1
|
Liu Z, Lu J, Sha W, Lei T. Comprehensive treatment of diabetic endothelial dysfunction based on pathophysiological mechanism. Front Med (Lausanne) 2025; 12:1509884. [PMID: 40093018 PMCID: PMC11906411 DOI: 10.3389/fmed.2025.1509884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Vascular endothelium is integral to the regulation of vascular homeostasis and maintenance of normal arterial function in healthy individuals. Endothelial dysfunction is a significant contributor to the advancement of atherosclerosis, which can precipitate cardiovascular complications. A notable correlation exists between diabetes and endothelial dysfunction, wherein chronic hyperglycemia and acute fluctuations in glucose levels exacerbate oxidative stress. This results in diminished nitric oxide synthesis and heightened production of endothelin-1, ultimately leading to endothelial impairment. In clinical settings, it is imperative to implement appropriate therapeutic strategies aimed at enhancing endothelial function to prevent and manage diabetes-associated vascular complications. Various antidiabetic agents, including insulin, GLP-1 receptor agonists, sulfonylureas, DPP-4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, thiazolidinediones (TZDs), and metformin, are effective in mitigating blood glucose variability and improving insulin sensitivity by lowering postprandial glucose levels. Additionally, traditional Chinese medicinal compounds, such as turmeric extract, resveratrol, matrine alkaloids, tanshinone, puerarin, tanshinol, paeonol, astragaloside, berberine, and quercetin, exhibit hypoglycemic properties and enhance vascular function through diverse mechanisms. Consequently, larger randomized controlled trials involving both pharmacological and herbal interventions are essential to elucidate their impact on endothelial dysfunction in patients with diabetes. This article aims to explore a comprehensive approach to the treatment of diabetic endothelial dysfunction based on an understanding of its pathophysiology.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Mao D, Wang H, Guo H, Che X, Chen M, Li X, Liu Y, Huo J, Chen Y. Tanshinone IIA normalized hepatocellular carcinoma vessels and enhanced PD-1 inhibitor efficacy by inhibiting ELTD1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155191. [PMID: 38000104 DOI: 10.1016/j.phymed.2023.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma responds poorly to immune checkpoint inhibitors, such as PD-1 inhibitors, primarily due to the low infiltration capacity of TILs in the TME. Abnormal vasculature is an important factor which limiting the infiltration of TILs. According to recent research, targeting ELTD1 expression may improve TILs delivery to reverse immunosuppression and boost tumor responses to immunotherapy. Research has demonstrated that Tanshinone IIA (TSA) improves blood vessel normalization, but the precise mechanism is yet unknown. PURPOSE The purpose of this study is to investigate the molecular processes for TSA's pro-vascular normalization of HCC in vitro and in vivo. METHODS We established a mouse H22-luc in situ liver tumor model to evaluate the role of TSA vascular normalization and the immunosuppressive microenvironment. The role of ELTD1 in vascular and immune crosstalk was evaluated by bioinformatic analysis of the TCGA database. By creating a transwell co-culture cell model, the effects of TSA on enhancing tumor endothelial cell activities and ELTD1 intervention were evaluated. RESULTS We investigated the effect of Tanshinone IIA (TSA), a major component of Salvia miltiorrhiza Bge., on the normalization of vasculature in situ HCC models. Our results demonstrated that TSA elicited vascular normalization in a hepatocellular carcinoma model in situ. In addition, the combination of TSA with anti-PD-1 significantly inhibited tumor development due to increased infiltration of immune cells in the tumor. Mechanistically, we demonstrated that TSA improved the immunosuppressive microenvironment by inhibiting tumor growth by suppressing ELTD1 expression, inhibiting downstream JAK1 and JAK2, promoting the expression of ZO-1, occlaudin, Claudin 5, and Col IV, and promoting vascular integrity and perfusion in situ. CONCLUSIONS This study reveals a new mechanism between TSA and ELTD1 for vascular normalization, suggesting that therapeutic or pharmacological intervention with ELTD1 may enhance the efficacy of PD-1 inhibitors in HCC.
