1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
López-Cánovas JL, Naranjo-Martínez B, Diaz-Ruiz A. Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. Cell Oncol (Dordr) 2025; 48:161-182. [PMID: 38990489 PMCID: PMC11850423 DOI: 10.1007/s13402-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M). RESULTS Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death. CONCLUSION Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Alberto Diaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain.
| |
Collapse
|
3
|
Benichou E, Seffou B, Topçu S, Renoult O, Lenoir V, Planchais J, Bonner C, Postic C, Prip-Buus C, Pecqueur C, Guilmeau S, Alves-Guerra MC, Dentin R. The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism. Nat Commun 2024; 15:1879. [PMID: 38424041 PMCID: PMC10904844 DOI: 10.1038/s41467-024-45548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development. Mechanistically, ChREBP triggers the expression of the PI3K regulatory subunit p85α, to sustain the activity of the pro-oncogenic PI3K/AKT signaling pathway in HCC. In parallel, increased ChREBP activity reroutes glucose and glutamine metabolic fluxes into fatty acid and nucleic acid synthesis to support PI3K/AKT-mediated HCC growth. Thus, HCC cells have a ChREBP-driven circuitry that ensures balanced coordination between PI3K/AKT signaling and appropriate cell anabolism to support HCC development. Finally, pharmacological inhibition of ChREBP by SBI-993 significantly suppresses in vivo HCC tumor growth. Overall, we show that targeting ChREBP with specific inhibitors provides an attractive therapeutic window for HCC treatment.
Collapse
Affiliation(s)
- Emmanuel Benichou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Bolaji Seffou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Selin Topçu
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Ophélie Renoult
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Véronique Lenoir
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Julien Planchais
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Caroline Bonner
- Institut Pasteur de Lille, Lille, France
- INSERM, U1011, Lille, France
- European Genomic Institute for Diabetes, Lille, France
- Université de Lille, Lille, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Carina Prip-Buus
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Claire Pecqueur
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Renaud Dentin
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France.
- Institut Cochin, Faculté de Médecine 3ème étage, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
4
|
Chen Y, Zhao D, Xiao F, Li X, Li J, Su Z, Jiang X. Microfluidics-enabled Serial Assembly of Lipid-siRNA-sorafenib Nanoparticles for Synergetic Hepatocellular Carcinoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209672. [PMID: 36749980 DOI: 10.1002/adma.202209672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Multi-component nanoparticles (mNPs) hold great potential for disease prevention and treatment. However, a major barrier is the lack of versatile platforms to accommodate steps of assembly processes of mNPs. Here the microfluidics-enabled serial assembly (MESA) of mNPs is presented. The microfluidic chip, as a mini-conveyor of initial materials, sequentially enables the assembly of sorafenib supramolecule, electrostatic adsorption of siRNA, and surface assembly of protective lipids. The produced lipid-siRNA-sorafenib nanoparticles (LSS NPs) have ultrahigh encapsulation efficiencies for sorafenib (≈100%) and siRNA (≈95%), which benefit from the accommodation of both fast and slow processes on the chip. Although carrying negative charges, LSS NPs enable cytosolic delivery of agents and high gene silencing efficiency within tumor cells. In vivo, the LSS NPs delivering hypoxia-induced factor (HIF1α)-targeted siRNA efficiently regress tumors of Hep3B xenograft and hepatocellular carcinoma patient-derived primary cells xenograft (PDCX) and finally extend the average survival of PDCX mice to 68 days. Thus, this strategy is promising as a sorafenib/siRNA combination therapy, and MESA can be a universal platform for fabricating complex nanosystems.
Collapse
Affiliation(s)
- Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Dong Zhao
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518112, P.R. China
| | - Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Xuanyu Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Jia'an Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Zhenwei Su
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
5
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W, Wei T. Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem 2022; 238:114500. [DOI: 10.1016/j.ejmech.2022.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
6
|
Ek F, Blom K, Selvin T, Rudfeldt J, Andersson C, Senkowski W, Brechot C, Nygren P, Larsson R, Jarvius M, Fryknäs M. Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma. Sci Rep 2022; 12:8943. [PMID: 35624293 PMCID: PMC9142582 DOI: 10.1038/s41598-022-12519-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Quiescent cancer cells in malignant tumors can withstand cell-cycle active treatment and cause cancer spread and recurrence. Three-dimensional (3D) cancer cell models have led to the identification of oxidative phosphorylation (OXPHOS) as a context-dependent vulnerability. The limited treatment options for advanced hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) metastatic to the liver include the multikinase inhibitors sorafenib and regorafenib. Off-target effects of sorafenib and regorafenib are related to OXPHOS inhibition; however the importance of this feature to the effect on tumor cells has not been investigated in 3D models. We began by assessing global transcriptional responses in monolayer cell cultures, then moved on to multicellular tumor spheroids (MCTS) and tumoroids generated from a CRC patient. Cells were treated with chemotherapeutics, kinase inhibitors, and the OXPHOS inhibitors. Cells grown in 3D cultures were sensitive to the OXPHOS inhibitor nitazoxanide, sorafenib, and regorafenib and resistant to other multikinase inhibitors and chemotherapeutic drugs. Furthermore, nitazoxanide and sorafenib reduced viability, regrowth potential and inhibited mitochondrial membrane potential in an additive manner at clinically relevant concentrations. This study demonstrates that the OXPHOS inhibition caused by sorafenib and regorafenib parallels 3D activity and can be further investigated for new combination strategies.
