1
|
Ozalp Unal D, Sel T. Investigation of Antiproliferative Effects of Combinations of White and Black Garlic Extracts with 5-Fluorouracil (5-FU) on Caco-2 Colorectal Adenocarcinoma Cells. Mol Nutr Food Res 2024:e2300820. [PMID: 38600874 DOI: 10.1002/mnfr.202300820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Indexed: 04/12/2024]
Abstract
Garlic is rich in bioactive compounds that are effective against colon cancer cells. This study tests the antioxidant and antiproliferative effects of cold-extracted white and black garlic extracts. Black garlic extracted in water (SSU) exhibits the highest antioxidant activity, phenolic content, and flavonoid content, while black garlic extracted in ethanol (SET) shows the lowest values. Caspase-3 activity is notably higher in the white garlic extracted in methanol (BME), white garlic extracted in methanol combines with 5-FU, black garlic extracted in ethanol (SET), black garlic extracted in ethanol combines with 5-fluorouracil (5-FU), and 5-FU treatments compare to the control group (p > 0.05). BME+5-FU displays the highest caspase-8 activity (p < 0.05). A decrease in NF-κB levels is observed in the SET+5-FU group (p>0.05), while COX-2 activities decrease in the BME, SET+5-FU, SET, and 5-FU groups (p>0.05). Wound healing increases in the BME, BME+5-FU, SET+5-FU, and 5-FU groups (p < 0.05). In conclusion, aqueous black garlic extract may exhibit pro-oxidant activity despite its high antioxidant capacity. It is worth noting that exposure to heat-treated food and increased sugar content may lead to heightened inflammation and adverse health effects. This study is the first to combine garlic with chemo-preventive drugs like 5-FU in Caco-2 cells.
Collapse
Affiliation(s)
- Derya Ozalp Unal
- Republic of Turkey Ministry of Agriculture and Forestry, Field Crops Central Research Institute, Ankara, 06170, Turkey
| | - Tevhide Sel
- The Faculty of Veterinary, Department of Biochemistry, Ankara University, Ankara, 06110, Turkey
| |
Collapse
|
2
|
Talukdar A, Basumatary M. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy. Mol Biol Rep 2023; 50:7759-7782. [PMID: 37458869 DOI: 10.1007/s11033-023-08621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Diabetic nephropathy (DN), an outcome of prolonged diabetes, has affected millions of people worldwide and every year the incidence and prevalence increase substantially. The symptoms may start with mild manifestations of the disease such as increased albuminuria, serum creatinine levels, thickening of glomerular basement membrane, expansion of mesangial matrix to severe pathological symptoms such as glomerular lesions and tubulointerstitial fibrosis which may further proceed to cardiovascular dysfunction or end-stage renal disease. PERSPECTIVE Numerous therapeutic interventions are being explored for the management of DN, however, these interventions do not completely halt the progression of this disease and hence animal models are being explored to identify critical genetic and molecular parameters which could help in tackling the disease. Rodent models which mostly include mice and rats are commonly used experimental animals which provide a wide range of advantages in understanding the onset and progression of disease in humans and also their response to a wide range of interventions helps in the development of effective therapeutics. Rodent models of type 1 and type 2 diabetes induced DN have been developed utilizing different platforms and interventions during the last few decades some of which mimic various stages of diabetes ranging from early to later stages. However, a rodent model which replicates all the features of human DN is still lacking. This review tries to evaluate the rodent models that are currently available and understand their features and limitations which may help in further development of more robust models of human DN. CONCLUSION Using these rodent models can help to understand different aspects of human DN although further research is required to develop more robust models utilizing diverse genetic platforms which may, in turn, assist in developing effective interventions to target the disease at different levels.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| | - Mandira Basumatary
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
3
|
Ayala-Calvillo E, Rodríguez-Fragoso L, Álvarez-Ayala E, Leija-Salas A. EGF-receptor phosphorylation and downstream signaling are activated by genistein during subacute liver damage. J Mol Histol 2023:10.1007/s10735-023-10127-8. [PMID: 37227557 DOI: 10.1007/s10735-023-10127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role on hepatic protection in acute and chronic liver injury. The aim of this study was to investigate the role of genistein on EGFR expression, phosphorylation and signaling pathways in experimental subacute liver damage induced by carbon tetrachloride (CCl4). We used male Wistar rats that were randomly divided into four groups: (1) Control; (2) Genistein 5 mg/kg per oral; (3) Subacute liver damage induced by CCl4 4 mg/kg subcutaneously; and (4) Animals received CCl4 and genistein at the dosage indicated. The effect of genistein on EGFR expression, phosphorylation and signaling pathways were investigated by western blot and densitometric analyses. Histological changes were evaluated on slices stained with Hematoxylin-Eosin and Masson´s trichromic, as well as an immunohistochemical analysis for proliferating cell nuclear antigen (PCNA). Additionally, pro-inflammatory cytokines and liver enzymes were quantified. Our study showed that genistein increased EGFR expression, EGFR-specific tyrosine residues phosphorylation (pY1068-EGFR and pY84-EGFR), signal transducer and activator of transcription phosphorylation (pSTAT5), protein kinase B phosphorylation (pAKT) and PCNA in animals with CCl4-induced subacute liver damage. It was found a significant reduction of pro-inflammatory cytokines in serum from animals with subacute liver damage treated with genistein. Those effects were reflected in an improvement in the architecture and liver function. In conclusion, genistein can induce a transactivation of EGFR leading to downstream cell signaling pathways as early events associated with regeneration and hepatoprotection following subacute liver damage.
Collapse
Affiliation(s)
- Erick Ayala-Calvillo
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av Universidad, 1001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av Universidad, 1001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Elizabeth Álvarez-Ayala
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av Universidad, 1001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, CP62210 Col. Chamilpa, Morelos, Cuernavaca, Mexico.
| |
Collapse
|
4
|
Mehdizadeh S, Taherian M, Bayati P, Mousavizadeh K, Pashangzadeh S, Anisian A, Mojtabavi N. Plumbagin attenuates Bleomycin-induced lung fibrosis in mice. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:93. [PMID: 36271442 PMCID: PMC9585773 DOI: 10.1186/s13223-022-00734-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with limited treatment options. Plumbagin (PL) is an herbal extract with diverse pharmacological effects that have been recently used to treat various types of cancer. This study aims to explore the anti-fibrotic effect of PL and possible underlying mechanisms in IPF. Methods We used a bleomycin-induced experimental mouse model of lung fibrosis to assess the potential anti-fibrotic effect of PL. Histological analysis of lung tissue samples by H&E and Masson’s trichrome staining and hydroxyproline assay was performed to evaluate the fibrotic alterations. ELISA and real-time quantitative PCR were conducted to determine the amount of tumor necrosis factor-alpha (TNFα), tumor growth factor-beta (TGF-β), connective tissue growth factor (CTGF), and endothelin-1 (ET-1). Results Bleomycin exposure induced lung fibrosis, which was indicated by inflammation, collagen deposition, and structural damage. PL remarkably prevented bleomycin-induced lung fibrosis. Furthermore, PL significantly inhibited TNF-α and TGF-β production. PL also diminished the upregulated expression of CTGF and ET-1 induced by bleomycin. Conclusion Overall, our findings suggest PL as an anti-fibrotic agent acting via down-regulation of TGF-β/CTGF or ET-1 axis, as well as TNF-α, to improve lung fibrosis.