Collapse
Affiliation(s)
- Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Miaoying Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine Jiangsu Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, China.
| |
Collapse
|
5
|
Šorli J, Lenasi H. The Effect of Acute Hyperglycaemia Induced by Oral Glucose Load on Heart Rate Variability and Skin Microvascular Reactivity in Young Adults. Life (Basel) 2023; 14:56. [PMID: 38255671 PMCID: PMC10817604 DOI: 10.3390/life14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
We aimed to elucidate the effects of acute hyperglycaemia, induced by an oral glucose tolerance test (OGTT), on the autonomic nervous system (ANS) and skin microvascular reactivity at the time point of peak plasma glucose concentration (cglc) in 20 young, healthy participants. We assessed their heart rate variability (HRV) as a measure of the ANS activity and the parameters of post-occlusive reactive hyperaemia (PORH) to estimate skin microvascular reactivity as measured by laser Doppler (LD) fluxmetry. The tests were repeated 30 min after a standard OGTT (75 g glucose dissolved in 250 mL water) and, in a separate control experiment, after drinking the same amount of water. Participants had their cglc and serum insulin measured at three consecutive time-points according to the testing protocol. The low-frequency (LF) spectral power, the LF to high-frequency (LF/HF) ratio, and the diastolic blood pressure increased significantly more after water than after OGTT, and there was a trend of the peak LD flux of PORH decreasing more after OGTT than after water. Significant correlations between some PORH and all the HRV parameters and cglc increase after OGTT were found, implying diminished vascular reactivity evoked by hyperglycaemia in healthy subjects with lower glucose tolerance.
Collapse
Affiliation(s)
- Jernej Šorli
- General Hospital Dr. Franc Derganc, 5290 Šempeter pri Gorici, Slovenia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
7
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
9
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
11
|
Salvia miltiorrhiza Protects Endothelial Dysfunction against Mitochondrial Oxidative Stress. Life (Basel) 2021; 11:life11111257. [PMID: 34833133 PMCID: PMC8622679 DOI: 10.3390/life11111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.
Collapse
|
12
|
Lai Z, He J, Zhou C, Zhao H, Cui S. Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem 2021; 28:2807-2827. [PMID: 32436817 DOI: 10.2174/0929867327666200521124850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Tanshinones are an important type of natural products isolated from Salvia miltiorrhiza Bunge with various bioactivities. Tanshinone IIa, cryptotanshinone and tanshinone I are three kinds of tanshinones which have been widely investigated. Particularly, sodium tanshinone IIa sulfonate is a water-soluble derivative of tanshinone IIa and it is used in clinical in China for treating cardiovascular diseases. In recent years, there are increasing interests in the investigation of tanshinones derivatives in various diseases. This article presents a review of the anti-atherosclerotic effects, cardioprotective effects, anticancer activities, antibacterial activities and antiviral activities of tanshinones and structural modification work in recent years.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changxin Zhou
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang Y, Liu N, Huang X, Hu W, Ma Y, Liang Y, Xie W, Tang M. Atmospheric particulate matter impedes autophagic flux by impairing lysosomal milieu and integrity in human umbilical vein endothelial cells (HUVECs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143290. [PMID: 33243499 DOI: 10.1016/j.scitotenv.2020.143290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a dynamic process for waste disposal and cell equilibrium. Previous studies have demonstrated that atmospheric particulate matter (APM) induces autophagy and enhances LC3II expression in human vascular endothelial cells. However, the underlying mechanism of autophagosome accumulation in human vascular endothelial cells under the exposure to APM has not been understood. In principle, the upregulation of LC3II or autophagosomes accumulation is presumably caused by the enhancement of autophagic ability, or alternatively, by the abnormal autophagic degradation. Therefore, in the current study, autophagic ability and autophagic flux are systemically studied to decipher the exact cause of autophagosomes accumulation in human umbilical vein endothelial cells (HUVECs) in response to a standard urban particulate matter, PM SRM1648a. As a result, it was observed that after 24 h of exposure, PM SRM1648a significantly increases LC3II expression with apparent autophagosomes accumulation in HUVECs. Compared with the control group, there is a time-dependent increase in p62, a protein of autophagic substrate that can be preliminarily used to evaluate the autophagic degradation, in the PM SRM1648a-exposed HUVECs, which suggested that normal function of autophagic degradation was probably impaired. Additionally, mRFP-GFP-LC3 assay and LAMP-2/LC3B co-localization suggested that autolysosomes (fusion between autophagosomes and lysosomes) were partially inhibited in PM SRM1648a-treated HUVECs. Furthermore, LC3II turn-over assay hinted that after 24 h, LC3II upregulation is attributed to the blockage of autophagic flux instead of the enhancement of autophagic induction. Mechanistically, the blockade of autophagic flux can be explained by the detrimental effects of PM SRM1648a on lysosomal function, including lysosomal destabilization, lysosomal alkalization and hydrolase inactivation, which are involved in the blockade of fusion between autophagosomes and lysosomes, further disrupting autophagic degradation and waste disposal. These observations provide evidence that PM SRM1648a destroys the equilibrium of lysosomal stability and thus results in the dysfunction of autophagic flux, eventually contributing to endothelial cell damage.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China.
