrenaline, applied cumulatively on rings, were significantly inhibited in the presence of intact PVAT. In both age groups, anticontractile effect of PVAT was higher in WKY rats than in SHR. Neurogenic contractions, induced by electrical stimulation of perivascular sympathoadrenergic nerves, were significantly attenuated in the presence of PVAT in WKY mesenteric arteries from both age groups; however, in arteries from SHR, intact PVAT had no influence on this type of contractile responses. The results suggest that in SHR impairment of anticontractile effect of PVAT precedes hypertension and might contribute to its development.
Collapse
|
19
|
Nóbrega N, Araújo NF, Reis D, Facine LM, Miranda CAS, Mota GC, Aires RD, Capettini LDSA, Cruz JDS, Bonaventura D. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation. Nitric Oxide 2019; 84:50-59. [PMID: 30611765 DOI: 10.1016/j.niox.2018.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 01/31/2023]
Abstract
The perivascular adipose tissue (PVAT) is located around the adventitia, composed primarily by adipocytes, stromal cells, leukocytes, fibroblasts and capillaries. It is well described that PVAT is an important modulator of the vascular tone being considered a biologically active tissue, releasing both vasoconstrictor and vasodilators factors. The literature shows that the anti-contractile effect induced by PVAT may be due to activation of the renin-angiotensin system (RAS). AIM Investigate whether the renin-angiotensin system participates in the effect exerted by perivascular adipose tissue on the vascular tone. METHODS AND RESULTS For this study we used thoracic aorta from Balb/c mice and performed vascular reactivity, nitric oxide and hydrogen peroxide quantification using selective probes and fluorescence microscopy, immunofluorescence to locate receptors and enzymes involved in this response. Our results demonstrated that perivascular adipose tissue induces an anti-contractile effect in endothelium-independent manner and involves Mas and AT2 receptors participation with subsequent PI3K/Akt pathway activation. This pathway culminated with nitric oxide and hydrogen peroxide production by neuronal nitric oxide synthase, being hydrogen peroxide most relevant for the anti-contractile effect of perivascular adipose tissue. CONCLUSION For the first time in the literature, our results show the presence of Mas and AT2 receptors, as well as, nitric oxide synthase on perivascular adipose tissue. Furthermore, our results show the involvement of Mas and AT2 receptors and consequently nitric oxide synthase activation in the anti-contractile effect exerted by perivascular adipose tissue.
Collapse
Affiliation(s)
- Natália Nóbrega
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Natália Ferreira Araújo
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Daniela Reis
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Larissa Moreira Facine
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Claudiane Aparecida S Miranda
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Gianne Campos Mota
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Rosária Dias Aires
- Laboratory of Excitatory Membranes, Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | | | - Jader Dos Santos Cruz
- Laboratory of Excitatory Membranes, Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | - Daniella Bonaventura
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
20
|
Gonzaga NA, Awata WMC, do Vale GT, Marchi KC, Muniz JJ, Tanus-Santos JE, Tirapelli CR. Perivascular adipose tissue protects against the vascular dysfunction induced by acute ethanol intake: Role of hydrogen peroxide. Vascul Pharmacol 2018; 111:44-53. [PMID: 30157459 DOI: 10.1016/j.vph.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 08/25/2018] [Indexed: 01/04/2023]
Abstract
AIM We investigated the consequences of acute ethanol intake on the anti-contractile effect of perivascular adipose tissue (PVAT). METHODS The effects of a single dose of ethanol (1 g/kg; p.o. gavage) on the vascular function were assessed within 30 min in male Wistar rats. RESULTS Ethanol decreased the relaxation induced by acetylcholine and increased the contraction induced by phenylephrine in endothelium-intact, but not in endothelium-denuded aortas without PVAT. The vascular dysfunction induced by ethanol was not observed in aortic rings with PVAT. Nω-Nitro-l-arginine methyl ester (L-NAME), NG-nitro-l-arginine (L-NNA) and 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), but not tiron or tempol, increased the contraction induced by phenylephrine in endothelium-intact aortas with PVAT from control and ethanol-treated rats. Catalase increased phenylephrine-induced contraction in aortas with PVAT from ethanol-treated rats, but not from control rats. Conversely, inhibition of catalase with aminotriazole decreased phenylephrine-induced contraction in aortas from ethanol-treated rats. Treatment with ethanol increased hydrogen peroxide (H2O2) levels and decreased catalase activity in aortas with PVAT. Ethanol increased superoxide anion (O2-) generation in aortas with or without PVAT. Superoxide dismutase (SOD) activity was not affected by ethanol intake. In situ quantification of H2O2 using 2'7'dichlorodihydrofluorescein diacetate (DCFH-DA) revealed increased levels of H2O2 in periaortic PVAT from ethanol-treated rats. However, in situ evaluation of nitric oxide (NO) in both aorta and PVAT showed no differences between groups. CONCLUSIONS Our study provides novel evidence that the periaortic PVAT protects against the vascular dysfunction induced by acute ethanol intake through a mechanism that involves increased generation of H2O2.