Collapse
Affiliation(s)
- Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, University of Medical Sciences, Tehran, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, University of Medical Sciences, Tehran, Iran
| | - Ali Anisian
- Department of Pathology, Islamic Azad University of Abhar, Abhar, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Immunology Research Center, Institute of Immunology and Infectious Diseases, University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
6
|
Ohta S, Asanoma M, Irie N, Tachibana N, Kohno M. Soy Phospholipids Exert a Renoprotective Effect by Inhibiting the Nuclear Factor Kappa B Pathway in Macrophages. Metabolites 2022; 12:metabo12040330. [PMID: 35448517 PMCID: PMC9031346 DOI: 10.3390/metabo12040330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
Complications associated with chronic kidney disease (CKD), which involves kidney inflammation, are a major health problem. Soy protein isolate (SPI) reportedly inhibits CKD exacerbation; however, its detailed action mechanism remains obscure. Therefore, the role of the polar lipid component of SPI in suppressing inflammation was investigated. Zucker fatty rats were divided into three groups and fed a diet containing casein, SPI, or casein + SPI ethanol extract (SPIEE) for 16 weeks. The isoflavones and phospholipids of SPIEE were evaluated for their anti-inflammatory effects. Rats in the SPI and casein + SPIEE groups showed reduced levels of the urinary N-acetyl-β-d-glucosaminidase and renal IL-1β mRNA (an inflammatory marker) compared with those in the casein group. In proximal tubular cells, genistein significantly inhibited monocyte chemoattractant protein-1 (MCP-1) expression induced by an IL-1β stimulus. In macrophages, soybean phospholipids suppressed lipopolysaccharide-induced IL-1β gene expression by inhibiting the phosphorylation of inhibitor κB and p65. Phosphatidylinositol (PI) was found to be essential for inhibition of IL-1β expression. SPIEE inhibited the exacerbation of kidney disease. Genistein and soybean phospholipids, especially soybean-specific phospholipids containing PI, effectively inhibited the inflammatory spiral in vitro. Hence, daily soybean intake may be effective for inhibiting chronic inflammation and slowing kidney disease progression.
Collapse
Affiliation(s)
- Satoshi Ohta
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., 4-3 Kinunodai, Tsukubamirai-shi 300-2497, Ibaraki, Japan; (N.I.); (N.T.)
- Correspondence: ; Tel.: +81-297-52-6325
| | - Masashi Asanoma
- Soy Ingredients R&D Department, Fuji Oil Co., Ltd., 1 Sumiyoshicho, Izumisano-shi 598-8540, Osaka, Japan;
| | - Nao Irie
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., 4-3 Kinunodai, Tsukubamirai-shi 300-2497, Ibaraki, Japan; (N.I.); (N.T.)
| | - Nobuhiko Tachibana
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., 4-3 Kinunodai, Tsukubamirai-shi 300-2497, Ibaraki, Japan; (N.I.); (N.T.)
| | - Mitsutaka Kohno
- R&D Division Strategy Planning Department, Fuji Oil Co., Ltd., 1 Sumiyoshicho, Izumisano-shi 598-8540, Osaka, Japan;
| |
Collapse
|
7
|
Soliman MM, Aldhahrani A, Elshazly SA, Shukry M, Abouzed TK. Borate Ameliorates Sodium Nitrite-Induced Oxidative Stress Through Regulation of Oxidant/Antioxidant Status: Involvement of the Nrf2/HO-1 and NF-κB Pathways. Biol Trace Elem Res 2022; 200:197-205. [PMID: 33559025 DOI: 10.1007/s12011-021-02613-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The widespread industrial use of nitrite in preservatives, colorants, and manufacturing rubber products and dyes increases the possibilities of organ toxicity. Lithium borate (LB) is known as an antioxidant and an oxidative stress reliever. Therefore, this study is aimed at examining the effect of LB on nitrite-induced hepatorenal dysfunction. Twenty-eight male Swiss mice were divided into four equal groups. Group 1, the control group, received saline. Group 2 received LB orally for 5 consecutive days at a dose of 15 mg/kg bw. Group 3, the nitrite group, received sodium nitrite (NaNO2) on Day 5 (60 mg/kg bw intraperitoneally). Group 4, the protective group (LB + NaNO2 group), received LB for 5 days and then a single dose of NaNO2 intraperitoneally on Day 5, the same as in Groups 2 and 3, respectively. Samples of blood and kidney were taken for serum analysis of hepatorenal biomarkers, levels of antioxidants and cytokines, and the expression of genes associated with oxidative stress and inflammation. NaNO2 intoxication increased markers of liver and kidney functions yet decreased reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activities in blood. NaNO2 also increased the expression of tumor necrosis factor (TNF-α), interleukin-1β and interleukin-6 (IL-1β and IL-6). Pre-administration of LB protected mice from oxidative stress, lipid peroxidation, and the decrease in antioxidant enzyme activity. Moreover, LB protected mice from cytokine changes, which remained within normal levels. LB ameliorated the changes induced by NaNO2 on the mRNA of nuclear factor erythroid 2-related factor 2 (Nfr2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), transforming growth factor-beta 2 (TGF-β2), and glutathione-S-transferase (GST) as determined using quantitative real-time PCR (qRT-PCR). These results collectively demonstrate that LB ameliorated NaNO2-induced oxidative stress by controlling the oxidative stress biomarkers and the oxidant/antioxidant state through the involvement of the Nrf2/HO-1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt.
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samir Ahmed Elshazly
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
8
|
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res 2021; 36:415-432. [PMID: 34825416 DOI: 10.1002/ptr.7329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Ample evidence highlights the potential benefits of polyphenols in health status especially in obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and cardiovascular diseases. Mechanistically, due to the key role of "Metainflammation" in the pathomechanism of metabolic disorders, recently much focus has been placed on the properties of polyphenols in obesity-related morbidities. This narrative review summarizes the current knowledge on the role of polyphenols, including genistein, chlorogenic acid, ellagic acid, caffeic acid, and silymarin in inflammatory responses pertinent to metabolic disorders and discusses the implications of this evidence for future directions. This review provides evidence that the aforementioned polyphenols benefit health status in metabolic disorders via direct and indirect regulation of a variety of target proteins involved in inflammatory signaling pathways. However, due to limitations of the in vitro and in vivo studies and also the lack of long-term human clinical trials studies, further high-quality investigations are required to firmly establish the clinical efficacy of the polyphenols for the prevention and management of metabolic disorders.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of immunology and infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Jahangard Ahvazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
10
|
Afsar B, Afsar RE, Demiray A, Covic A, Kanbay M. Deciphering nutritional interventions for podocyte structure and function. Pharmacol Res 2021; 172:105852. [PMID: 34450318 DOI: 10.1016/j.phrs.2021.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Despite increasing awareness and therapeutic options chronic kidney disease (CKD) is still and important health problem and glomerular diseases constitute and important percentage of CKD. Proteinuria/albuminuria is not just a marker; but it also plays a direct pathogenic role in renal disease progression of CKD. Glomerular filtration barrier (GFB) which consists of fenestrated endothelial cells, fused basal membrane and interdigitating podocyte foot process and filtration slits between foot process is the major barrier for proteinuria/albuminuria. Many glomerular diseases are characterized by disruption of GFB podocytes, foot process and slit diaphragm. Many proteinuric diseases are non-specifically targeted by therapeutic agents such as steroids and calcineurin inhibitors with systemic side effects. Thus, there is unmet need for more efficient and less toxic therapeutic options to treat glomerular diseases. In recent years, modification of dietary intake, has been gained to treat pathologic processes introducing the concept of 'food as a medicine'. The effect of various nutritional products on podocyte function and structure is also trending, especially in recent years. In the current review, we summarized the effect of nutritional interventions on podocyte function and structure.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Zhou C, Li D, Ding C, Yuan Q, Yu S, Du D, Huang W, Wang D. Involvement of SIRT1 in amelioration of schistosomiasis-induced hepatic fibrosis by genistein. Acta Trop 2021; 220:105961. [PMID: 34010594 DOI: 10.1016/j.actatropica.2021.105961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Previous study revealed that genistein alleviate the extent of hepatic fibrosis in schistosomiasis-infected mice, however, the potential mechanism is still incomplete. Present study was, therefore, carried out to investigate the underlying mechanism of ameliorating schistosomiasis-induced hepatic fibrosis by genistein. α-smooth muscle actin (α-SMA) expression, as a critical fibrotic marker, was markedly upregulated in Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis, and gradually inhibited by genistein administration in infected mice. Contrary to the changes of α-SMA expression, hepatic SIRT1 expression and activity was greatly inhibited in mice upon S. japonicum infection, and the repression was reversed in liver tissues after receiving 25 mg/kg genistein. 50 mg/kg genistein treatment gave rise to the higher SIRT1 expression and activity than that of the control group. In hepatic stellate cells (HSCs), genistein (5, 10, 20 μM) treatment resulted in the increases of SIRT1 expression and activity in concentration-dependent manner. Moreover, to mimic the fibrogenesis in vivo, macrophage was treated with soluble egg antigen (SEA) to obtain macrophage-conditioned medium (MφCM), which was used to stimulate HSCs. Intriguingly, SIRT1 overexpression decreased fibrosis associated gene expression in HSCs exposed to MφCM or not. Additionally, MφCM gave rise to high levels of α-SMA and p-Smad3 and the increments were reversed upon genistein treatment in HSCs. Furthermore, EX527, SIRT1 specific inhibitor, abrogated the inhibitory effects of genistein on HSCs activation. Together, the results support the notion that the strong elevation of SIRT1 expression and activity may represent a potential mechanism of protection against schistosomiasis-induced hepatic fibrosis by genistein.