Collapse
Affiliation(s)
- Frida Ek
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Tove Selvin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Claes Andersson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Biotech Research & Innovation Centre, Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | | | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
7
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Broad Transcriptomic Impact of Sorafenib and Its Relation to the Antitumoral Properties in Liver Cancer Cells. Cancers (Basel) 2022; 14:cancers14051204. [PMID: 35267509 PMCID: PMC8909169 DOI: 10.3390/cancers14051204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the fourth most frequent cause of cancer-related mortality worldwide. While ablation, resection and orthotopic liver transplantation are indicated at an early stage of the disease, Sorafenib (Sfb) is the current most administrated first-line treatment for advanced HCC, even though its therapeutic benefit is limited due to the appearance of resistance. Deep knowledge on the molecular consequences of Sfb-treatment is essentially required for optimizing novel therapeutic strategies to improve the outcomes for patients with advanced HCC. In this study, we analyzed differential gene expression changes in two well characterized liver cancer cell lines upon a Sfb-treatment, demonstrating that both lines responded similarly to the treatment. Our results provide valuable information on the molecular action of Sfb on diverse cellular fundamental processes such as DNA repair, translation and proteostasis and identify rationalization issues that could provide a different therapeutic perspective to Sfb. Abstract Hepatocellular carcinoma (HCC) is one of the most frequent and essentially incurable cancers in its advanced stages. The tyrosine kinase inhibitor Sorafenib (Sfb) remains the globally accepted treatment for advanced HCC. However, the extent of its therapeutic benefit is limited. Sfb exerts antitumor activity through its cytotoxic, anti-proliferative and pro-apoptotic roles in HCC cells. To better understand the molecular mechanisms underlying these effects, we used RNA sequencing to generate comprehensive transcriptome profiles of HepG2 and SNU423, hepatoblastoma- (HB) and HCC-derived cell lines, respectively, following a Sfb treatment at a pharmacological dose. This resulted in similar alterations of gene expression in both cell lines. Genes functionally related to membrane trafficking, stress-responsible and unfolded protein responses, circadian clock and activation of apoptosis were predominantly upregulated, while genes involved in cell growth and cycle, DNA replication and repair, ribosome biogenesis, translation initiation and proteostasis were downregulated. Our results suggest that Sfb causes primary effects on cellular stress that lead to upregulation of selective responses to compensate for its negative effect and restore homeostasis. No significant differences were found specifically affecting each cell line, indicating the robustness of the Sfb mechanism of action despite the heterogeneity of liver cancer. We discuss our results on terms of providing rationalization for possible strategies to improve Sfb clinical outcomes.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), E-28029 Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), E-28029 Madrid, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| |
Collapse
|
8
|
Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-Muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. SCIENCE ADVANCES 2022; 8:eabh2635. [PMID: 35061544 PMCID: PMC8782451 DOI: 10.1126/sciadv.abh2635] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Schindlmaier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Natascha Berger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria R. Depaoli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria
- Know-Center GmbH, 8010 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Alexander J. A. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Blood Group Serology and Transfusion Medicine Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021; 519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.
Collapse
Affiliation(s)
- Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangfei Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Pan Y, Hu GY, Jiang S, Xia SJ, Maher H, Lin ZJ, Mao QJ, Zhao J, Cai LX, Xu YH, Xu JJ, Cai XJ. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021; 11:637971. [PMID: 34094917 PMCID: PMC8169983 DOI: 10.3389/fonc.2021.637971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumor with high heterogeneity. Aerobic glycolysis is a common indicator of tumor growth and plays a key role in tumorigenesis. Heterogeneity in distinct metabolic pathways can be used to stratify HCC into clinically relevant subgroups, but these have not yet been well-established. In this study, we constructed a model called aerobic glycolysis index (AGI) as a marker of aerobic glycolysis using genomic data of hepatocellular carcinoma from The Cancer Genome Atlas (TCGA) project. Our results showed that this parameter inferred enhanced aerobic glycolysis activity in tumor tissues. Furthermore, high AGI is associated with poor tumor differentiation and advanced stages and could predict poor prognosis including reduced overall survival and disease-free survival. More importantly, the AGI could accurately predict tumor sensitivity to Sorafenib therapy. Therefore, the AGI may be a promising biomarker that can accurately stratify patients and improve their treatment efficacy.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Geng-Yuan Hu
- Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Shi Jiang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun-Jie Xia
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Hendi Maher
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Jie Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Jiang Mao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Liu-Xin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Ying-Hua Xu
- Department of Oncology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jun-Jie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
11
|
Xu S, Ling S, Shan Q, Ye Q, Zhan Q, Jiang G, Zhuo J, Pan B, Wen X, Feng T, Lu H, Wei X, Xie H, Zheng S, Xiang J, Shen Y, Xu X. Self-Activated Cascade-Responsive Sorafenib and USP22 shRNA Co-Delivery System for Synergetic Hepatocellular Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003042. [PMID: 33717848 PMCID: PMC7927615 DOI: 10.1002/advs.202003042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Resistance to sorafenib severely hinders its effectiveness against hepatocellular carcinoma (HCC). Cancer stemness is closely connected with resistance to sorafenib. Methods for reversing the cancer stemness remains one of the largest concerns in research and the lack of such methods obstructs current HCC therapeutics. Ubiquitin-specific protease 22 (USP22) is reported to play a pivotal role in HCC stemness and multidrug resistance (MDR). Herein, a galactose-decorated lipopolyplex (Gal-SLP) is developed as an HCC-targeting self-activated cascade-responsive nanoplatform to co-delivery sorafenib and USP22 shRNA (shUSP22) for synergetic HCC therapy. Sorafenib, entrapped in the Gal-SLPs, induced a reactive oxygen species (ROS) cascade and triggered rapid shUSP22 release. Thus, Gal-SLPs dramatically suppressed the expression of USP22. The downregulation of USP22 suppresses multidrug resistance-associated protein 1 (MRP1) to induce intracellular sorafenib accumulation and hampers glycolysis of HCC cells. As a result, Gal-SLPs efficiently inhibit the viability, proliferation, and colony formation of HCC cells. A sorafenib-insensitive patient-derived xenograft (PDX) model is established and adopted to evaluate in vivo antitumor effect of Gal-SLPs. Gal-SLPs exhibit potent antitumor efficiency and biosafety. Therefore, Gal-SLPs are expected to have great potential in the clinical treatment of HCC.
Collapse
Affiliation(s)
- Shengjun Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qiaonan Shan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qianwei Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qifan Zhan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Guangjiang Jiang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Binhua Pan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Xue Wen
- Department of Pathologythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
| | - Tingting Feng
- Department of Abdominal Medical OncologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Haohao Lu
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Haiyang Xie
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouZhejiang310000China
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| |
Collapse
|
12
|
Marconato L, Sabattini S, Marisi G, Rossi F, Leone VF, Casadei-Gardini A. Sorafenib for the Treatment of Unresectable Hepatocellular Carcinoma: Preliminary Toxicity and Activity Data in Dogs. Cancers (Basel) 2020; 12:cancers12051272. [PMID: 32443457 PMCID: PMC7281367 DOI: 10.3390/cancers12051272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Unresectable nodular and diffuse hepatocellular carcinoma (HCC) have a poor prognosis with limited treatment options. Systemic traditional chemotherapy has been only rarely reported, with unsatisfactory results. The aim of this prospective, non-randomized, non-blinded, single center clinical trial was to investigate safety profile, objective response rate, time to progression and overall survival of sorafenib in comparison with metronomic chemotherapy (MC) consisting of thalidomide, piroxicam and cyclophosphamide in dogs with advanced, unresectable HCC. Between December 2011 and June 2017, 13 dogs were enrolled: seven received sorafenib, and six were treated with MC. Median time to progression was 363 days (95% CI, 191–535) in dogs treated with sorafenib versus 27 days (95% CI, 0–68) in dogs treated with MC (p = 0.044). Median overall survival was 361 days (95% CI, 0–909) in dogs receiving sorafenib, while 32 days (95% CI, 0–235) in those receiving MC (p = 0.079). Sorafenib seems to be a good candidate for the treatment of dogs with advanced HCC, due to a benefit in disease control and an acceptable safety profile, offering a good basis on which new randomized prospective clinical trials should be undertaken to compare the efficacy and drawback of sorafenib versus MC or traditional chemotherapy.
Collapse
Affiliation(s)
- Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Correspondence:
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola, 47014 Forlì-Cesena, Italy;
| | - Federica Rossi
- Centro Oncologico Veterinario, via San Lorenzo 1-4, Sasso Marconi, 40037 Bologna, Italy; (F.R.); (V.F.L.)
| | - Vito Ferdinando Leone
- Centro Oncologico Veterinario, via San Lorenzo 1-4, Sasso Marconi, 40037 Bologna, Italy; (F.R.); (V.F.L.)