| | - Na Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Wenjing Xie
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, School of Public Health, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
14
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152871. [PMID: 30851580 DOI: 10.1016/j.phymed.2019.152871] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical constituents, pharmacological activities against diabetes and its complications, and safety. METHODS A comprehensive search of published literatures was conducted to locate original publications pertaining to SM and diabetes till the end of 2017 using PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science database. The main inquiry was used for the presence of the following keywords in various combinations in the titles and abstracts: Salvia miltiorrhiza, diabetes, obesity, phytochemistry, pharmacology, and safety. About 200 research papers and reviews were consulted. RESULTS SM exhibited anti-diabetic activities by treating macro- and micro-vascular diseases in preclinical experiments and clinical trials through an improvement of redox homeostasis and inhibition of apoptosis and inflammation via the regulation of Wnt/β-catenin, TSP-1/TGF-β1/STAT3, JNK/PI3K/Akt, kinin B2 receptor-Akt-GSK-3β, AMPKβ/PGC-1α/Sirt3, Akt/AMPK, TXNIP/NLRP3, TGF-β1/NF-κB, mineralocorticoid receptor/Na+/K+-ATPase, AGEs/RAGE, Nrf2/Keap1, CaMKKβ/AMPK, AMPK/ACC, IRS-1/PI3K signaling pathways, and modulation of K+-Ca2+ channels, as well as influence of VEGF, NOS, AGEs, PPAR expression and hIAPP aggregation. The antidiabetic effects of this herb may be related to its TCM characters of improving blood circulation and reliving blood stasis. The main ingredients of SM included salvianolic acids and diterpenoid tanshinones, which have been well studied in the diabetic animals. Acute and subacute toxicity studies supported the notion that SM is well tolerated. CONCLUSION SM may offer a new strategy for prevention and treatment of diabetes and its complications that stimulates extensive research into identifying potential anti-diabetic compounds and fractions as well as exploring the underlying mechanisms of this herb. Further scientific evidences are still required from well-designed preclinical experiments and clinical trials on its anti-diabetic effects and safety.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiwen Che
- The Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dandan Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Wang Y, Zou L, Wu T, Xiong L, Zhang T, Kong L, Xue Y, Tang M. Identification of mRNA-miRNA crosstalk in human endothelial cells after exposure of PM2.5 through integrative transcriptome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:863-873. [PMID: 30597786 DOI: 10.1016/j.ecoenv.2018.11.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
PM2.5 has implications in cardiovascular adverse events, but the underlying mechanisms are still obscure. The aim of this study is to evaluate miRNA expression in endothelial cells in response to two realistic doses of PM2.5 and to identify the possible gene targets of deregulated miRNAs through microarray profiling and computational technology. As a result, there are 18 differentially expressed miRNAs between 2.5 μg/cm2 group and the control, of which 11 miRNAs are up-regulated and 7 miRNAs are down-regulated. Relative to the control group, 40 miRNAs are significantly changed in 10 μg/cm2 group with 21 miRNAs being upregulated and 19 miRNAs being downregulated. Interestingly, when two PM2.5-treated groups respectively compared with the control, the expressed trends of 12 miRNAs in 2.5 μg/cm2 group are the same as those in 10 μg/cm2 group, with 8 being upregulated and 4 miRNAs being simultaneously downregulated. Gene ontology (GO) analysis shows that the crucial functional categories of miRNA-targeted genes incorporate transcription-related process and intracellular signal transduction. Pathway analysis reveals that endocytosis, FoxO signaling pathway and PI3K-Akt signaling pathway are involved in the PM2.5-caused cardiotoxicity. Further confirmation by RT-qPCR indicates that PM2.5 could induce the down-regulation of hsa-miR-128-3p, hsa-miR-96-5p, hsa-miR-28-5p, hsa-miR-4478 and hsa-miR-6808-5p, which are in accordance with the results of array data. With the comprehensive analysis of mRNAs and miRNAs, a great number of pairs have been identified, suggesting abnormally expressed miRNAs have functions in the cardiotoxicity of PM2.5, and the function may be achieved through the post-transcriptional regulation of certain genes on the related pathways.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu 210003, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
17
|