Collapse
|
12
|
Yin J, Lu J, Lei P, He M, Huang S, Lv J, Zhu Y, Liu Z, Jiang M. Danggui-Shaoyao-San Improves Gut Microbia Dysbiosis and Hepatic Lipid Homeostasis in Fructose-Fed Rats. Front Pharmacol 2021; 12:671708. [PMID: 34326769 PMCID: PMC8313808 DOI: 10.3389/fphar.2021.671708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Metabolic syndrome (MetS) is a pathological state of many abnormal metabolic sections. These abnormalities are closely related to diabetes, heart pathologies and other vascular diseases. Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been used as a therapy for Alzheimer’s disease. DSS has rarely been reported in the application of MetS and its mechanism of how it improves gut microbia dysbiosis and hepatic lipid homeostasis. In this study, three extracts of DSS were obtained using water, 50% methanol in water and methanol as extracting solvents. Their chemical substances were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass (UPLC-Q/TOF-MS). Pharmacodynamic effect of the extracts were evaluated by comparison of biochemical factors, 16S rRNA sequencing test for gut microbiota analysis, as well as metabonomic and transcriptomic assessments on liver tissues from fructose-fed rats. This study aimed at investigating DSS’s mechanism of regulating blood lipid, anti-inflammation and reducing blood glucose. The results showed that the 50% methanol extract (HME) was more effective. It was worth noting that hydroxysteroid 17β-dehydrogenase 13 (HSD17β13) as a critical element of increasing blood lipid biomarker-triglyceride (TG), was decreased markedly by DSS. The influence from upgraded hydroxysteroid 17β-dehydrogenase 7 (HSD17β7) may be stronger than that from downgraded Lactobacillus in the aspect of regulating back blood lipid biomarker-total cholesterol (TC). The differential down-regulation of tumornecrosis factor alpha (TNF-α) and the significant up-regulation of Akkermansia showed the effective effect of anti-inflammation by DSS. The declining glycine and alanine induced the lowering glucose and lactate. It demonstrated that DSS slowed down the reaction of gluconeogenesis to reduce the blood glucose. The results demonstrated that DSS improved pathological symptoms of MetS and some special biochemical factors in three aspects by better regulating intestinal floras and improving hepatic gene expressions and metabolites.
Collapse
Affiliation(s)
- Jing Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxi Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lei
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingshuai He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengjie Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jialin Lv
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmacy, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
14
|
Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021; 13:10326-10353. [PMID: 33819919 PMCID: PMC8064181 DOI: 10.18632/aging.202794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.
Collapse
|
15
|
Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Ramudu SK, Kesireddy SR. Plant Compounds for the Treatment of Diabetes, a Metabolic Disorder: NF-κB as a Therapeutic Target. Curr Pharm Des 2020; 26:4955-4969. [DOI: 10.2174/1381612826666200730221035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Background:
The prevalence of diabetes in the world population hás reached 8.8 % and is expected to
rise to 10.4% by 2040. Hence, there is an urgent need for the discovery of drugs against therapeutic targets to
sojourn its prevalence. Previous studies proved that NF-κB serves as a central agent in the development of diabetic
complications.
Objectives:
This review intended to list the natural plant compounds that would act as inhibitors of NF-κB signalling
in different organs under the diabetic condition with their possible mechanism of action.
Methods:
Information on NF-κB, diabetes, natural products, and relation in between them, was gathered from
scientific literature databases such as Pubmed, Medline, Google scholar, Science Direct, Springer, Wiley online
library.
Results and Conclusion:
NF-κB plays a crucial role in the development of diabetic complications because of its
link in the expression of genes that are responsible for organs damage such as kidney, brain, eye, liver, heart,
muscle, endothelium, adipose tissue and pancreas by inflammation, apoptosis and oxidative stress. Activation of
PPAR-α, SIRT3/1, and FXR through many cascades by plant compounds such as terpenoids, iridoids, flavonoids,
alkaloids, phenols, tannins, carbohydrates, and phytocannabinoids recovers diabetic complications. These compounds
also exhibit the prevention of NF-κB translocation into the nucleus by inhibiting NF-κB activators, such
as VEGFR, RAGE and TLR4 receptors, which in turn, prevent the activation of many genes involved in tissue
damage. Current knowledge on the treatment of diabetes by targeting NF-κB is limited, so future studies would
enlighten accordingly.
Collapse
Affiliation(s)
- Ravi Sahukari
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Jyothi Punabaka
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Shanmugam Bhasha
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Venkata S. Ganjikunta
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Shanmugam K. Ramudu
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Sathyavelu R. Kesireddy
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
16
|
Grunz-Borgmann EA, Nichols LA, Spagnoli S, Trzeciakowski JP, Valliyodan B, Hou J, Li J, Cheng J, Kerley M, Fritsche K, Parrish AR. The renoprotective effects of soy protein in the aging rat kidney. MEDICAL RESEARCH ARCHIVES 2020; 8:10.18103/mra.v8i3.2065. [PMID: 34222651 PMCID: PMC8247450 DOI: 10.18103/mra.v8i3.2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is a risk factor for chronic kidney disease (CKD) and is itself associated with alterations in renal structure and function. There are no specific interventions to attenuate age-dependent renal dysfunction and the mechanism(s) responsible for these deficits have not been fully elucidated. In this study, male Fischer 344 rats, which develop age-dependent nephropathy, were feed a casein- or soy protein diet beginning at 16 mon (late life intervention) and renal structure and function was assessed at 20 mon. The soy diet did not significantly affect body weight, but was renoprotective as assessed by decreased proteinuria, increased glomerular filtration rate (GFR) and decreased urinary kidney injury molecule-1 (Kim-1). Renal fibrosis, as assessed by hydroxyproline content, was decreased by the soy diet, as were several indicators of inflammation. RNA sequencing identified several candidates for the renoprotective effects of soy, including decreased expression of Twist2, a basic helix-loop-helix transcription factor that network analysis suggest may regulate the expression of several genes associated with renal dysfunction. Twist2 expression is upregulated in the aging kidney and the unilateral ureteral obstruction of fibrosis; the expression is limited to distal tubules of mice. Taken together, these data demonstrate the renoprotective potential of soy protein, putatively by reducing inflammation and fibrosis, and identify Twist2 as a novel mediator of renal dysfunction that is targeted by soy.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77807
| | - Babu Valliyodan
- Division of Plant Sciences, College of Agriculture, Food and Natural Resource, University of Missouri, Columbia, MO 65211
| | - Jie Hou
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | | | - Jianlin Cheng
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | - Monty Kerley
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 6521
| | - Kevin Fritsche
- Department of Nutrition and Exercise Physiology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Inhibition of tumor necrosis factor-α enhanced the antifibrotic effect of empagliflozin in an animal model with renal insulin resistance. Mol Cell Biochem 2020; 466:45-54. [PMID: 31933108 DOI: 10.1007/s11010-020-03686-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/04/2020] [Indexed: 01/25/2023]
Abstract
Insulin resistance (IR) has emerged as one of the main risk factors for renal fibrosis (RF) that represents a common stage in almost all chronic kidney disease. The present study aims to investigate the inhibitory effect of empagliflozin (EMPA "a sodium-glucose co-transporter 2 inhibitor") and infliximab [IFX "a tumor necrosis factor-α (TNF-α) antibody"] on RF in rats with induced IR. IR was induced by adding 10% fructose in drinking water for 20 weeks. Thereafter, fructose-induced IR rats were concurrently treated with EMPA (30 mg/kg), IFX (1 dose 5 mg/kg), or EMPA + IFX for 4 weeks, in addition to IR control group (received 10% fructose in water) and normal control (NC) group. Rats with IR displayed hyperglycemia, deterioration in kidney functions, glomerulosclerosis, and collagen fiber deposition in renal tissues as compared to NC. This was associated with downregulation of the renal sirtuin 1 (Sirt 1) expression along with higher renal tissue TNF-α and transforming growth factor-β1 (TGF-β1) levels. Both EMPA and IFX significantly modulated the aforementioned fibrotic cytokines, upregulated the renal Sirt 1 expression, and attenuated RF compared to IR control group. Of note, IFX effect was superior to that of EMPA. However, the combination of EMPA and IFX alleviated RF to a greater extent surpassing the monotherapy. This may be attributed to the further upregulation of renal Sirt 1 in addition to the downregulation of fibrotic cytokines. These findings suggest that the combination of EMPA and IFX offers additional benefits and may represent a promising therapeutic option for RF.