| | - Andrea Casadei-Gardini
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, 41124 Modena, Italy;
| |
Collapse
|
13
|
Rodríguez-Hernández MA, Chapresto-Garzón R, Cadenas M, Navarro-Villarán E, Negrete M, Gómez-Bravo MA, Victor VM, Padillo FJ, Muntané J. Differential effectiveness of tyrosine kinase inhibitors in 2D/3D culture according to cell differentiation, p53 status and mitochondrial respiration in liver cancer cells. Cell Death Dis 2020; 11:339. [PMID: 32382022 PMCID: PMC7206079 DOI: 10.1038/s41419-020-2558-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Sorafenib and Regorafenib are the recommended first- and second-line therapies in patients with advanced hepatocellular carcinoma (HCC). Lenvatinib and Cabozantinib have shown non-inferior antitumoral activities compared with the corresponding recommended therapies. The clinical trials have established recommended doses for each treatment that lead different blood concentrations in patients for Sorafenib (10 µM), Regorafenib (1 µM), Lenvatinib (0.1 µM), and Cabozantinib (1 µM). However, very low response rates are observed in patients attributed to intrinsic resistances or upregulation of survival signaling. The aim of the study was the comparative dose-response analysis of the drugs (0-100 µM) in well-differentiated (HepG2, Hep3B, and Huh7), moderately (SNU423), and poorly (SNU449) differentiated liver cancer cells in 2D/3D cultures. Cells harbors wild-type p53 (HepG2), non-sense p53 mutation (Hep3B), inframe p53 gene deletion (SNU423), and p53 point mutation (Huh7 and SNU449). The administration of regular used in vitro dose (10 µM) in 3D and 2D cultures, as well as the dose-response analysis in 2D cultures showed Sorafenib and Regorafenib were increasingly effective in reducing cell proliferation, and inducing apoptosis in well-differentiated and expressing wild-type p53 in HCC cells. Lenvatinib and Cabozantinib were particularly effective in moderately to poorly differentiated cells with mutated or lacking p53 that have lower basal oxygen consumption rate (OCR), ATP, and maximal respiration capacity than observed in differentiated HCC cells. Sorafenib and Regorafenib downregulated, and Lenvatinib and Cabozantinib upregulated epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor receptor (c-Met) in HepG2 cells. Conclusions: Sorafenib and Regorafenib were especially active in well-differentiated cells, with wild-type p53 and increased mitochondrial respiration. By contrast, Lenvatinib and Cabozantinib appeared more effective in moderately to poorly differentiated cells with mutated p53 and low mitochondrial respiration. The development of strategies that allow us to deliver increased doses in tumors might potentially enhance the effectiveness of the treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Raquel Chapresto-Garzón
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Miryam Cadenas
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Miguel A Gómez-Bravo
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain
| | - Victor M Victor
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Francisco J Padillo
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.
- Spanish Network for Biomedical Research in Hepatic and Digestive diseases (CIBERehd), Institute of Health Carlos III (ISCIII), Madrid, Spain.
- Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville/IBIS, Seville, Spain.
| |
Collapse
|
14
|
Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H. Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:892-908.e11. [PMID: 32375062 PMCID: PMC9375823 DOI: 10.1016/j.cmet.2020.04.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming one of the leading causes of hepatocellular carcinoma (HCC). Sorafenib is the only first-line therapy for advanced HCC despite its serious adverse effects. Here, we report that at an equivalent of approximately one-tenth the clinical dose for HCC, sorafenib treatment effectively prevents the progression of NASH in both mice and monkeys without any observed significant adverse events. Mechanistically, sorafenib's benefit in NASH is independent of its canonical kinase targets in HCC, but involves the induction of mild mitochondrial uncoupling and subsequent activation of AMP-activated protein kinase (AMPK). Collectively, our findings demonstrate a previously unappreciated therapeutic effect and signaling mechanism of low-dose sorafenib treatment in NASH. We envision that this new therapeutic strategy for NASH has the potential to translate into a beneficial anti-NASH therapy with fewer adverse events than is observed in the drug's current use in HCC.
Collapse
Affiliation(s)
- Chongshu Jian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoming Wang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shan Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, Ji J, Wu J, Mo W, Xu X, Guo C. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020; 39:24. [PMID: 32000827 PMCID: PMC6993409 DOI: 10.1186/s13046-020-1528-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common primary malignant tumor which usually progresses to an advanced stage because of late diagnosis. Sorafenib (Sora) is a first line medicine for advanced stage HCC; however, it has been faced with enormous resistance. Simvastatin (Sim) is a cholesterol-lowering drug and has been reported to inhibit tumor growth. The present study aims to determine whether Sora and Sim co-treatment can improve Sora resistance in HCC. METHODS The HCC cell line LM3 and an established Sora-resistant LM3 cell line (LM3-SR) were used to study the relationship between Sora resistance and aerobic glycolysis. Cell proliferation, apoptosis and glycolysis levels were analyzed by western blotting, flow cytometry analysis and biomedical tests. A xenograft model was also used to examine the effect of Sim in vivo. Detailed mechanistic studies were also undertaken by the use of activators and inhibitors, and lentivirus transfections. RESULTS Our results demonstrated that the resistance to Sora was associated with enhanced aerobic glycolysis levels. Furthermore, LM3-SR cells were more sensitive to Sim than LM3 cells, suggesting that combined treatment with both Sora and Sim could enhance the sensitivity of LM3-SR cells to Sora. This finding may be due to the suppression of the HIF-1α/PPAR-γ/PKM2 axis. CONCLUSIONS Simvastatin can inhibit the HIF-1α/PPAR-γ/PKM2 axis, by suppressing PKM2-mediated glycolysis, resulting in decreased proliferation and increased apoptosis in HCC cells, and re-sensitizing HCC cells to Sora.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
16
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
17
|
Heslop KA, Rovini A, Hunt EG, Fang D, Morris ME, Christie CF, Gooz MB, DeHart DN, Dang Y, Lemasters JJ, Maldonado EN. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol 2020; 171:113728. [PMID: 31759978 PMCID: PMC7309270 DOI: 10.1016/j.bcp.2019.113728] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The multikinase inhibitor sorafenib, and opening of voltage dependent anion channels (VDAC) by the erastin-like compound X1 promotes oxidative stress and mitochondrial dysfunction in hepatocarcinoma cells. Here, we hypothesized that X1 and sorafenib induce mitochondrial dysfunction by increasing reactive oxygen species (ROS) formation and activating c-Jun N-terminal kinases (JNKs), leading to translocation of activated JNK to mitochondria. Both X1 and sorafenib increased production of ROS and activated JNK. X1 and sorafenib caused a drop in mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, after 60 min. Mitochondrial depolarization after X1 and sorafenib occurred in parallel with JNK activation, increased superoxide (O2•-) production, decreased basal and oligomycin sensitive respiration, and decreased maximal respiratory capacity. Increased production of O2•- after X1 or sorafenib was abrogated by JNK inhibition and antioxidants. S3QEL 2, a specific inhibitor of site IIIQo, at Complex III, prevented depolarization induced by X1. JNK inhibition by JNK inhibitors VIII and SP600125 also prevented mitochondrial depolarization. After X1, activated JNK translocated to mitochondria as assessed by proximity ligation assays. Tat-Sab KIM1, a peptide selectively preventing the binding of JNK to the outer mitochondrial membrane protein Sab, blocked the depolarization induced by X1 and sorafenib. X1 promoted cell death mostly by necroptosis that was partially prevented by JNK inhibition. These results indicate that JNK activation and translocation to mitochondria is a common mechanism of mitochondrial dysfunction induced by both VDAC opening and sorafenib.
Collapse
Affiliation(s)
- K A Heslop
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - A Rovini
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - E G Hunt
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D Fang
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M E Morris
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - C F Christie
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M B Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D N DeHart
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Y Dang
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - J J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - E N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
18
|
Bai J, Liu Z, Liu J, Zhang S, Tian Y, Zhang Y, Ren L, Kong D. Mitochondrial metabolic study guided by proteomics analysis in hepatocellular carcinoma cells surviving long-term incubation with the highest dose of sorafenib. Aging (Albany NY) 2019; 11:12452-12475. [PMID: 31881007 PMCID: PMC6949094 DOI: 10.18632/aging.102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 04/19/2023]
Abstract
Sorafenib is the standard first-line systemic therapy for hepatocellular carcinoma (HCC). However, the low objective response rates in clinical studies suggest the existence of certain HCC cells that are inherently insensitive to sorafenib. To understand the molecular basis of insensitivity of HCC cells to sorafenib, this study developed 3 kinds of insensitive HCC cells through exposure to various concentrations of sorafenib and performed a quantitative proteome analysis of the surviving HepG2 cells. 520 unique proteins were concentration-dependently upregulated by sorafenib. Bioinformatics-assisted analysis of 520 proteins revealed that the metabolic pathways involved in central carbon metabolism were significantly enriched, and 102 mitochondrial proteins, especially components of the electron transport chain (ETC), were incrementally upregulated in the 3 kinds of insensitive cells. Conversely, we identified a rapid holistic inhibitory effect of sorafenib on mitochondrial function by the direct targeting of the complex I-linked electron transport and the uncoupling of mitochondrial oxidative phosphorylation (OXHPOS) in HCC cells. Core metabolic reprogramming involved in a compensatory upregulation of OXHPOS combined with elevated glycolysis supports the survival of HCC cells under the highest dose of sorafenib treatment. Altogether, our work thus elaborates an ETC inhibitor and unveils the proteomic landscape of metabolic reprogramming in drug insensitivity.