Collapse
Affiliation(s)
- Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Gabriel T do Vale
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Katia C Marchi
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jaqueline J Muniz
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Zemančíková A, Török J. Effect of perivascular adipose tissue on arterial adrenergic contractions in normotensive and hypertensive rats with high fructose intake. Physiol Res 2018; 66:S537-S544. [PMID: 29355382 DOI: 10.33549/physiolres.933798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the effect of high fructose intake associated with moderate increase in adiposity on rat arterial adrenergic responses and their modulation by perivascular adipose tissue (PVAT). After eight-week-lasting substitution of drinking water with 10 % fructose solution in adult normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), their systolic blood pressure, plasma triglycerides, and relative liver weight were elevated when compared to their respective control groups. Moreover, in SHR, body weight and relative heart weight were increased after treatment with fructose. In superior mesenteric arteries, PVAT exerted inhibitory influence on adrenergic contractile responses and this effect was markedly stronger in control WKY than in SHR. In fructose-administered WKY, arterial adrenergic contractions were substantially reduced in comparison with the control group; this was caused mainly by enhancement of anticontractile action of PVAT. The diminution of the mesenteric arterial contractions was not observed after fructose treatment in SHR. We conclude that the increase in body adiposity due to fructose overfeeding in rats might have prehypertensive effect. However, in WKY it might cause PVAT-dependent and independent reduction in arterial contractile responses to adrenergic stimuli, which could attenuate the pathological elevation in vascular tone.
Collapse
Affiliation(s)
- A Zemančíková
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
22
|
Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, Zhang J, Jiang Z, Lin JD, Chen YE. Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen. Circulation 2018; 138:67-79. [PMID: 29371216 PMCID: PMC6030431 DOI: 10.1161/circulationaha.117.029972] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The perivascular adipose tissue (PVAT) surrounding vessels constitutes a distinct functional integral layer of the vasculature required to preserve vascular tone under physiological conditions. However, there is little information on the relationship between PVAT and blood pressure regulation, including its potential contributions to circadian blood pressure variation. METHODS Using unique brown adipocyte-specific aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and angiotensinogen knockout mice, we determined the vasoactivity of homogenized PVAT in aortic rings and how brown adipocyte peripheral expression of Bmal1 and angiotensinogen in PVAT regulates the amplitude of diurnal change in blood pressure in mice. RESULTS We uncovered a peripheral clock in PVAT and demonstrated that loss of Bmal1 in PVAT reduces blood pressure in mice during the resting phase, leading to a superdipper phenotype. PVAT extracts from wild-type mice significantly induced contractility of isolated aortic rings in vitro in an endothelium-independent manner. This property was impaired in PVAT from brown adipocyte-selective Bmal1-deficient (BA-Bmal1-KO) mice. The PVAT contractile properties were mediated by local angiotensin II, operating through angiotensin II type 1 receptor-dependent signaling in the isolated vessels and linked to PVAT circadian regulation of angiotensinogen. Indeed, angiotensinogen mRNA and angiotensin II levels in PVAT of BA-Bmal1-KO mice were significantly reduced. Systemic infusion of angiotensin II, in turn, reduced Bmal1 expression in PVAT while eliminating the hypotensive phenotype during the resting phase in BA-Bmal1-KO mice. Angiotensinogen, highly expressed in PVAT, shows circadian expression in PVAT, and selective deletion of angiotensinogen in brown adipocytes recapitulates the phenotype of selective deletion of Bmal1 in brown adipocytes. Furthermore, angiotensinogen is a transcriptional target of Bmal1 in PVAT. CONCLUSIONS These data indicate that local Bmal1 in PVAT regulates angiotensinogen expression and the ensuing increase in angiotensin II, which acts on smooth muscle cells in the vessel walls to regulate vasoactivity and blood pressure in a circadian fashion during the resting phase. These findings will contribute to a better understanding of the cardiovascular complications of circadian disorders, alterations in the circadian dipping phenotype, and cross-talk between systemic and peripheral regulation of blood pressure.
Collapse
Affiliation(s)
- Lin Chang
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang (W.X., Z.J.)
| | - Xiangjie Zhao
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Yanhong Guo
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Minerva Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang (W.X., Z.J.)
| | - Jiandie D Lin
- Life Sciences Institute (J.D.L.)
- Department of Cell and Developmental Biology (J.D.L.), University of Michigan, Ann Arbor
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| |
Collapse
|
23
|
Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, Rizzoni D. Modulation of Vascular Reactivity by Perivascular Adipose Tissue (PVAT). Curr Hypertens Rep 2018; 20:44. [PMID: 29736674 DOI: 10.1007/s11906-018-0835-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the role of perivascular adipose tissue (PVAT) in the modulation of vascular contractility and arterial pressure, focusing on the role of the renin-angiotensin-aldosterone system and oxidative stress/inflammation. RECENT FINDINGS PVAT possesses a relevant endocrine-paracrine activity, which may be altered in several pathophysiological and clinical conditions. During the last two decades, it has been shown that PVAT may modulate vascular reactivity. It has also been previously demonstrated that inflammation in adipose tissue may be implicated in vascular dysfunction. In particular, adipocytes secrete a number of adipokines with various functions, as well as several vasoactive factors, together with components of the renin-angiotensin system which may act at local or at systemic level. It has been shown that the anti-contractile effect of PVAT is lost in obesity, probably as a consequence of the development of adipocyte hypertrophy, inflammation, and oxidative stress. Adipose tissue dysfunction is interrelated with inflammation and oxidative stress, thus contributing to endothelial dysfunction observed in several pathological and clinical conditions such as obesity and hypertension. Decreased local adiponectin level, macrophage recruitment and infiltration, and activation of renin-angiotensin-aldosterone system could play an important role in this regard.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medicine, Manchester University, Manchester, UK. .,Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy.