Collapse
|
18
|
Braxas H, Rafraf M, Karimi Hasanabad S, Asghari Jafarabadi M. Effectiveness of Genistein Supplementation on Metabolic Factors and Antioxidant Status in Postmenopausal Women With Type 2 Diabetes Mellitus. Can J Diabetes 2019; 43:490-497. [PMID: 31307913 DOI: 10.1016/j.jcjd.2019.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/14/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The risk of type 2 diabetes mellitus (T2DM) increases in women after menopause. Genistein is known to modulate metabolic pathways. The aim of this study was to investigate the effects of genistein supplementation on metabolic parameters, oxidative stress and obesity values in postmenopausal women with T2DM. METHODS This randomized, double-blind, placebo-controlled clinical trial was conducted on 54 postmenopausal women 47 to 69 years of age with T2DM. The genistein group (n=28) was given 2 genistein capsules daily for 12 weeks. Each capsule contained 54 mg genistein. The placebo group (n=26) received 2 placebo capsules daily for the same period. Fasting blood samples, anthropometric measurements, dietary intakes and physical activity levels of subjects were collected at baseline and at the end of the trial. Data were analyzed by independent t test, paired t test and analysis of covariance. RESULTS Genistein supplementation significantly reduced serum levels of fasting blood glucose (FBS), glycated hemoglobin (A1C), serum triglyceride (TG) and malondialdehyde (MDA) and increased total antioxidant capacity (TAC) compared with the placebo group at the end of the study (p<0.05 for all). Serum high-density lipoprotein cholesterol and quantitative insulin sensitivity check index significantly increased within the genistein group. Changes in anthropometric indexes and other variables were not significant in any of the groups. CONCLUSIONS Genistein administration improved FBS, A1C, serum TG, TAC and MDA in postmenopausal women with T2DM and may be useful in the control of metabolic status and oxidative stress in these subjects.
Collapse
Affiliation(s)
- Hassan Braxas
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saadat Karimi Hasanabad
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin‑induced diabetic rats. Mol Med Rep 2018; 19:423-431. [PMID: 30431100 PMCID: PMC6297769 DOI: 10.3892/mmr.2018.9635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the antifibrogenic effects of genistein (GEN) on the kidney in streptozotocin (STZ)-induced diabetic rats and to determine the associated mechanisms. Rats were randomized into four groups: Normal control (N), STZ (S), L (STZ + low-dose GEN) and H (STZ + high-dose GEN). After 8 weeks, the fasting blood glucose (FBG) level, the ratio of kidney weight to body weight (renal index), 24-h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), renal total antioxidant capacity (T-AOC), superoxide dismutase (SOD), lipid peroxidation (LPO), malondialdehyde (MDA) and hydroxyproline (Hyp) contents were measured. The histomorphology and ultrastructure of the kidney were also assessed. In addition, mRNA expression levels of transforming growth factor-β1 (TGF-β1) and protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), TGF-β1, mothers against decapentaplegic homolog 3 (Smad3), phosphorylated (p)-Smad3 and collagen IV were estimated. Compared with group N, the levels of FBG, renal index, 24-h urine protein, BUN, SCr, LPO, MDA and Hyp were increased, whereas the levels of T-AOC and SOD were decreased in group S. The structure of renal tissue was damaged, and the expression of Nrf2, HO-1 and NQO1 were reduced, whereas the expression of TGF-β1, Smad3, p-Smad3 and collagen IV were increased in group S. Compared with group S, the aforementioned indices were improved in groups L and H. In conclusion, GEN exhibited reno-protective effects in diabetic rats and its mechanisms may be associated with the inhibition of oxidative stress by activating the Nrf2-HO-1/NQO1 pathway, and the alleviation of renal fibrosis by suppressing the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Rui Yang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Fen Liu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shan-Feng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lei Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
20
|
Wang Y, Li Y, Zhang T, Chi Y, Liu M, Liu Y. Genistein and Myd88 Activate Autophagy in High Glucose-Induced Renal Podocytes In Vitro. Med Sci Monit 2018; 24:4823-4831. [PMID: 29999001 PMCID: PMC6069420 DOI: 10.12659/msm.910868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal podocyte damage plays a crucial role in the development of diabetic nephropathy. Genistein is derived from a leguminous plant, and MyD88 and TRIF are adaptor molecules in the Toll-like receptor (TLR) signaling pathway, which may play a role in autophagy. In this study, we utilized an in vitro high glucose (HG)-treated podocyte model to investigate the effects and underlying mechanisms of Genistein and MyD88 or TRIF siRNA induced autophagy and renal protection. MATERIAL AND METHODS An immortalized mouse podocyte cell line was treated with HG, Genistein, chloroquine, and/or transfected with specific Myd88 and TRIF siRNAs. The formation of autophagosomes and related autophagic vacuoles were monitored by transmission electron microscopy. The expression of autophagy-related factors and podocyte structure and functional markers, including LC3, p62, p-mTOR, synaptopodin, and nephrin, were measured by Western blot, and LC3 and p-mTOR expression were also assessed by immunofluorescence. RESULTS We showed that HG transiently (after 6-h exposure) induced expression of the autophagy activation marker LC3-II in podocytes. Genistein treatment induced autophagy in both normal and HG-treated podocytes through inactivating mTOR signaling. Moreover, Genistein protected podocytes against chloroquine in HG-cultured conditions in vitro by maintaining the level of autophagy-related proteins. In addition, MyD88 siRNA downregulated expression of autophagy-related proteins, whereas Genistein treatment reversed these effects. CONCLUSIONS This study demonstrated that Genistein-induced autophagy could be a potential treatment strategy for glomerular diseases.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Tao Zhang
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Yanqing Chi
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Maodong Liu
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ying Liu
- Department of Science and Education, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China (mainland)
| |
Collapse
|
21
|
The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats. Food Chem Toxicol 2018; 118:526-531. [PMID: 29860019 DOI: 10.1016/j.fct.2018.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
Abstract
In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet.