Collapse
Affiliation(s)
- Jing Bai
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ziqi Liu
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiang Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Saihang Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yuan Tian
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Leiming Ren
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Dezhi Kong
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
19
|
Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, Xu L, Wu J, Guo C. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:204. [PMID: 31101057 PMCID: PMC6525465 DOI: 10.1186/s13046-019-1194-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The treatment for advanced primary hepatocellular carcinoma (HCC) is sorafenib (SORA), while HCC has become increasingly drug resistant with enhanced aerobic glycolysis. The present study aimed to examine the chemotherapeutic effects of a flavonoid proanthocyanidin B2 (PB2) on HCC. METHODS Five kinds of HCC cell lines and LO2 were used to test the effect of PB2 on aerobic glycolysis. The proliferation, cell cycle, apoptosis and a xenograft mouse model were analyzed. Lentivirus overexpressed pyruvate kinase M2 (PKM2) or sh-PKM2 was used to verify the target of PB2. The detailed mechanism was investigated by immunofluorescence, co-immunoprecipitation, and western blotting. RESULTS PB2 inhibited the proliferation, induced cell cycle arrest, and triggered apoptosis of HCC cells in vivo and in vitro. PB2 also suppressed glucose uptake and lactate levels via the direct inhibition of the key glycolytic enzyme, PKM2. In addition, PKM2 inhibited the nuclear translocation of PKM2 and co-localization of PKM2/HIF-1α in the nucleus, leading to the inhibition of aerobic glycolysis. Co-treatment with PB2 was also effective in enhancing the chemosensitivity of SORA. CONCLUSIONS PB2 inhibited the expression and nuclear translocation of PKM2, therefore disrupting the interaction between PKM2/HSP90/HIF-1α, to suppress aerobic glycolysis and proliferation, and trigger apoptosis in HCC via HIF-1α-mediated transcription suppression.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336 China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| |
Collapse
|
20
|
Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H, Yoon JH. Hexokinase-II Inhibition Synergistically Augments the Anti-tumor Efficacy of Sorafenib in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20061292. [PMID: 30875800 PMCID: PMC6471302 DOI: 10.3390/ijms20061292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine whether inhibition of hexokinase (HK)-II activity enhances the efficacy of sorafenib in in-vivo models of hepatocellular carcinoma (HCC), and to evaluate the prognostic implication of HK-II expression in patients with HCC. We used 3-bromopyruvate (3-BP), a HK-II inhibitor to target HK-II. The human HCC cell line was tested as both subcutaneous and orthotopic tumor xenograft models in BALB/c nu/nu mice. The prognostic role of HK-II was evaluated in data from HCC patients in The Cancer Genome Atlas (TCGA) database and validated in patients treated with sorafenib. Quantitative real-time PCR, western blot analysis, and immunohistochemical staining revealed that HK-II expression is upregulated in the presence of sorafenib. Further analysis of the endoplasmic reticulum-stress network model in two different murine HCC models showed that the introduction of additional stress by 3-BP treatment synergistically increased the in vivo/vitro efficacy of sorafenib. We found that HCC patients with increased HK-II expression in the TCGA database showed poor overall survival, and also confirmed similar results for TCGA database HCC patients who had undergone sorafenib treatment. These results suggest that HK-II is a promising therapeutic target to enhance the efficacy of sorafenib and that HK-II expression might be a prognostic factor in HCC.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do 14584, Korea.
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Juri Na
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Kyungmin Kim
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 03080, Korea.
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| |
Collapse
|
21
|
Manerba M, Di Ianni L, Govoni M, Comparone A, Di Stefano G. The activation of lactate dehydrogenase induced by mTOR drives neoplastic change in breast epithelial cells. PLoS One 2018; 13:e0202588. [PMID: 30138330 PMCID: PMC6107208 DOI: 10.1371/journal.pone.0202588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
mTOR kinase and the A isoform of lactate dehydrogenase (LDH-A) are key players controlling the metabolic characteristics of cancer cells. By using cultured human breast cells as a “metabolic tumor” model, we attempted to explore the correlation between these two factors. “Metabolic tumors” are defined as neoplastic conditions frequently associated with features of the metabolic syndrome, such as hyper-insulinemia and hyper-glycemia. MCF-7 cells (a well differentiated carcinoma) and MCF-10A cells (a widely used model for studying normal breast cell transformation) were used in this study. These cells were exposed to known factors triggering mTOR activation. In both treated cultures, we evaluated the link between mTOR kinase activity and the level of LDH expression / function. Furthermore, we elaborated the metabolic changes produced in cells by the mTOR-directed LDH-A up-regulation. Interestingly, we observed that in the non-neoplastic MCF-10A culture, mTOR-directed up-regulation of LDH-A was followed by a reprogramming of cell metabolism, which showed an increased dependence on glycolysis rather than on oxidative reactions. As a consequence, lactate production appeared to be enhanced and cells began to display increased self-renewal and clonogenic power: signals suggestive of neoplastic change. Enhanced clonogenicity of cells was abolished by rapamycin treatment, and furthermore heavily reduced by LDH enzymatic inhibition. These results highlighted a mechanistic link between metabolic alterations and tumorigenesis, whereby suggesting LDH inhibition as a possible chemo-preventive measure to target the metabolic alterations driving neoplastic change.
Collapse
Affiliation(s)
- Marcella Manerba
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorenza Di Ianni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Antonietta Comparone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
22
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
23
|
Reyes R, Wani NA, Ghoshal K, Jacob ST, Motiwala T. Sorafenib and 2-Deoxyglucose Synergistically Inhibit Proliferation of Both Sorafenib-Sensitive and -Resistant HCC Cells by Inhibiting ATP Production. Gene Expr 2017; 17:129-140. [PMID: 27938509 PMCID: PMC5296238 DOI: 10.3727/105221616x693855] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. Sorafenib is the only first-line systemic drug for advanced HCC, but it has very limited survival benefits because patients treated with sorafenib either suffer from side effects or show disease progression after initial response. Thus, there is an urgent need to develop novel strategies for first-line and second-line therapies. The association between sorafenib resistance and glycolysis prompted us to screen several drugs with known antiglycolytic activity to identify those that will sensitize cells to sorafenib. We demonstrate that the combination of glycolytic inhibitor 2-deoxyglucose (2DG) and sorafenib drastically inhibits viability of sorafenib-sensitive and -resistant cells. However, the combination of other antiglycolytic drugs like lonidamine, gossypol, 3-bromopyruvate, and imatinib with sorafenib does not show synergistic effect. Cell cycle analysis revealed that the combination of 2DG and sorafenib induced cell cycle arrest at G0/G1. Mechanistic investigation suggests that the cell cycle arrest is due to depletion of cellular ATP that activates AMP-activated protein kinase (AMPK), which, in turn, inhibits mammalian target of rapamycin (mTOR) to induce cell cycle arrest. This study provides strong evidence for the therapeutic potential of the combination of sorafenib and 2DG for HCC.