Sharifi-Rad M, Ozcelik B, Altın G, Daşkaya-Dikmen C, Martorell M, Ramírez-Alarcón K, Alarcón-Zapata P, Morais-Braga MFB, Carneiro JN, Alves Borges Leal AL, Coutinho HDM, Gyawali R, Tahergorabi R, Ibrahim SA, Sahrifi-Rad R, Sharopov F, Salehi B, del Mar Contreras M, Segura-Carretero A, Sen S, Acharya K, Sharifi-Rad J. Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Joshi S, Kar S, Kavdia M. Computational analysis of interactions of oxidative stress and tetrahydrobiopterin reveals instability in eNOS coupling. Microvasc Res 2017; 114:114-128. [PMID: 28729163 DOI: 10.1016/j.mvr.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for improvement in endothelial dysfunction. Our understanding of the complex interactions of eNOS uncoupling, oxidative stress and BH4 availability is not complete and a quantitative understanding of these interactions is required. In the present study, we developed a computational model for eNOS uncoupling that considers the temporal changes in biopterin ratio in the oxidative stress conditions. Using the model, we studied the effects of cellular oxidative stress (Qsupcell) representing the non-eNOS based oxidative stress sources and BH4 synthesis (QBH4) on eNOS NO production and biopterin ratio (BH4/total biopterins (TBP)). Model results showed that oxidative stress levels from 0.01 to 1nM·s-1 did not affect eNOS NO production and eNOS remained in coupled state. When the Qsupcell increased above 1nM·s-1, the eNOS coupling and NO production transitioned to an oscillatory state. Oxidative stress levels dynamically changed the biopterin ratio. When Qsupcell increased from 1 to 100nM·s-1, the endothelial cell NO production, TBP levels and biopterin ratio reduced significantly from 26.5 to 2nM·s-1, 3.75 to 0.002μM and 0.99 to 0.25, respectively. For an increase in BH4 synthesis, the improvement in NO production rate and BH4 levels were dependent on the extent of cellular oxidative stress. However, a 10-fold increase in QBH4 at higher oxidative stresses did not restore the NO-production rate and the biopterin ratio. Our mechanistic analysis reveals that a combination of enhancing tetrahydrobiopterin level with a reduction in cellular oxidative stress may result in significant improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Saptarshi Kar
- Engineering Computational Biology Group, University of Western Australia, Crawley, WA 6009, Australia
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
20
|
Wang N, Chang Y, Chen L, Guo YJ, Zhao YS, Guo QH, Ji ES. Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway. Biomed Pharmacother 2017; 95:1013-1020. [PMID: 28922718 DOI: 10.1016/j.biopha.2017.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 01/31/2023] Open
Abstract
Tanshinone IIA (Tan IIA) may exert significant protective effects against heart oxidative stress damage in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH)-triggered left ventricular dysfunction is used in a rat model to mimic CIH in OSA patients. 48 rats were randomly divided into three groups: normal control (NC) group, CIH group and CIH+Tan IIA group with 16 rats in each group. At the end of experiment (day 21), the blood pressure, Plasma ET-1 and NO content, hemodynamic indexes, heart histology, myocardial apoptosis as well as the expression of eNOS, ET-1, ETA receptor and ETB receptor were compared among different groups. Tan IIA was able to inhibit the increase of blood pressure induced by CIH. Meanwhile, rat cardiac function in Tan IIA group was evaluated by hemodynamic indexes, histopathological examination. Higher ventricular eNOS activity was induced by Tan IIA with a reduction in both ET-1 and ETA receptor expression. However, Tan IIA largely inhibited the decrease of ETB receptor expression. This study demonstrated that Tan IIA has the potential to benefit rat heart against CIH via endothelin system.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yue Chang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Lingling Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Jing Guo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Shuo Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Qiu-Hong Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Chen F, Li H, Zhu G, Chen X, Tang Z. Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model. Mol Med Rep 2017; 16:87-94. [PMID: 28498471 PMCID: PMC5482147 DOI: 10.3892/mmr.2017.6573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the effects of sodium tanshinone IIA sulfonate (STS) on inflammatory responses, aortic endothelial cell apoptosis, disseminated intravascular coagulation (DIC) and multiple organ damage in an animal model of classic heat stroke (CHS). The rats in the heat stroke (HS) and STS-treated heat stroke (STS-HS) groups were placed into a pre-warmed animal temperature controller (ATC) at 35°C. The moment at which the rectal temperature reached 43.5°C was considered as the time of onset of HS. In the HS groups, the rats were removed from the ATC and allowed to recover at 26°C for 0, 2, 6 or 12 h. In the STS-HS groups, the rats received femoral vein injections of 5–40 mg/kg STS immediately following the onset of HS and were subsequently placed at a temperature of 26°C to recover for 6 h. In the present study, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were assessed using ELISA, and the numbers of apoptotic aortic endothelial cells were investigated using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling combined with immunofluorescence. In the HS groups, the serum levels of TNF-α, IL-1β and IL-6, as well as the numbers of apoptotic aortic endothelial cells were increased compared with the normothermic control group. Additionally, the plasma prothrombin time, activated partial thromboplastin time and D-dimer level were significantly increased in the HS group compared with the normothermic control group following recovery