Collapse
|
22
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
23
|
Genistein improves inflammatory response and colonic function through NF-κB signal in DSS-induced colonic injury. Oncotarget 2017; 8:61385-61392. [PMID: 28977871 PMCID: PMC5617431 DOI: 10.18632/oncotarget.18219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate the protective potential of genistein in dextran sulfate sodium (DSS)-induced colonic injury in vitro and in vivo models. The results showed that DSS exposure caused growth suppression, colonic injury, inflammation, and barrier dysfunction in mice. Dietary genistein alleviated DSS-caused colonic injury via reducing colonic weight, rectal bleeding, and diarrhea ratio. Meanwhile, genistein reduced colonic inflammatory response via downregulating cytokines expression and improved colonic permeability and barrier in DSS-challenged mice. In Caco-2 cells, genistein improved cell viability and cellular permeability and inhibited DSS-induced activation of TLR4/NF-κB signal. In conclusion, genistein alleviated DSS-caused colonic injury, inflammation, and gut dysfunction, which might be associated with the TLR4/NF-κB signal.
Collapse
|
24
|
Wan C, Jin F, Du Y, Yang K, Yao L, Mei Z, Huang W. Genistein improves schistosomiasis liver granuloma and fibrosis via dampening NF-kB signaling in mice. Parasitol Res 2017; 116:1165-1174. [PMID: 28160073 DOI: 10.1007/s00436-017-5392-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
In schistosomiasis, egg deposition in the liver contributes to the formation of hepatic granuloma and fibrosis, which are the most serious clinical pathological features. It has been proposed that activation of the nuclear factor kappa B (NF-κB) signaling pathways is closely associated with the development of hepatic granuloma and fibrosis. Genistein has been shown to inhibit the activity of NF-κB signaling pathways, which might be a potential agent to protect against Schistosoma japonicum egg-induced liver granuloma and fibrosis. In this study, liver granuloma and fibrosis were induced by infecting BALB/c mice with 18 ± 3 cercariae of S. japonicum. At the beginning of egg granuloma formation (early phase genistein treatment from 4 to 6 weeks after infection) or after the formation of liver fibrosis (late phase genistein treatment from 6 to 10 weeks after infection), the infected mice were injected with genistein (25, 50 mg/kg). The results revealed that genistein treatment significantly decreased the extent of hepatic granuloma and fibrosis in infected mice. The activity of NF-κB signaling declined sharply after the treatment with genistein, as evidenced by the inhibition of NF-κB-p65, phospho-NF-κB-p65, and phospo-IκB-α expressions, as well as the expression of IκB-α and the messenger RNA (mRNA) expression of inflammatory cytokines (MCP1, TNFα, IL1β, IL4, IL10) mediated by NF-κB signaling pathways in the early phase of the infection. Moreover, western blot and immunohistochemistry assays demonstrated that the contents of α-smooth muscle actin (α-SMA) and transforming growth factor-β were dramatically reduced in liver tissue under the treatment of genistein in the late phase of the infection. At the same time, the mRNA expression of MCP1, TNFα, and IL10 was inhibited markedly. These results provided evidence that genistein reduces S. japonicum egg-induced liver granuloma and fibrosis, at least partly due to decreased NF-κB signaling, and subsequently decreased MCP1, TNFα, and IL10 expressions. This implies that genistein can be a potential natural agent against schistosomiasis.
Collapse
Affiliation(s)
- Chunpeng Wan
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Fen Jin
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Youqin Du
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Kang Yang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Liangliang Yao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhigang Mei
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Weifeng Huang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
25
|
Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017; 9:E335. [PMID: 28353649 PMCID: PMC5409674 DOI: 10.3390/nu9040335] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Gugliucci A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr 2017; 8:54-62. [PMID: 28096127 PMCID: PMC5227984 DOI: 10.3945/an.116.013912] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation, and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University California, Vallejo, CA
| |
Collapse
|
27
|
Koca SS, Dağlı AF, Yolbaş S, Gözel N, Işık A. Genistein protects dermal fibrosis in bleomycin-induced experimental scleroderma. Eur J Rheumatol 2016; 2:99-102. [PMID: 27708939 DOI: 10.5152/eurjrheum.2015.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Genistein, a phytoestrogen, has anti-oxidant, anti-inflammatory, and anti-angiogenic properties. The aim of the present study is to evaluate the protective effect of genistein in bleomycin (BLM)-induced dermal fibrosis. MATERIAL AND METHODS This study involved four groups of Balb/c mice (n=10 per group). Mice in three groups were administered BLM [100 μg/day in 100 μL phosphate-buffered saline (PBS)] subcutaneously for 4 weeks; the remaining (control) group received only 100 μL/day of PBS subcutaneously. PBS or BLM was injected into the shaved upper back. Two of the BLM-treated groups also received genistein (1 or 3 mg/kg/day, subcutaneously, to the dorsal front of neck). At the end of the fourth week, all mice were sacrificed and blood and tissue samples were obtained. RESULTS The BLM applications increased the dermal thicknesses, tissue hydroxyproline contents, α-smooth muscle actin-positive cell counts, and led to histopathologically prominent dermal fibrosis. The genistein treatments decreased the tissue hydroxyproline contents and dermal thicknesses, in the BLM-injected mice. CONCLUSION Genistein has antifibrotic potential in BLM-induced dermal fibrosis model. However, its therapeutic potentials on human scleroderma require evaluation in future studies.
Collapse
Affiliation(s)
- Süleyman Serdar Koca
- Department of Rheumatology, Fırat University Faculty of Medicine, Elazığ, Turkey
| | - Adile Ferda Dağlı
- Department of Pathology, Fırat University Faculty of Medicine, Elazığ, Turkey
| | - Servet Yolbaş
- Department of Pathology, Fırat University Faculty of Medicine, Elazığ, Turkey
| | - Nevzat Gözel
- Department of Internal Medicine, Fırat University Faculty of Medicine, Elazığ, Turkey
| | - Ahmet Işık
- Department of Rheumatology, Fırat University Faculty of Medicine, Elazığ, Turkey
| |
Collapse
|
28
|
Incir S, Bolayirli IM, Inan O, Aydın MS, Bilgin IA, Sayan I, Esrefoglu M, Seven A. The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sci 2016; 158:57-62. [PMID: 27350161 DOI: 10.1016/j.lfs.2016.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 02/02/2023]
Abstract
AIMS This experimental study was designed to investigate the effects of 10weeks genistein administration on oxidative stress and inflammation in serum and liver of rats fed with fructose. MAIN METHODS 6-8weeks old, 40 male Sprague-Dawley rats were included. Group 1 (control) was fed with standard chow food and 100μl/kg/day/rat dimethyl sulfoxide (DMSO) administered subcutaneously; group 2 (genistein) with standard chow food and 0.25mg/kg/day/rat genistein; group 3 (fructose) with standard chow food and drinking water 20% fructose, group 4 (fructose+genistein) with standard chow food, drinking water with 20% fructose and 0.25mg/kg/day/rat genistein. TNF-α, IL-6, visfatin as inflammatory markers and 8-isoprostane as a oxidative stress marker were measured by ELISA, glucose, triglyceride, total cholesterol, LDL-cholesterol and HDL-cholesterol by enzymatic colorimetric method, AST and ALT by kinetic UV method. KEY FINDINGS Significantly high 8-isoprostane levels in serum (p<0.001) and liver (p<0.05) in group 3 compared to control group indicate that presence of oxidative stress. Significantly high TNF-α and IL-6 levels in serum (p<0.05) and liver (p<0.01) and visfatin levels in serum (p<0.001) of group 3 indicate inflammation accompanying insulin resistance and oxidative stress. Genistein administration to fructose group causes a significant decrease in HOMA-IR (p<0.001) and LDLC (p<0.05) level. Significantly lower serum 8-isoprostane (p<0.01) level indicates the antioxidant effect of genistein and significantly lower liver TNF-α (p<0.01), serum, liver IL-6(p<0.01) and serum visfatin (p<0.01) levels reflect the antiinflammatory effects of genistein. SIGNIFICANCE Genistein administration to rats fed with fructose causes an ameliorating effect on HOMA-IR values and lipid status markers in addition to its antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- Said Incir
- Koc University Hospital, Clinical Laboratory, Istanbul, Turkey
| | - I Murat Bolayirli
- Cerrahpasa Medical Faculty, Department of Biochemistry, Istanbul, Turkey.
| | - Oznur Inan
- Experimental Animal Research Center, Mehmet Akif State Hospital, Halkalı, Istanbul, Turkey
| | - M Serif Aydın
- Medical Faculty of Bezmialem Vakif University, Department of Histology and Embryology, Istanbul, Turkey
| | - I Ahmet Bilgin
- Maslak Acibadem Hospital, Department of General Surgery, Istanbul, Turkey
| | - Ismet Sayan
- Marmara University, School of Medicine, Intensive Care Unit, Turkey
| | - Mukaddes Esrefoglu
- Medical Faculty of Bezmialem Vakif University, Department of Histology and Embryology, Istanbul, Turkey
| | - Arzu Seven
- Cerrahpasa Medical Faculty, Department of Biochemistry, Istanbul, Turkey
| |
Collapse
|
29
|
|
30
|
McGraw NJ, Krul ES, Grunz-Borgmann E, Parrish AR. Soy-based renoprotection. World J Nephrol 2016; 5:233-257. [PMID: 27152261 PMCID: PMC4848148 DOI: 10.5527/wjn.v5.i3.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soy’s beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function.