Collapse
Affiliation(s)
- Ryan Reyes
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Nissar A. Wani
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Kalpana Ghoshal
- †Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- ‡Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Samson T. Jacob
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- ‡Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tasneem Motiwala
- §Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Páchniková G, Uldrijan S, Imramovský A, Kryštof V, Slaninová I. Substituted 2-hydroxy-N-(arylalkyl)benzamide sensitizes cancer cells to metabolic stress by disrupting actin cytoskeleton and inhibiting autophagic flux. Toxicol In Vitro 2016; 37:70-78. [PMID: 27612957 DOI: 10.1016/j.tiv.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
N-((R)-1-(4-chlorophenylcarbamoyl)-2-phenylethyl)-5-chloro-2-hydroxybenzamide (Compound 6k), was recently isolated during the preparation of amino acids esters with salicylanilides. We show here that 6k disrupts the dynamics of actin cytoskeleton in human melanoma cells, affecting processes essential for the maintenance and expansion of tumours such as cell adhesion, motility, proliferation, vesicular transport, and autophagic flux. We demonstrated that inhibition of autophagy by 6k increased the sensitivity of melanoma cells to metabolic stress induced by rotenone or nutrient starvation and potentiated the anti-proliferative activity of small molecule multikinase inhibitor sorafenib. Since autophagy plays an important role in survival of cancer cells subjected to chemotherapy, the above mentioned properties are interesting from clinical point of view as 6k could promote metabolic stress within the tumour microenvironment and potentiate the effect of cytostatics in combination therapy.
Collapse
Affiliation(s)
- Gabriela Páchniková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Faculty of Science, Palacky University and Institute of Experimental Botany ASCR, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Emma MR, Iovanna JL, Bachvarov D, Puleio R, Loria GR, Augello G, Candido S, Libra M, Gulino A, Cancila V, McCubrey JA, Montalto G, Cervello M. NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance. Cell Death Dis 2016; 7:e2269. [PMID: 27336713 PMCID: PMC5143401 DOI: 10.1038/cddis.2016.175] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023]
Abstract
Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management.
Collapse
Affiliation(s)
- M R Emma
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - J L Iovanna
- INSERM UMR1068, Center of Research in Cancerology of Marseille (CRCM), Marseille, France
| | - D Bachvarov
- Cancer Research Centre, Hôpital L'Hotel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Quebec City (Quebec), Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City (Quebec), Canada
| | - R Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G R Loria
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G Augello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - S Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - A Gulino
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - V Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - G Montalto
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - M Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| |
Collapse
|
26
|
Tomonari T, Takeishi S, Taniguchi T, Tanaka T, Tanaka H, Fujimoto S, Kimura T, Okamoto K, Miyamoto H, Muguruma N, Takayama T. MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma. Oncotarget 2016; 7:7207-7215. [PMID: 26769852 PMCID: PMC4872779 DOI: 10.18632/oncotarget.6889] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/02/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanism of resistance of hepatocellular carcinoma (HCC) to sorafenib is unknown and no useful predictive biomarker for sorafenib treatment has been reported. Accordingly, we established sorafenib-resistant HCC cells and investigated the underlying mechanism of resistance to sorafenib. Sorafenib-resistant cell lines were established from the HCC cell line PLC/PRF5 by cultivation under continuous exposure to increasing concentration of sorafenib. The IC50 values of the 2 resistant clones PLC/PRF5-R1 and PLC-PRF5-R2 were 9.2±0.47 μM (1.8-fold) and 25±5.1 μM (4.6-fold) respectively, which were significantly higher than that of parental PLC/PRF5 cells (5.4±0.17 μM) (p < 0.01 respectively), as determined by MTT assay. Western blot analysis of signal transduction-related proteins showed no significant differences in expression of AKT/pAKT, mTOR/pmTOR, or ERK/pERK between the 2 resistant clones versus parent cells, suggesting no activation of an alternative signal transduction pathway. Likewise, when expression of membrane transporter proteins was determined, there were no significant differences in expression levels of BSEP, MDR1, MRP2, BCRP, MRP4 and OCT1 between resistant clones and parent cells. However, the expression levels of MRP3 in the 2 resistant clones were significantly higher than that of parent cells. When MRP3 gene was knocked down by siRNA in PLC-PRF5-R2 cells, the sensitivity of the cells to sorafenib was restored. In the analysis of gene mutation, there was no mutation in the activation segment of Raf1 kinase in the resistant clones. Our data clearly demonstrate that the efflux transporter MRP3 plays an important role in resistance to sorafenib in HCC cells.