| | - Anna Paini
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Sarah Withers
- Department of Medicine, Manchester University, Manchester, UK
| | - Adam Greenstein
- Department of Medicine, Manchester University, Manchester, UK
| | | | - Damiano Rizzoni
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| |
Collapse
|
24
|
Abstract
Thirty years ago, Robert F. Furchgott concluded that nitric oxide, a compound traditionally known to be a toxic component of fuel exhaust, is in fact released from the endothelium, and in a paracrine fashion, induces relaxation of underlying vascular smooth muscle resulting in vasodilation. This discovery has helped pave the way for a more thorough understanding of vascular intercellular and intracellular communication that supports the process of regulating regional perfusion to match the local tissue oxygen demand. Vasoregulation is controlled not only by endothelial release of a diverse class of vasoactive compounds such as nitric oxide, arachidonic acid metabolites, and reactive oxygen species, but also by physical forces on the vascular wall and through electrotonic conduction through gap junctions. Although the endothelium is a critical source of vasoactive compounds, paracrine mediators can also be released from surrounding parenchyma such as perivascular fat, myocardium, and cells in the arterial adventitia to exert either local or remote vasomotor effects. The focus of this review will highlight the various means by which intercellular communication contributes to mechanisms of vasodilation. Paracrine signaling and parenchymal influences will be reviewed as well as regional vessel communication through gap junctions, connexons, and myoendothelial feedback. More recent modes of communication such as vesicular and microRNA signaling will also be discussed.
Collapse
|
25
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
26
|
Schütten MTJ, Houben AJHM, de Leeuw PW, Stehouwer CDA. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology (Bethesda) 2017; 32:197-209. [PMID: 28404736 DOI: 10.1152/physiol.00037.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Obese individuals frequently develop hypertension, which is for an important part attributable to renin-angiotensin-aldosterone system (RAAS) overactivity. This review summarizes preclinical and clinical evidence on the involvement of dysfunctional adipose tissue in RAAS activation and on the renal, central, and vascular mechanisms linking RAAS components to obesity-associated hypertension.
Collapse
Affiliation(s)
- Monica T J Schütten
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter W de Leeuw
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
27
|
Akoumianakis I, Tarun A, Antoniades C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br J Pharmacol 2016; 174:3411-3424. [PMID: 27976387 DOI: 10.1111/bph.13666] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue (AT) is an active endocrine organ with the ability to dynamically secrete a wide range of adipocytokines. Importantly, its secretory profile is altered in various cardiovascular disease states. AT surrounding vessels, or perivascular AT (PVAT), is recognized in particular as an important local regulator of vascular function and dysfunction. Specifically, PVAT has the ability to sense vascular paracrine signals and respond by secreting a variety of vasoactive adipocytokines. Due to the crucial role of PVAT in regulating many aspects of vascular biology, it may constitute a novel therapeutic target for the prevention and treatment of vascular disease pathogenesis. Signalling pathways in PVAT, such as those using adiponectin, H2 S, glucagon-like peptide 1 or pro-inflammatory cytokines, are among the potential novel pharmacological therapeutic targets of PVAT. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
| | - Akansha Tarun
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
| |
Collapse
|
28
|
Loss of Anticontractile Effect of Perivascular Adipose Tissue on Pregnant Rats: A Potential Role of Tumor Necrosis Factor-α. J Cardiovasc Pharmacol 2016; 67:145-51. [PMID: 26848638 DOI: 10.1097/fjc.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present investigation examined the effect of pregnancy on the anticontractile effect of perivascular adipose tissue (PVAT) on the rat. Ring segments of the aorta, with and without PVAT, were set up in organ baths for isometric tension recording. In both groups, concentration-response curves to 5-hydroxytryptamine (5-HT) were displaced to the right with a reduction of the maximum response in aorta segments with PVAT. The anticontractile effect of PVAT was attenuated on segments from pregnant rats. 4-Aminopyridine (4-AP), an inhibitor of voltage-gated potassium (Kv) channels, enhanced 5-HT-induced contractions of aorta segments from pregnant and nonpregnant rats only when PVAT was attached. There was no difference in the effect of 4-aminopyridine on 5-HT-induced contractions of aorta segments with PVAT from pregnant and nonpregnant rats. There was also no significant difference in the expression of Kv7.4 channels in aorta segments (with PVAT) between pregnant and nonpregnant rats. Tumor necrosis factor-α (TNF-α) was detected in PVAT from pregnant and nonpregnant rats. The level of TNF-α was significantly greater in PVAT from pregnant rats. Treatment of pregnant rats with pentoxyphyline significantly reduced the level of TNF-α in the PVAT and restored the anticontractile effect of PVAT on aorta segments from pregnant rats. Finally, TNF-α (10 ng/mL) potentiated 5-HT-induced contractions of PVAT-containing pregnant rat aorta. These results would suggest that the loss of anticontractile effect of PVAT in pregnant rat aorta could be due to enhanced production of TNF-α in the PVAT in these rats.
Collapse
|
29
|
Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 2016; 40:311-323. [PMID: 27784889 DOI: 10.1038/hr.2016.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.
Collapse
|
30
|
TÖRÖK J, ZEMANČÍKOVÁ A, KOCIANOVÁ Z. Interaction of Perivascular Adipose Tissue and Sympathetic Nerves in Arteries From Normotensive and Hypertensive Rats. Physiol Res 2016; 65:S391-S399. [DOI: 10.33549/physiolres.933434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.