Collapse
|
31
|
Jeong YY, Ryu JH, Shin JH, Kang MJ, Kang JR, Han J, Kang D. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts. Molecules 2016; 21:430. [PMID: 27043510 PMCID: PMC6274159 DOI: 10.3390/molecules21040430] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS.
Collapse
Affiliation(s)
- Yi Yeong Jeong
- Departments of Allergy and Respiratory Medicine, Gyeongsang National University and Gyeongsang National University Hospital, Jinju 660-751, Korea.
| | - Ji Hyeon Ryu
- Departments of Physiology, College of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Jung-Hye Shin
- Department of Research and Development, Namhae Garlic Research Institute, Namhae 668-812, Korea.
| | - Min Jung Kang
- Department of Research and Development, Namhae Garlic Research Institute, Namhae 668-812, Korea.
| | - Jae Ran Kang
- Department of Research and Development, Namhae Garlic Research Institute, Namhae 668-812, Korea.
| | - Jaehee Han
- Departments of Physiology, College of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Korea.
| | - Dawon Kang
- Departments of Physiology, College of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Korea.
| |
Collapse
|
32
|
The effect of high dietary fructose on the kidney of adult albino rats and the role of curcumin supplementation: A biochemical and histological study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
33
|
O’Brown ZK, Van Nostrand EL, Higgins JP, Kim SK. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet 2015; 11:e1005734. [PMID: 26678048 PMCID: PMC4682820 DOI: 10.1371/journal.pgen.1005734] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. The structure and function of human kidneys deteriorate steadily with age, yet little is known about the underlying causes of kidney aging. In this work, we first used a genomics approach to identify candidate regulators of gene expression changes in the aging human kidney and identified inflammation-related transcription factors NFκB, STAT1 and STAT3 as the top candidate regulators. We found that kidney aging is associated with activation of NFκB, STAT1 and STAT3 in the renal parenchyma, and that the gene expression signatures evoked by activation of these transcription factors in human renal epithelial cells mimics age-associated gene expression changes in the kidney. Furthermore, we identified specific genetic variants in the NFκB transcription factor genes RELA and NFKB1 that associate with renal function and chronic kidney disease in humans, implicating NFκB as a potential contributor to the pathogenesis of chronic kidney disease and renal dysfunction in old age. Our findings suggest that activation of the inflammatory transcription factors STAT1, STAT3 and NFκB underlie transcriptional changes and reduced renal function in the elderly.
Collapse
Affiliation(s)
- Zach K. O’Brown
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Cancer Biology Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - John P. Higgins
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
34
|
Ding XQ, Gu TT, Wang W, Song L, Chen TY, Xue QC, Zhou F, Li JM, Kong LD. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res 2015; 59:2355-70. [DOI: 10.1002/mnfr.201500370] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Ting-Ting Gu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Qiao-Chu Xue
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| |
Collapse
|
35
|
Ma CH, Kang LL, Ren HM, Zhang DM, Kong LD. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:108-117. [PMID: 26117533 DOI: 10.1016/j.jep.2015.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/09/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao pill is one of the most frequently prescriptions in traditional Chinese medicine to treat hyperuricemia and gout. This study was to investigate the protective effects of Simiao pill on renal glomerular injury in a rat model of high fructose intake. MATERIALS AND METHODS Sprague-Dawley male rats were given 10% fructose in drinking water and standard laboratory chow for 4 weeks to induce hyperuricemia and metabolic syndrome. Then fructose-fed animals were randomly divided into four groups receiving water, Simiao pill (78.87 and 157.74 mg/kg) and allopurinol (5mg/kg) daily for next 6 weeks, respectively. Serum levels of uric acid, creatinine, triglyceride, total cholesterol, low density lipoprotein, blood urea nitrogen, insulin, as well as urinary albumin were measured. Oral glucose tolerance test (OGTT) was carried out. Kidney pathological changes were detected using periodic-acid schiff-stained (PAS) staining and transmission electron microscopy (TEM) analysis. Glomerular protein levels of nephrin, podocin, CD2-associated protein (CD2AP), interleukin (IL)-1β, sirtuin 1 (Sirt1), nuclear factor kappaB (NF-κB) and pyrin domain containing 3 (NLRP3) inflammasome were measured by Western blot. RESULTS Simiao pill effectively restored high fructose-induced hyperuricemia and metabolic syndrome in rats. Simiao pill significantly increased protein levels of nephrin, podocin and CD2AP in renal glomeruli, improved renal inflammatory cell infiltration into interstitium and glomerular injury in high fructose-fed rats with reduction of urine albumin levels. Furthermore, Simiao pill up-regulated Sirt1 protein levels and suppressed NF-κB/NLRP3 inflammasome activation to reduce IL-1β in renal glomeruli of high fructose-fed rats. CONCLUSIONS The renal protective effects of Simiao pill may be associated with up-regulation of Sirt1 expression and suppression of NF-κB/NLRP3 inflammasome activation to reduce renal glomerular injury in high fructose-fed rats with metabolic syndrome.
Collapse
Affiliation(s)
- Chun-Hua Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hong-Mei Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
36
|
Yang Y, Zhang DM, Liu JH, Hu LS, Xue QC, Ding XQ, Kong LD. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:49-59. [PMID: 25914040 DOI: 10.1016/j.jep.2015.04.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuling San, a famous prescription in Chinese medicine, is composed of Polyporus, Poria, Alismatis rhizoma, Cinnamomi cortex and Atractylodis macrocephalae rhizoma, and promotes kidney function and diuresis. The main purpose of this study was to investigate its renal protective effect in high fructose-induced hyperuricemic mice. MATERIALS AND METHODS ICR mice were fed with 30% fructose in drinking water for 6 weeks to induce hyperuricemia and renal dysfunction. Then mice were orally administrated for other 6 weeks with Wuling San (987, 1316, 1755 and 2340mg/kg), allopurinol (5mg/kg) and water daily, respectively. Serum and urine levels of uric acid, creatinine and blood urea nitrogen (BUN) were measured. Hematoxylin and eosin staining was used to assess renal histological changes. Renal interleukin (IL)-1β concentrations were measured using ELISA kit. Renal protein levels of organic ion transporters, as well as toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling and pyrin domain containing 3 (NLRP3) inflammasome were determined by Western blot assay. RESULTS Wuling San significantly decreased serum uric acid, creatinine and BUN levels, increased fractional excretion of uric acid (FEUA) in fructose-fed mice. It restored fructose-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2) and organic anion transporter 1 (OAT1), as well as organic cation transporter 1 (OCT1) and OCT2 in mice. Wuling San obviously alleviated infiltration of inflammation cells in kidney glomerulus of fructose-fed mice. Moreover, Wuling San suppressed the activation of TLR4/ MyD88 signaling to inhibit nuclear factor κB (NF-κB) signaling and mitogen-activated protein kinases (MAPKs) activation in fructose-fed mice. Additionally, Wuling San decreased NLRP3 inflammasome activation and IL-1β secretion in the kidney of fructose-fed mice. CONCLUSION Wuling San exerts renal protective effect by modulating renal organic ion transporters in fructose-induced hyperuricemic mice. The molecular mechanism of its action may be associated with the suppression of TLR4/MyD88 signaling and NLRP3 inflammasome activation to reduce IL-1β production in high fructose-induced hyperuricemic mice.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China
| | - Jia-Hui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China
| | - Lin-Shui Hu
- Zhejiang Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Zhejiang CONBA Pharmaceutical Co., LTD, Lanxi 321109, People׳s Republic of China
| | - Qiao-Chu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China
| | - Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, People׳s Republic of China.