Collapse
Affiliation(s)
- Tetsu Tomonari
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Shunsaku Takeishi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Tatsuya Taniguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Takahiro Tanaka
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Hironori Tanaka
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Tetsuo Kimura
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8503, Japan
| |
Collapse
|
27
|
Wang ZM, Song N, Ren YL. Anti-proliferative and cytoskeleton-disruptive effects of icariin on HepG2 cells. Mol Med Rep 2015; 12:6815-20. [PMID: 26329131 DOI: 10.3892/mmr.2015.4282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
Abstract
Several biological properties of icariin have been identified, including its anticancer effect. However, the potential mechanisms underlying the effect of icariin on HepG2 hepatocellular carcinoma cells remain to be elucidated. The aim of the present study was to examine the effects of icariin on the proliferation and cytoskeleton of HepG2 cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyltetrazolium bromide assay was used to assess the antiproliferative effects of icariin and to determine the optimal concentration and treatment schedule of icariin on the HepG2 cells. Cell cycle analysis was performed using fluorescence activated cell sorting, the protein expression of B‑cell lymphoma (Bcl)‑2 was determined using immunohistochemical and western blot analyses, and F‑actin in the cells was examined using confocal microscopy. The chemotherapeutic drug, oxaliplatin, was used as a positive control. The results demonstrated that the optimal concentration of icarrin to produce an antiproliferative effect on HepG2 cells was 10‑5 mol/l, and the optimal treatment duration was 72 h. The icariin group had a significantly higher proportion of cells in the G0/G1 phase, compared with the control group, treated with high glucose Dulbecco's modified Eagles medium with 10% fetal bovine serum (P<0.05). The proportion of HepG2 cells in the S phase was significantly lower in the oxaliplatin (24.19%; P<0.05) and icariin (21.07%; P<0.01) groups, compared with the control group (28.62%). Icariin markedly decreased the expression of Bcl‑2, compared with the control (P<0.01), and disrupted the polymerization of F‑actin filaments in the HepG2 cells. Therefore, the present study demonstrated that, at an optimum concentration of 10‑5 mol/l, icariin inhibited the proliferation of the HepG2 cells, promoted apoptosis by decreasing the expression of Bcl‑2, and disrupted the actin cytoskeleton.
Collapse
Affiliation(s)
- Zhi-Min Wang
- The First Clinical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Yan-Ling Ren
- School of Chinese Medical Formulae, College of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
28
|
Gillani TB, Rawling T, Murray M. Cytochrome P450-Mediated Biotransformation of Sorafenib and Its N-Oxide Metabolite: Implications for Cell Viability and Human Toxicity. Chem Res Toxicol 2014; 28:92-102. [DOI: 10.1021/tx500373g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tina B. Gillani
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School
of Pharmacy, Graduate School of Health, University of Technology, Sydney, PO
Box 123, Broadway, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
31
|
Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 2014; 11:1856-68. [PMID: 24824514 DOI: 10.1021/mp400732p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca , Salamanca, Spain
| | | | | |
Collapse
|
32
|
Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol 2014; 88:1327-50. [PMID: 24792321 DOI: 10.1007/s00204-014-1246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/05/2023]
Abstract
Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.
Collapse
|
33
|
Kummer S, Flöttmann M, Schwanhäusser B, Sieben C, Veit M, Selbach M, Klipp E, Herrmann A. Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics. PLoS One 2014; 9:e94257. [PMID: 24718678 PMCID: PMC3981805 DOI: 10.1371/journal.pone.0094257] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/13/2014] [Indexed: 01/13/2023] Open
Abstract
We studied the dynamics of the proteome of influenza virus A/PR/8/34 (H1N1) infected Madin-Darby canine kidney cells up to 12 hours post infection by mass spectrometry based quantitative proteomics using the approach of stable isotope labeling by amino acids in cell culture (SILAC). We identified 1311 cell proteins and, apart from the proton channel M2, all major virus proteins. Based on their abundance two groups of virus proteins could be distinguished being in line with the function of the proteins in genesis and formation of new virions. Further, the data indicate a correlation between the amount of proteins synthesized and their previously determined copy number inside the viral particle. We employed bioinformatic approaches such as functional clustering, gene ontology, and pathway (KEGG) enrichment tests to uncover co-regulated cellular protein sets, assigned the individual subsets to their biological function, and determined their interrelation within the progression of viral infection. For the first time we are able to describe dynamic changes of the cellular and, of note, the viral proteome in a time dependent manner simultaneously. Through cluster analysis, time dependent patterns of protein abundances revealed highly dynamic up- and/or down-regulation processes. Taken together our study provides strong evidence that virus infection has a major impact on the cell status at the protein level.
Collapse
Affiliation(s)
- Susann Kummer
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Berlin, Germany
| | - Max Flöttmann
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Berlin, Germany
| | | | - Christian Sieben
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Department of Veterinary Medicine, Berlin, Germany
| | | | - Edda Klipp
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Berlin, Germany
- * E-mail: (EK); (AH)
| | - Andreas Herrmann
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Berlin, Germany
- * E-mail: (EK); (AH)
| |
Collapse
|
34
|
Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 2013; 141:67-78. [PMID: 23963659 DOI: 10.1007/s10549-013-2668-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Via Volturno, 39, Parma 43125, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|