for 6 h. By contrast, the platelet count was decreased in the HS group compared with the normothermic control group. The serum levels of creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase were increased and histopathological damage to multiple organs was observed in the HS group following recovery for 6 h. In the STS-HS groups, cytokine levels and apoptotic aortic endothelial cell numbers were reduced compared with the HS group after 6 h recovery. STS (40 mg/kg) treatment additionally improved the serum levels of organ injury indicators and plasma indicators of coagulopathy, and prevented histopathological damage to multiple organs. These findings demonstrated that STS treatment may ameliorate multiple organ damage by attenuating inflammatory responses, aortic endothelial cell apoptosis and DIC in CHS. These results suggested that STS may hold potential as an alternative therapeutic strategy for the treatment of patients with HS.
Collapse
Affiliation(s)
- Fang Chen
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Huimin Li
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Xiaojuan Chen
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
22
|
Fang J, Little PJ, Xu S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2017; 38:201-228. [PMID: 28295428 DOI: 10.1002/med.21438] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 01/07/2023]
Abstract
Medicinal plant-derived bioactive compounds modulate multiple therapeutic targets in cardiovascular diseases (CVDs), rendering herb-derived phytochemicals effective against one of the major CVDs-atherosclerosis. Danshen (Salvia milthiorriza Bunge) is a Chinese medicine that has been used in cardio- and cerebro-vascular therapeutic remedies in Asian countries for many years. Emerging evidence from cellular, animal, and clinical studies suggests that major lipophilic tanshinones from Danshen can treat atherosclerotic CVDs. In this review, we highlight recent advances in understanding the molecular mechanisms of tanshinones in treating atherosclerosis, ranging from endothelial dysfunction to chronic inflammation. We also overview new molecular targets of tanshinones, including endothelial nitric oxide synthase, AMP-activated protein kinase, ABC transporter A1, heme oxygenase 1, soluble epoxide hydrolase, 11β-hydroxysteroid dehydrogenase, estrogen receptor, and proprotein convertase subtilisin/kexin type 9. Thus, this review provides a new perspective for advancing our understanding of the "ancient" herb Danshen from "modern" biomedical perspectives, supporting the possibility of exploiting tanshinones and derivatives as effective therapeutics against atherosclerosis-related cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jian Fang
- Department of Pharmacy, Huadu District People's Hospital,Southern Medical University, 48 Xinhua Road, Guangzhou, 510800, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence (PACE), School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Xinhua College, Sun Yat-sen University, Guangzhou, 510520, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
23
|
Vorn R, Yoo HY. Effects of high glucose with or without other metabolic substrates on alpha-adrenergic contractions in rat mesenteric and femoral arteries. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:91-97. [PMID: 28066145 PMCID: PMC5214915 DOI: 10.4196/kjpp.2017.21.1.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
Hyperglycemia is associated with an increased risk of cardiovascular diseases. It has been demonstrated that chronic exposure to high glucose impaired endothelial functions. However, specific effects of short-term exposure to high glucose on vascular reactivity are controversial. Moreover, the combined effects of other metabolic substrates such as free fatty acids (FFA) on vascular reactivity remain poorly understood. Here we investigate the effects of short-term exposure to high glucose with or without other metabolic substrates including FFAs termed “nutrition full” (NF) solution, on mesenteric (MA) and deep femoral arteries (DFA) of rats. Arterial ring segments were mounted in a double-wire myograph. Contraction in response to phenylephrine (PhE) was determined in control (5 mM) and high glucose (23 mM, HG) environments over a 30 min period. In both arteries, PhE-inducedvasocontraction was enhanced by pre-incubation of HG solution. A combined incubation with HG and palmitic acid (100 µM) induced similar sensitization of PhE-contractions in both arteries. In contrast, high K+-induced contractions were not affected by HG. Interestingly, pre-incubation with NF solution decreased PhE-induced contraction in MA but increased the contraction in DFA. In NF solution, the HG-induced facilitation of PhE-contraction was not observed in MA. Furthermore, the PhE-induced contraction of DFA was attenuated by HG in NF solution. Our results demonstrate that the sensitization of PhE-induced arterial contraction by HG is differentially affected by other metabolic substrates. The conversation of skeletal arterial contractility by HG in NF solution requires careful interpretation of the previous in vitro studies where only glucose is included in physiological salt solutions. Further studies are required to elucidate the mechanism underlying the inconsistent effect of NF solution on MA and DFA.