Collapse
Affiliation(s)
- J. TÖRÖK
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | |
Collapse
|
31
|
Hou N, Liu Y, Han F, Wang D, Hou X, Hou S, Sun X. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice. J Mol Cell Cardiol 2016; 99:188-196. [PMID: 27638193 DOI: 10.1016/j.yjmcc.2016.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/27/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
AIMS To determine whether irisin could improve perivascular adipose tissue (PVAT) dysfunction via regulation of the heme oxygenase-1 (HO-1)/adiponectin axis in obesity. MATERIALS AND METHODS C57BL/6 mice were given chow or a high-fat diet (HFD) with or without treatment with irisin. The concentration-dependent responses of the thoracic aorta with or without PVAT (PVAT+ or PVAT-) to phenylephrine were studied in an organ bath. Protein levels of HO-1 and adiponectin were determined by western blot. UCP-1, Cidea, and TNF-α gene expression in PVAT were analyzed by real-time PCR. RESULTS Treatment of obese mice with irisin improved glucose and lipid metabolism, reduced plasma levels of TNF-α and malondialdehyde, and increased plasma adiponectin levels (P<0.01). The anti-contractile effects of PVAT were attenuated in HFD mice and this attenuation was restored in HFD mice treated with irisin (P<0.05). Incubation of aortas (PVAT+) with the HO-1 inhibitor and adiponectin receptor blocking peptide in irisin-treated HFD mice abolished the beneficial effects of irisin on PVAT function. The same results were also observed in HFD mice treated with irisin ex vivo. Treatment of HFD mice with irisin significantly enhanced protein levels of HO-1 and adiponectin, and reduced superoxide production and TNF-α expression in PVAT. Irisin treatment enhanced brown adipocyte markers UCP-1 and Cidea expression in PVAT from HFD mice. CONCLUSION Irisin improved the anti-contractile properties of PVAT from the thoracic aorta in diet-induced obese mice. The mechanism for protective effects of irisin appeared to be related to upregulation of the HO-1/adiponectin axis in PVAT and browning of PVAT.
Collapse
Affiliation(s)
- Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yihui Liu
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Di Wang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoshuang Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuting Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
32
|
Increased vascular eNOS and cystathionine-γ-lyase protein after 6 weeks oral administration of 3, 5, 7, 3', 4'-pentamethoxyflavone to middle-aged male rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1183-1194. [PMID: 27468988 DOI: 10.1007/s00210-016-1280-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
Abstract
Effects of treatment of middle-aged male rats with 3, 5, 7, 3', 4'-pentamethoxyflavone (PMF) on vascular and perivascular adipose tissue (PVAT) functions and blood chemistry were investigated. Rats received PMF (22 mg/kg), orally or vehicle, twice a day for 6 weeks. The PMF-treated rats had lower serum glucose, higher HDL-C levels, but no change in other parameters. Thoracic aortic and mesenteric rings of PMF treated rats produced lower maximal contraction to phenylephrine that was normalized by NG-nitro-L-arginine (L-NA) or endothelial removal. The aortic- and mesenteric rings of the PMF treated rats showed improved relaxation to acetylcholine, but not to glyceryl trinitrate, and had higher eNOS protein. DL-propargylglycine (PAG) caused greater increase in the baseline tension of the PMF-treated aortic ring and higher contraction to low concentrations of phenylephrine. PVAT lowered the contractile response of the L-NA pretreated aortic rings to phenylephrine for both groups, but PAG had no effect. The cystathionine-γ-lyase (CSE) protein of the thoracic rings, but not of the PVAT, shows increased expression after PMF treatment. Overall, PMF treatment of middle aged rats appeared to increase production of NO and H2S from the blood vessels by upregulating the expression of eNOS and CSE. PMF also decreased fasting serum glucose and increased HDL-C levels, with no toxicity to liver and kidney functions. Thus, PMF is a novel compound for possible use as a health product to prevent and/or to reduce the development of diabetes type II and/or cardiovascular disease.
Collapse
|
33
|
Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats. Int J Obes (Lond) 2016; 40:1205-14. [PMID: 27102050 PMCID: PMC4973217 DOI: 10.1038/ijo.2016.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Rationale: Maternal obesity pre-programmes offspring to develop obesity and associated cardiovascular disease. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the vasculature, which is reduced in hypertension and obesity. Objective: The objective of this study was to determine whether maternal obesity pre-programmes offspring to develop PVAT dysfunction in later life. Methods: Female Sprague–Dawley rats were fed a diet containing 10% (control) or 45% fat (high fat diet, HFD) for 12 weeks prior to mating and during pregnancy and lactation. Male offspring were killed at 12 or 24 weeks of age and tension in PVAT-intact or -denuded mesenteric artery segments was measured isometrically. Concentration–response curves were constructed to U46619 and norepinephrine. Results: Only 24-week-old HFD offspring were hypertensive (P<0.0001), although the anti-contractile effect of PVAT was lost in vessels from HFD offspring of each age. Inhibition of nitric oxide (NO) synthase with 100 μMl-NMMA attenuated the anti-contractile effect of PVAT and increased contractility of PVAT-denuded arteries (P<0.05, P<0.0001). The increase in contraction was smaller in PVAT-intact than PVAT-denuded vessels from 12-week-old HFD offspring, suggesting decreased PVAT-derived NO and release of a contractile factor (P<0.07). An additional, NO-independent effect of PVAT was evident only in norepinephrine-contracted vessels. Activation of AMP-activated kinase (with 10 μM A769662) was anti-contractile in PVAT-denuded (P<0.0001) and -intact (P<0.01) vessels and was due solely to NO in controls; the AMPK effect was similar in HFD offspring vessels (P<0.001 and P<0.01, respectively) but was partially NO-independent. Conclusions: The diminished anti-contractile effects of PVAT in offspring of HFD dams are primarily due to release of a PVAT-derived contractile factor and reduced NO bioavailability.