| |
Collapse
|
37
|
ZHANG HONGXIA, MAO XING, SUN YU, HU RUIMIN, LUO WEILI, ZHAO ZHONGHUA, CHEN QI, ZHANG ZHIGANG. NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Mol Med Rep 2015; 12:2893-901. [DOI: 10.3892/mmr.2015.3780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
38
|
Malardé L, Groussard C, Lefeuvre-Orfila L, Vincent S, Efstathiou T, Gratas-Delamarche A. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats. J Med Food 2015; 18:67-75. [PMID: 25314273 DOI: 10.1089/jmf.2013.0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Ludivine Malardé
- 1 Laboratory M2S, Université Rennes 2-ENS Cachan , Rennes, France
| | | | | | | | | | | |
Collapse
|
39
|
Li JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, Kong LD. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Mol Nutr Food Res 2014; 59:189-202. [PMID: 25303559 DOI: 10.1002/mnfr.201400307] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Yu Fan
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| |
Collapse
|
40
|
Kim DH, Jung WS, Kim ME, Lee HW, Youn HY, Seon JK, Lee HN, Lee JS. Genistein inhibits pro‑inflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int J Mol Med 2014; 34:1669-74. [PMID: 25319548 DOI: 10.3892/ijmm.2014.1956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/22/2014] [Indexed: 11/06/2022] Open
Abstract
Anaphylaxis is a rapidly occurring allergic reaction to any foreign substance, including venom from insects, foods and medications, which may cause fatalities. To prevent anaphylaxis, these triggers must be avoided. However, avoidance of numerous triggers is difficult. For this reason, the development of immunotherapeutic adjuvants that suppress the allergic response is important for anaphylaxis control. Mast cells are one of the major inflammatory cells involved in the inflammatory response, which secrete several inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, and recruits other immune cells. Mast cells are also involved in a number of diseases, such as sinusitis, rheumatoid arthritis and asthma. Genistein, a phytoestrogen, has been reported to have anti-oxidative and anti-inflammatory activities. However, the effects of genistein on the anti-inflammatory response of mast cells remain unknown. In the present study, the anti-inflammatory effects of genistein on mast cells were investigated. Genistein significantly decreased IL-6 and IL-1β mRNA levels, as well as IL-6 production in PMA/A23187-induced mast cells activation. In addition, genistein inhibited the phosphorylation of ERK 1/2 in PMA/A23187-induced mast cell activation. However, phosphorylation of p38 was not altered. Thus, these findings indicate that genistein inhibited the inflammatory status of mast cells through inhibition of the ERK pathway.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Biology, Immunology Research Lab, BK21‑plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501‑759, Republic of Korea
| | - Woo-Sung Jung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Mi Eun Kim
- Department of Biology, Immunology Research Lab, BK21‑plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501‑759, Republic of Korea
| | - Hee-Woo Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Jong Keun Seon
- Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do 519‑809, Republic of Korea
| | - Haeng-Nam Lee
- Department of Mechanical Engineering, College of Engineering, Chosun University, Gwangju 501‑759, Republic of Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab, BK21‑plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 501‑759, Republic of Korea
| |
Collapse
|
41
|
Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem 2014; 25:353-62. [DOI: 10.1016/j.jnutbio.2013.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023]
|
42
|
Zhao X, Yuan L, Yu H, Xi Y, Ma W, Zhou X, Ding J, Xiao R. Genistein Inhibited Amyloid-β induced Inflammatory Damage in C6 Glial Cells. Arch Med Res 2014; 45:152-7. [DOI: 10.1016/j.arcmed.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
|
43
|
Bagheri M, Rezakhani A, Nyström S, Turkina MV, Roghani M, Hammarström P, Mohseni S. Amyloid beta(1-40)-induced astrogliosis and the effect of genistein treatment in rat: a three-dimensional confocal morphometric and proteomic study. PLoS One 2013; 8:e76526. [PMID: 24130779 PMCID: PMC3793933 DOI: 10.1371/journal.pone.0076526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are highly involved in regulation and homeostasis of the extracellular environment in the healthy brain. In pathological conditions, these cells play a major role in the inflammatory response seen in CNS tissues, which is called reactive astrogliosis and includes hypertrophy and proliferation of astrocytes. Here, we performed 3D confocal microscopy to evaluate the morphological response of reactive astrocytes positive for glial fibrillary acidic protein (GFAP) in rats, to the presence of Aβ(1-40) in the rat brain before and after treatment with genistein. In 50 astrocytes per animal, we measured the volume and surface area for the nucleus, cell body, the entire cell, the tissue covered by single astrocytes and quantified the number and length of branches, the density of the astrocytes and the intensity of GFAP immunoreactivity. Injecting Aβ(1-40) into the brain of rats caused astrogliosis indicated by increased values for all measured parameters. Mass spectrometric analysis of hippocampal tissue in Aβ(1-40)-injected brain showed decreased amounts of tubulins, enolases and myelin basic protein, and increased amounts of dihydropyrimidinase-related protein 2. In Aβ(1-40)-injected rats pretreated with genistein, GFAP intensity was decreased to the sham-operated group level, and Aβ(1-40)-induced astrogliosis was significantly ameliorated.
Collapse
Affiliation(s)
- Maryam Bagheri
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Arjang Rezakhani
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Maria V. Turkina
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mehrdad Roghani
- Department of Physiology, Neurophysiology Research Group, Shahed University, Tehran, Iran
| | - Per Hammarström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Simin Mohseni
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB. Multimechanistic antifibrotic effect of biochanin a in rats: implications of proinflammatory and profibrogenic mediators. PLoS One 2013; 8:e69276. [PMID: 23874933 PMCID: PMC3712926 DOI: 10.1371/journal.pone.0069276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Biochanin A (BCA) is an isoflavone found in red clover and peanuts. Recently, it drew much attention as a promising anticancer and antioxidant. Due to its diversity in pharmacological actions, we were encouraged to investigate its potential as an antifibrotic, elucidating the different molecular mechanisms involved. DESIGN Rats were pretreated with BCA, then injected with carbon tetrachloride (CCl4) for 6 weeks. Changes in liver weight and histology were examined and levels of aspartate and alanine aminotransferases, cholesterol, triglycerides, alkaline phosphatase and total bilirubin measured. To assess hepatic efficiency, indocyanine green was injected and its clearance calculated and albumin, total proteins and insulin-like growth factor-1 expression were measured. Cytochrome P4502E1 activity, cytochrome P4501A1 expression, in addition to sulfotransferase1A1 expression were determined to deduce the effect of BCA on hepatic metabolism. As oxidative stress markers, lipid peroxides levels, reduced glutathione, superoxide dismutase and catalase activities, as well as the total antioxidant capacity, were assessed. Nitric oxide, inducible nitric oxide synthase and cyclooxygenase-2 were used as indicators of the inflammatory response. Signaling pathways involving tumor necrosis factor-alpha, nuclear factor-kappa B, transforming growth factor-beta1, matrix metalloproteinase-9 and alpha-smooth muscle actin were investigated accordingly. Extent of fibrosis was examined by Masson's stain and measuring hydroxyproline levels. RESULTS BCA pretreatment significantly protected against the chronic damage of CCl4. Liver injury, oxidative stress, inflammation and fibrosis markers decreased, while hepatic efficiency improved. CONCLUSION Our findings suggested that BCA administration protects against fibrotic complications, a property that can be contributed to the multimechanistic approach of the drug.