Collapse
Affiliation(s)
- Rany Vorn
- Chung-Ang University Red Cross College of Nursing, Seoul 06974, Korea.; Chung-Ang University Graduate School, Seoul 06974, Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul 06974, Korea
| |
Collapse
|
24
|
Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4797102. [PMID: 27807472 PMCID: PMC5078662 DOI: 10.1155/2016/4797102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Aging-associated cardiovascular diseases (CVDs) have some risk factors that are closely related to oxidative stress. Salvia miltiorrhiza (SM) has been used commonly to treat CVDs for hundreds of years in the Chinese community. We aimed to explore the effects of SM on oxidative stress in aging-associated CVDs. Through literature searches using Medicine, PubMed, EMBASE, Cochrane library, CINAHL, and Scopus databases, we found that SM not only possesses antioxidant, antiapoptotic, and anti-inflammatory effects but also exerts angiogenic and cardioprotective activities. SM may reduce the production of reactive oxygen species by inhibiting oxidases, reducing the production of superoxide, inhibiting the oxidative modification of low-density lipoproteins, and ameliorating mitochondrial oxidative stress. SM also increases the activities of catalase, manganese superoxide dismutase, glutathione peroxidase, and coupled endothelial nitric oxide synthase. In addition, SM reduces the impact of ischemia/reperfusion injury, prevents cardiac fibrosis after myocardial infarction, preserves cardiac function in coronary disease, maintains the integrity of the blood-brain barrier, and promotes self-renewal and proliferation of neural stem/progenitor cells in stroke. However, future clinical well-designed and randomized control trials will be necessary to confirm the efficacy of SM in aging-associated CVDs.
Collapse
|
25
|
Del Pino-García R, Gerardi G, Rivero-Pérez MD, González-SanJosé ML, García-Lomillo J, Muñiz P. Wine pomace seasoning attenuates hyperglycaemia-induced endothelial dysfunction and oxidative damage in endothelial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Ma H, Wang L, Huang D, Liu G, Zhang M. Tongguan capsule ameliorates coronary artery stenosis in a 40-year-old woman. Drug Des Devel Ther 2015; 9:4413-6. [PMID: 26309395 PMCID: PMC4539080 DOI: 10.2147/dddt.s85571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, with coronary heart disease as the major contributor to this related mortality. There is a growing trend in the application of Chinese medicine in clinical practice for the treatment of coronary heart disease. However, there is a lack of knowledge surrounding the pharmacological, toxicological, and biological profiles of Chinese medicine. In this case report, we describe the therapeutic effects of Tongguan capsule in a 40-year-old woman diagnosed with stable angina pectoris. To the best of the authors' knowledge, this is the first case documented of the therapeutic effect of Tongguan capsule in the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Huan Ma
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, People’s Republic of China
| | - Lei Wang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, People’s Republic of China
| | - Daozheng Huang
- Department of Critical Care Medicine, Guangdong General Hospital, Guangdong, People’s Republic of China
| | - Guoqing Liu
- Medical Imaging Central, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minzhou Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, People’s Republic of China
| |
Collapse
|
27
|
He W, Shi F, Zhou ZW, Li B, Zhang K, Zhang X, Ouyang C, Zhou SF, Zhu X. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver. Drug Des Devel Ther 2015; 9:3989-4104. [PMID: 26347199 PMCID: PMC4529259 DOI: 10.2147/dddt.s85426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug-drug interaction via chemical-protein interactome tool, a server that can predict drug-drug interaction via chemical-protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that UA may act as a promising antifibrotic agent. More studies are warranted to evaluate the safety and efficacy of UA in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wenhua He
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Feng Shi
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Bimin Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Kunhe Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xinhua Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Canhui Ouyang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xuan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