Collapse
|
34
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
35
|
Sheng LJ, Ruan CC, Ma Y, Chen DR, Kong LR, Zhu DL, Gao PJ. Beta3 adrenergic receptor is involved in vascular injury in deoxycorticosterone acetate-salt hypertensive mice. FEBS Lett 2016; 590:769-78. [PMID: 26910302 DOI: 10.1002/1873-3468.12107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/19/2015] [Accepted: 02/10/2016] [Indexed: 11/11/2022]
Abstract
Beta3 adrenergic receptor (ADRB3) mediates vessel relaxation in the endothelium while it modulates lipolysis in the adipose tissue. However, the function and regulation mechanism of ADRB3 in the perivascular adipose tissue (PVAT), especially in hypertension, is still unclear. We show that ADRB3 protein is upregulated in the PVAT of deoxycorticosterone acetate-salt (DOCA-salt) hypertensive mice, with the characteristics of PVAT browning and increased uncoupling protein 1 (UCP1) expression. Inhibition of ADRB3 with selective antagonist SR59230A caused serious vascular injury in vivo, even though UCP1 expression was downregulated. ADRB3 protein was regulated by let-7b, which was decreased in the PVAT of the DOCA-salt group. These data reveal that ADRB3 in PVAT contributes to vascular function in the progression of hypertension.
Collapse
Affiliation(s)
- Li-Juan Sheng
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ma
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding-Liang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Siegel-Axel DI, Häring HU. Perivascular adipose tissue: An unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord 2016; 17:51-60. [PMID: 26995737 DOI: 10.1007/s11154-016-9346-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type 2 diabetes and its major risk factor, obesity, are an increasing worldwide health problem. The exact mechanisms that link obesity with insulin resistance, type 2 diabetes, hypertension, cardiovascular complications and renal diseases, are still not clarified sufficiently. Adipose tissue in general is an active endocrine and paracrine organ that may influence the development of these disorders. Excessive body fat in general obesity may also cause quantitative and functional alterations of specific adipose tissue compartments. Beside visceral and subcutaneous fat depots which exert systemic effects by the release of adipokines, cytokines and hormones, there are also locally acting fat depots such as peri- and epicardial fat, perivascular fat, and renal sinus fat. Perivascular adipose tissue is in close contact with the adventitia of large, medium and small diameter arteries, possesses unique features differing from other fat depots and may act also independently of general obesity. An increasing number of studies are dealing with the "good" or "bad" characteristics and functions of normally sized and dramatically increased perivascular fat mass in lean or heavily obese individuals. This review describes the origin of perivascular adipose tissue, its different locations, the dual role of a physiological and unphysiological fat mass and its impact on diabetes, cardiovascular and renal diseases. Clinical studies, new imaging methods, as well as basic research in cell culture experiments in the last decade helped to elucidate the various aspects of the unique fat compartment.
Collapse
Affiliation(s)
- D I Siegel-Axel
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), University of Tübingen, Tübingen, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Eberhard Karls University Tübingen, Otfried-Müller Str.10, D-72076, Tübingen, Germany.
| | - H U Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), University of Tübingen, Tübingen, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| |
Collapse
|
37
|
Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison DG, Guzik TJ. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J 2016; 30:1987-99. [PMID: 26873938 PMCID: PMC4836375 DOI: 10.1096/fj.201500088r] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have emphasized the role of perivascular inflammation in cardiovascular disease. We studied mechanisms of perivascular leukocyte infiltration in angiotensin II (Ang II)-induced hypertension and their links to vascular dysfunction. Chronic Ang II infusion in mice increased immune cell content of T cells (255 ± 130 to 1664 ± 349 cells/mg; P < 0.01), M1 and M2 macrophages, and dendritic cells in perivascular adipose tissue. In particular, the content of T lymphocytes bearing CC chemokine receptor (CCR) 1, CCR3, and CCR5 receptors for RANTES chemokine was increased by Ang II (CCR1, 15.6 ± 1.5% vs. 31 ± 5%; P < 0.01). Hypertension was associated with an increase in perivascular adipose tissue expression of the chemokine RANTES (relative quantification, 1.2 ± 0.2 vs. 3.5 ± 1.1; P < 0.05), which induced T-cell chemotaxis and vascular accumulation of T cells expressing the chemokine receptors CCR1, CCR3, and CCR5. Mechanistically, RANTES−/− knockout protected against vascular leukocyte, and in particular T lymphocyte infiltration (26 ± 5% in wild type Ang II vs. 15 ± 4% in RANTES−/−), which was associated with protection from endothelial dysfunction induced by Ang II. This effect was linked with diminished infiltration of IFN-γ-producing CD8+ and double-negative CD3+CD4−CD8− T cells in perivascular space and reduced vascular oxidative stress while FoxP3+ T-regulatory cells were unaltered. IFN-γ ex vivo caused significant endothelial dysfunction, which was reduced by superoxide anion scavenging. In a human cohort, a significant inverse correlation was observed between circulating RANTES levels as a biomarker and vascular function measured as flow-mediated dilatation (R = −0.3, P < 0.01) or endothelial injury marker von Willebrand factor (R = +0.3; P < 0.01). Thus, chemokine RANTES is important in the regulation of vascular dysfunction through modulation of perivascular inflammation.—Mikolajczyk, T. P., Nosalski, R., Szczepaniak, P., Budzyn, K., Osmenda, G., Skiba, D., Sagan, A., Wu, J., Vinh, A., Marvar, P. J., Guzik, B., Podolec, J., Drummond, G., Lob, H. E., Harrison, D. G., Guzik, T. J. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryszard Nosalski
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Szczepaniak
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Klaudia Budzyn
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Grzegorz Osmenda
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Dominik Skiba
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Agnieszka Sagan
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jing Wu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., USA
| | - Bartlomiej Guzik
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Jakub Podolec
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland
| | - Grant Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Heinrich E Lob