Collapse
Affiliation(s)
- Randa M Breikaa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
45
|
RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-κB activation. Kidney Int 2013; 84:911-9. [PMID: 23677242 DOI: 10.1038/ki.2013.171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 11/08/2022]
Abstract
Urinary tract obstruction during nephron development causes tubular apoptosis, tubular atrophy, and interstitial fibrosis. Leukocyte recruitment is critical in the development of obstructive nephropathy leading to interstitial inflammation and renal fibrosis. RAGE, the receptor of advanced glycation end products, is implicated in chronic inflammation and has been recently identified as a novel receptor for the β2-integrin Mac-1, cooperating with ICAM-1 and thereby directly mediating leukocyte recruitment in vivo. Here, we studied the role of RAGE and ICAM-1 in a model of unilateral ureteral obstruction in neonatal mice. Interestingly, the number of infiltrating leukocytes was independent of RAGE and ICAM-1 in the ureteral obstructed neonatal kidney. By contrast, galectin-3, a marker for profibrogenic M2 macrophages, was strongly reduced in ureteral obstructed RAGE and RAGE-Icam1 knockout mice. Snail expression and loss of E-cadherin but not NF-κB activation were attenuated in both knockout models. Epithelial cell cycle arrest at G2/M, which mediates kidney fibrosis, and transforming growth factor-β expression were reduced in ureteral obstructed RAGE knockout mice. Thus, RAGE and ICAM-1 promote renal fibrosis in the developing kidney upon ureteral obstruction. Combined RAGE- and ICAM-1-blocking strategies may prove beneficial in neonatal obstructive nephropathy.
Collapse
|
46
|
Kim MJ, Lim Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013; 2013:510212. [PMID: 23737649 PMCID: PMC3657423 DOI: 10.1155/2013/510212] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia-induced oxidative stress has been concerned in the development of diabetic nephropathy (DN), which may cause kidney damage associated with inflammation and fibrosis. This study has been conducted to investigate the role of genistein supplementation in an acute DN state. Mice with FBG levels more than 250 mg/dL after alloxan injection (single i.p., 150 mg/kg) were considered as diabetic. Diabetic mice (DM) were further subdivided according to their FBG levels, medium-high FBG (DMMH < 450 mg/dL) and high FBG (DMH; 450 mg/dL) and were administrated by an AIG-93G diet supplemented with different doses of genistein (0, 0.025 or 0.1%). After 2 weeks' treatment, the levels of kidney malondialdehyde (MDA), blood urea nitrogen (BUN), and plasma creatinine and lipid profiles, as well as oxidative stress and inflammation-related markers, were measured (P < 0.05). Genistein supplementation improved levels of FBG in the DMMH groups, but not in the DMH group, regardless of the treatment dose. Moreover, the supplementation attenuated kidney oxidative stress indicated by MDA, BUN, and plasma creatinine. In addition, genistein treatment decreased inflammatory markers such as nuclear factor kappa B (p65), phosphorylated inhibitory kappa B alpha, C-reactive protein, monocyte chemotactic protein-1, cyclooxygenase-2, and tumor necrosis factor-alpha and improved oxidative stress markers (nuclear-related factor E2, heme oxygenase-1, glutathione peroxidase, and superoxide dismutase isoforms) in treatment groups, regardless of the genistein treatment dose. Furthermore, genistein supplementation inhibited the fibrosis-related markers (protein kinase C, protein kinase C-beta II, and transforming growth factor-beta I) in the DN state. However, 0.1% genistein supplementation in diabetes with high FBG levels selectively showed a preventive effect on kidney damage. These results suggest that genistein might be a good protective substance for DN through regulation of oxidative stress and inflammation. In particular, genistein is more efficient in diabetes patients with medium-high blood glucose levels. Finally, it is required to establish the beneficial dosage of genistein according to blood glucose levels.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
47
|
Zhang H, Sun Y, Hu R, Luo W, Mao X, Zhao Z, Chen Q, Zhang Z. The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal 2013; 25:1574-85. [PMID: 23567262 DOI: 10.1016/j.cellsig.2013.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
Abstract
In kidney, the ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is involved in podocyte injury and proteinuria but details of the mechanism underlying its regulation are not known. Activation of NF-κB is thought to be the predominant risk factor for kidney disease; therefore, it is postulated that UCH-L1 may be one of the NF-κB target genes. In this study, we investigated the involvement of NF-κB activation in the regulation of UCH-L1 expression and the function of murine podocytes. Stimulation of podocytes with the cytokines TNF-α and IL-1β up-regulated UCH-L1 expression rapidly at the mRNA and protein levels and the NF-κB-specific inhibitor pyrrolidine dithiocarbamate resulted in down-regulation. NF-κB up-regulates UCH-L1 via binding the --300 bp and --109 bp sites of its promoter, which was confirmed by the electrophoretic mobility shift assay of DNA-nuclear protein binding. In the renal biopsy from lupus nephritis patients, the expressions of NF-κB and UCH-L1 increased in immunohistochestry staining and were positively correlated. Activation of NF-κB up-regulates UCH-L1 expression following changing of other podocytes molecules, such as nephrin and snail. These results suggest that activation of the NF-κB signaling pathway could be the major pathogenesis to up-regulate UCH-L1 in podocyte injury, followed by the turnover of other molecules, which might result in morphological changes and dysfunction of podocytes. This work help us to understand the effect of NF-κB on specific target molecules of podocytes, and suggest that targeting the NF-κB-UCH-L1 interaction could be a novel therapeutic strategy for the treatment of podocyte lesions and proteinuria.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pathology and Key Laboratory of Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Possible participation of receptor for advanced glycation end products (RAGE) in the origin of cancer stem cells in diabetic patients with colon cancer. Med Hypotheses 2013; 80:620-3. [PMID: 23466064 DOI: 10.1016/j.mehy.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 01/06/2023]
Abstract
The association between diabetes and the associated increased risk of several solid malignancies has been the subject of investigation for many years, while potential biologic links between the two diseases are incompletely understood. The receptor for advanced glycation end-products (RAGE) signal transduction may represent a focal point in their respective contributions to malignant transformation associated diabetes. While the physiopathology of RAGE axis in promoting malignancies cannot be explained completely by the available mechanism as perpetuating inflammation at tumor microenvironment. In addition, experimental researches revealed a crucial role for upstreams of RAGE signaling pathway in maintaining the stemness properties and tumorigenicity of cancer stem cells. Hence, we hypothesized that RAGE inducing cancer stem cells may be a key determinant in the origin and progression of colon malignant tumors concomitant diabetes. Such an opinion not only bands together the seemingly disparate various complications in diabetes and colon cancers, but also has future implications for risk assessment and biopharmaceutical treatment.
Collapse
|
49
|
Li J, Gang D, Yu X, Hu Y, Yue Y, Cheng W, Pan X, Zhang P. Genistein: the potential for efficacy in rheumatoid arthritis. Clin Rheumatol 2013; 32:535-40. [PMID: 23307323 DOI: 10.1007/s10067-012-2148-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that may affect many tissues and organs. Without treatment, inflammation leads to cartilage damage, bone erosions, joint destruction, and impaired movement. Because of the limited success of disease-modifying anti-rheumatic drugs, the exploration of new anti-rheumatic drugs with high efficacy and less toxicity is eagerly needed. Genistein, the major active compound from soybean, has received much attention due to its potential beneficial effects on some of the degenerative diseases. It has been found that genistein has anti-inflammatory, antiangiogenesis, antiproliferative, antioxidant, immunomodulatory, pain relief, and joint protection properties. Hence, significant advances have been made, both by in vitro and in vivo studies showing that genistein is a promising agent for RA treatment.
Collapse
Affiliation(s)
- Jinchao Li
- Center for Translational Medicine Research and Development, Shen Zhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen University Town, 1068 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Behloul N, Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|