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University, Cracow, Poland British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Chongsa W, Kanokwiroon K, Jansakul C. Effects of 6 weeks oral administration of Phyllanthus acidus leaf water extract on the vascular functions of middle-aged male rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:79-89. [PMID: 26498492 DOI: 10.1016/j.jep.2015.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves of Phyllanthus acidus (PA) have been used in Thai traditional medicine for the treatment of hypertension. We have previously shown that chronic treatment of a PA water extract to middle-aged male rats caused a lowering of the body and serum lipids, two of the parameters that are implicated in cardiovascular disease. AIM OF THE STUDY To investigate if chronic treatment of middle-aged male rats with a PA water extract affected the perivascular (aortic) adipose tissue (PVAT) and/or their vascular functions MATERIALS AND METHODS Fresh leaves of PA were extracted with water and orally gavaged to the middle-aged male rats for 6 weeks. Vascular functions were studied in vitro using isolated thoracic aorta with and without PVAT, and mesenteric rings in Krebs Heinseleit solution with results recorded with a Polygraph or a Myograph system. The amount of blood vessel eNOS and CSE (cystathionine-γ-lyase) expression was measured by Western blotting. RESULTS PA treatment caused a lower maximal contractile response to phenylephrine (Phe) of the endothelium-intact aortic ring than that of the control group. This effect was abolished by N(G)-nitro-l-arginine (l-NA) or by denudation of the endothelium. dl-propargylglycine (PAG, H2S inhibitor) and TEA (Ca(2+)-activated K(+) channel blocker), but not glybenclamide (ATP-activated K(+) channel blocker), caused a similar increase in the baseline of the endothelium-intact aortic ring in the presence of l-NA in both the PA-treated and control aortic rings. This effect sequentially resulted in a greater contractile response of the aortic rings of both groups to Phe. Glybenclamide also caused a similar increase in the maximal contraction of the endothelium-intact blood vessels with l-NA to both groups. PAG, TEA or glybenclamide did not modify the phenylephrine C-R curves for either group of the PVAT-endothelium-intact aortic rings preincubated with l-NA. The CSE levels of the thoracic aorta and at the PVAT were not different between the PA-treated and the control group. Relaxation of the Phe-precontracted thoracic aortic ring to acetylcholine, but not to glyceryl trinitrate, was higher for the PA-treated than for the control aortic rings and this effect was abolished by l-NA. The mesenteric rings of the PA treated group showed a lower sensitivity on the contractile response to Phe than that of the control group, and this effect was abolished by l-NA. Vasodilatation to acetylcholine, but not to glyceryl trinitrate, of the PA treated-mesenteric ring was more sensitive than that of the control group and this effect was abolished by l-NA. The expression of eNOS by the PA treated thoracic aorta and the mesenteric arteries was higher than the control group. These results demonstrated that chronic treatment with a PA water extract to middle-aged rats affected their vascular functions by increasing the nitric oxide production from the endothelial cells and also modulated the responsiveness of the thoracic aortic- and mesenteric rings to phenylephrine and acetylcholine.
Collapse
Affiliation(s)
- Watchara Chongsa
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences, Faculty of medicine, Prince of Songkla University, Hat-Yai, Thailand; The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Hat-Yai, Thailand
| | - Chaweewan Jansakul
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai 90112, Thailand; Natural Research Center of Excellence, Prince of Songkla University, Hat-Yai, Thailand.
| |
Collapse
|
39
|
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129:83-94. [PMID: 26499181 DOI: 10.1016/j.jphs.2015.09.002] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.
Collapse
|
40
|
Romantsova TI, Ovsyannikovna AV. Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology. ACTA ACUST UNITED AC 2015. [DOI: 10.14341/omet201545-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions. The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.
Collapse
|
41
|
Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernández-Alfonso MS. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab 2015; 26:367-75. [PMID: 26008879 DOI: 10.1016/j.tem.2015.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.
Collapse
Affiliation(s)
- Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - Yu Huang
- Institute of Vascular Medicine, Chinese University of Hong Kong, 20001 Hong Kong, China; Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 20001 Hong Kong, China
| | - Maik Gollasch
- Nephrology and Intensive Care, Experimental and Clinical Research Center (ECRC), Charité Campus Virchow, 13125 Berlin, Germany
| | - Maria S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Oriowo MA. Perivascular adipose tissue, vascular reactivity and hypertension. Med Princ Pract 2015; 24 Suppl 1:29-37. [PMID: 24503717 PMCID: PMC6489082 DOI: 10.1159/000356380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022] Open
Abstract
Most blood vessels are surrounded by a variable amount of adventitial adipose tissue, perivascular adipose tissue (PVAT), which was originally thought to provide mechanical support for the vessel. It is now known that PVAT secretes a number of bioactive substances including vascular endothelial growth factor, tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, insulin-like growth factor, interleukin-6, plasminogen activator substance, resistin and angiotensinogen. Several studies have shown that PVAT significantly modulated vascular smooth muscle contractions induced by a variety of agonists and electrical stimulation by releasing adipocyte-derived relaxing (ADRF) and contracting factors. The identity of ADRF is not yet known. However, several vasodilators have been suggested including adiponectin, angiotensin 1-7, hydrogen sulfide and methyl palmitate. The anticontractile effect of PVAT is mediated through the activation of potassium channels since it is abrogated by inhibiting potassium channels. Hypertension is characterized by a reduction in the size and amount of PVAT and this is associated with the attenuated anticontractile effect of PVAT in hypertension. However, since a reduction in size and amount of PVAT and the attenuated anticontractile effect of PVAT were already evident in prehypertensive rats with no evidence of impaired release of ADRF, there is the possibility that the anticontractile effect of PVAT was not directly related to an altered function of the adipocytes per se. Hypertension is characterized by low-grade inflammation and infiltration of macrophages. One of the adipokines secreted by macrophages is TNF-α. It has been shown that exogenously administered TNF-α enhanced agonist-induced contraction of a variety of vascular smooth muscle preparations and reduced endothelium-dependent relaxation. Other procontractile factors released by the PVAT include angiotensin II and superoxide. It is therefore possible that the loss could be due to an increased amount of these proinflammatory and procontractile factors. More studies are definitely required to confirm this.
Collapse
Affiliation(s)
- Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
43
|
Mann SE, Maille N, Clas D, Osol G. Perivascular Adipose Tissue: A Novel Regulator of Vascular Tone in the Rat Pregnancy. Reprod Sci 2014; 22:802-7. [PMID: 25527422 DOI: 10.1177/1933719114561556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perivascular adipose tissue (PVAT) contributes to vasoregulation. The role of this adipose tissue bed in pregnancy has not been examined. Here, we tested the hypothesis that PVAT in pregnant rats decreases resistance artery tone. Mesenteric arteries from nonpregnant (NP) and late pregnant (LP) rats were exposed to phenylephrine (PHE) or KCl in the presence (+) versus absence (-) of PVAT. The LP PVAT(+) vessels showed a 44% decrease in sensitivity to PHE in the presence of PVAT. There was no attenuation of the contractile response to KCl when PVAT was present. The LP arteries perfused with LP or NP PVAT underwent vasodilation; unexpectedly, NP vessels in the presence of PVAT from LP rats sustained a 48% vasoconstriction. The PVAT attenuates vasoconstriction by a mechanism that involves hyperpolarization. The vasoconstriction observed when nonpregnant vessels were exposed to pregnant PVAT suggests pregnant vessels adapt to the vasoconstricting influence of pregnant PVAT.
Collapse
Affiliation(s)
- Stephanie E Mann
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nicole Maille
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Darren Clas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
44
|
Almabrouk TAM, Ewart MA, Salt IP, Kennedy S. Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol 2014; 171:595-617. [PMID: 24490856 DOI: 10.1111/bph.12479] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an active endocrine and paracrine organ that modulates vascular function, with implications for the pathophysiology of cardiovascular disease (CVD). Adipocytes and stromal cells contained within PVAT produce mediators (adipokines, cytokines, reactive oxygen species and gaseous compounds) with a range of paracrine effects modulating vascular smooth muscle cell contraction, proliferation and migration. However, the modulatory effect of PVAT on the vascular system in diseases, such as obesity, hypertension and atherosclerosis, remains poorly characterized. AMP-activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology and vascular function, and hence may be a potential therapeutic target for metabolic disorders such as type 2 diabetes mellitus (T2DM) and the vascular complications associated with obesity and T2DM. The role of AMPK in PVAT or the actions of PVAT have yet to be established, however. Activation of AMPK by pharmacological agents, such as metformin and thiazolidinediones, may modulate the activity of PVAT surrounding blood vessels and thereby contribute to their beneficial effect in cardiometabolic diseases. This review will provide a current perspective on how PVAT may influence vascular function via AMPK. We will also attempt to demonstrate how modulating AMPK activity using pharmacological agents could be exploited therapeutically to treat cardiometabolic diseases.
Collapse
Affiliation(s)
- T A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
45
|
Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 2014; 34:1621-30. [PMID: 24833795 DOI: 10.1161/atvbaha.114.303029] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perivascular adipose tissue (PVAT), long assumed to be nothing more than vessel-supporting connective tissue, is now understood to be an important, active component of the vasculature, with integral roles in vascular health and disease. PVAT is an adipose tissue with similarities to both brown and white adipose tissue, although recent evidence suggests that PVAT develops from its own precursors. Like other adipose tissue depots, PVAT secretes numerous biologically active substances that can act in both autocrine and paracrine fashion. PVAT has also proven to be involved in vascular inflammation. Although PVAT can support inflammation during atherosclerosis via macrophage accumulation, emerging evidence suggests that PVAT also has antiatherosclerotic properties related to its abilities to induce nonshivering thermogenesis and metabolize fatty acids. We here discuss the accumulated knowledge of PVAT biology and related research on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Nicholas K Brown
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Zhou Zhou
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Jifeng Zhang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Rong Zeng
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Jiarui Wu
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Daniel T Eitzman
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Y Eugene Chen
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.).
| | - Lin Chang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.).
| |
Collapse
|
46
|
Park SY, Kim KH, Seo KW, Bae JU, Kim YH, Lee SJ, Lee WS, Kim CD. Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway. J Pathol 2014; 232:87-97. [PMID: 24089355 PMCID: PMC4285806 DOI: 10.1002/path.4286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023]
Abstract
Perivascular adipose tissue (PVAT) is implicated in the development of vascular diseases; however, the roles of PVAT on OPN expression in diabetic vasculature remain to be determined. This study investigated the role of adipokines derived from diabetic PVAT in regulating the vascular expression of OPN and explored the mechanisms involved. Aortic sections of ob/ob and high-fat diet (HFD)-induced obese (DIO) mice showed an increased expression of OPN, which was paralleled by increased amounts of PVAT characterized by enlargement of adipocytes. In the earlier phase of HFD feeding, macrophage infiltration was mainly localized to the area of PVAT at which adipocytes were enlarged, suggesting a potential link of activated adipocytes to macrophage infiltration. PVAT sections of ob/ob and DIO mice revealed a significantly greater number of macrophages with increased expression of adipokines, including resistin and visfatin. The distribution of resistin in PVAT mostly co-localized with macrophages, while visfatin was expressed in macrophages and other cells. In in vitro studies, OPN expression in vascular smooth muscle cells (VSMCs) co-cultured with PVAT of DIO mice was significantly increased, which was attenuated by a resistin-neutralizing antibody. Likewise, resistin up-regulated expression of OPN mRNA and protein in cultured VSMCs and the pivotal role of AP-1 in resistin-induced OPN transcription was demonstrated. Resistin produced by PVAT plays a pivotal role in the up-regulated expression of OPN in the diabetic vasculature via a signalling pathway that involves activation of AP-1. © 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- So Youn Park
- Medical Research Centre for Ischaemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun X, Hou N, Han F, Guo Y, Hui Z, Du G, Zhang Y. Effect of high free fatty acids on the anti-contractile response of perivascular adipose tissue in rat aorta. J Mol Cell Cardiol 2013; 63:169-174. [PMID: 23939490 DOI: 10.1016/j.yjmcc.2013.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
To determine whether high free fatty acids (FFA) could affect the anti-contractile properties of perivascular adipose tissue (PVAT) in rat aortas. Wistar rats were divided into normal, obesity and fenofibrate groups and fed a normal, high-fat, and high-fat plus fenofibrate diet, respectively. Thoracic aortas with or without PVAT (PVAT+ and PVAT-) were prepared with either intact endothelium (E+) or with endothelium removed (E-). Aortas pre-treated with either 500μmol/L of palmitic acid (PA) or physiological salt solution (PSS), as a control, were used for in vitro study. Concentration-dependent responses of aortas to norepinephrine were measured. The anti-contractile effects of PVAT were attenuated in both obese rats with high FFA levels and in the PA group in the presence of endothelium, but not in the absence of endothelium. The attenuation of the anti-contractile effect was restored by reducing FFA levels in the fenofibrate group (P<0.05). Incubation of aortas (PVAT+ E+) with nitric oxide (NO) synthase inhibitor and tumor necrosis factor-alpha (TNF-α) in the normal group caused attenuation of the anti-contractile effect of PVAT (P<0.05). Incubation of aortas (PVAT+ E+) in the obese and PA groups with a NO donor, anti-TNF-α antibodies or free radical scavengers partially restored the anti-contractile effect of PVAT (P<0.05). Under both acute and chronic conditions, high FFA levels could attenuate the anti-contractile properties of PVAT by an endothelium-dependent rather than an endothelium-independent mechanism, in which inflammation and oxidative stress may play important roles.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, Unruh D, Blomkalns AL, Piegore MG, Weintraub DS, Rudich SM, Kuhel DG, Hui DY, Weintraub NL. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics 2013; 45:697-709. [PMID: 23737535 DOI: 10.1152/physiolgenomics.00042.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells.
Collapse
Affiliation(s)
- Tapan K Chatterjee
- Department of Internal Medicine, University of Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 2013; 128:9-18. [PMID: 23685742 DOI: 10.1161/circulationaha.112.001238] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine. METHODS AND RESULTS Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04) but not subcutaneous adipose tissue augmented coronary contractions to KCl (20 mmol/L). Inhibition of CaV1.2 channels with nifedipine (0.1 µmol/L) or diltiazem (10 µmol/L) abolished this effect. Coronary PVAT increased baseline tension and potentiated constriction of isolated arteries to prostaglandin F2α in proportion to the amount of PVAT present (0.1-1.0 g). These effects were elevated in tissues obtained from obese swine and were observed in intact and endothelium denuded arteries. Coronary PVAT also diminished H2O2-mediated vasodilation in lean and, to a lesser extent, in obese arteries. These effects were associated with alterations in the obese coronary PVAT proteome (detected 186 alterations) and elevated voltage-dependent increases in intracellular [Ca(2+)] in obese smooth muscle cells. Further studies revealed that the Rho-kinase inhibitor fasudil (1 µmol/L) significantly blunted artery contractions to KCl and PVAT in lean but not obese swine. Calpastatin (10 μmol/L) also augmented contractions to levels similar to that observed in the presence of PVAT. CONCLUSIONS Vascular effects of PVAT vary according to anatomic location and are influenced by an obese phenotype. Augmented contractile effects of obese coronary PVAT are related to alterations in the PVAT proteome (eg, calpastatin), Rho-dependent signaling, and the functional contribution of K(+) and CaV1.2 channels to smooth muscle tone.
Collapse
Affiliation(s)
- Meredith Kohr Owen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bełtowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol 2013; 91:889-98. [PMID: 24117256 DOI: 10.1139/cjpp-2013-0001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is synthesized from L-cysteine by cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE), and is enzymatically metabolized in mitochondria by sulfide:quinone oxidoreductase (SQR). Recent studies have indicated that H2S is synthesized by CSE in perivascular adipose tissue (PVAT), and is responsible for the anticontractile effect of PVAT on adjacent vessels. The lipophilic statin atorvastatin increases PVAT-derived H2S by suppressing its mitochondrial oxidation; the effect that results from statin-induced depletion of ubiquinone. Experimental obesity induced by a highly palatable diet has a time-dependent effect on H2S in PVAT. Adipose tissue hypoxia suppresses H2S oxidation and increases its level in short-term obesity not associated with insulin resistance. In contrast, in long-term obesity, insulin resistance and (or) hyperinsulinemia result in the down-regulation of CSE and H2S deficiency, which is corrected by treatment with the insulin sensitizer rosiglitazone. In addition, cannabinoid CB1 receptor agonist administered for 2 weeks increases H2S by impairing mitochondria biogenesis. This indicates that the rate of mitochondrial H2S oxidation plays an important role in the regulation of H2S level in PVAT. Up-regulation of H2S signaling in short-term obesity and (or) by elevated endocannabinoids may be a compensatory mechanism that maintains vascular tone, despite endothelial dysfunction.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, ulica Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|