28
|
González M, Rojas S, Avila P, Cabrera L, Villalobos R, Palma C, Aguayo C, Peña E, Gallardo V, Guzmán-Gutiérrez E, Sáez T, Salsoso R, Sanhueza C, Pardo F, Leiva A, Sobrevia L. Insulin reverses D-glucose-increased nitric oxide and reactive oxygen species generation in human umbilical vein endothelial cells. PLoS One 2015; 10:e0122398. [PMID: 25875935 PMCID: PMC4397070 DOI: 10.1371/journal.pone.0122398] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023] Open
Abstract
Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose-alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0-1000 μmol/L) was measured in response to 5-25 mmol/L D-glucose (0-36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose-increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose-increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2•-) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2•- generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose-increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose-reduced BH4 level. Insulin and tempol blocked the high D-glucose-increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2•-/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia.
Collapse
Affiliation(s)
- Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), PO-Box 114-D, Chillán 3800708, Chile
| | - Susana Rojas
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Pía Avila
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
- Department of Morphophysiology, Faculty of Medicine, Universidad Diego Portales, Santiago 8370076, Chile
| | - Roberto Villalobos
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Carlos Palma
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), PO-Box 114-D, Chillán 3800708, Chile
| | - Eduardo Peña
- Department of Physiopathology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Victoria Gallardo
- Department of Physiopathology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Enrique Guzmán-Gutiérrez
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), PO-Box 114-D, Chillán 3800708, Chile
- Faculty of Health Sciences, Universidad San Sebastián, Concepción 4080871, Chile
| | - Tamara Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| | - Luis Sobrevia
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile
| |
Collapse
|
29
|
Li YH, Xu Q, Xu WH, Guo XH, Zhang S, Chen YD. Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim Biophys Acta Gen Subj 2015; 1850:813-23. [DOI: 10.1016/j.bbagen.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/06/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
|
30
|
Han XD, Zhou ZW, Yang W, Ye HC, Xu YZ, Huang YF, Zhang T, Zhou SF. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1063-102. [PMID: 25733819 PMCID: PMC4342182 DOI: 10.2147/dddt.s76336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of death worldwide and remains a major life-threatening factor in humans. Apoptosis has been implicated in the pathogenesis of IHD. The Chinese herbal formula Huo Luo Xiao Ling Dan (HLXLD), one of the commonly used Chinese herbal formulas, consists of Salviae miltiorrhizae, Angelica sinensis, Gummi olibanum, and Commiphora myrrha, with a wide spectrum of pharmacological activity. However, the mechanism of action and molecular targets of HLXLD in the treatment of IHD are unclear. This study aimed to computationally predict the molecular interactions between the major active components of HLXLD and key regulators of apoptosis and then examine the effect of HLXLD on coronary artery ligation-induced acute myocardial ischemia in rats. The molecular interactions between the major active components of HLXLD, including ferulic acid, ligustilide, succinic acid, vanillic acid, tanshinone IIA, tanshinone IIB, danshensu, salvianolic acid A, salvianolic acid C, protocatechuic aldehyde, and β-boswellic acid and human protein molecules including B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 antagonist/killer 1 (Bak1), B cell lymphoma 2 (Bcl-2), procaspase 3, and caspase 9 with regard to hydrogen bond formation, charge interaction, and π-π stacking using Discovery Studio(®) program 3.1. The 12 HLXLD components were predicted by ADMET (absorption, distribution, metabolism, excretion and toxicity) Predictor to have favorable pharmacokinetic and low hepatotoxicity profiles. The acute myocardial ischemia was established by surgical ligation of the left anterior descending coronary artery. The rats were divided into a sham operative group, a model group, a positive control group treated with 0.2 mg/kg isosorbide mononitrate, and groups treated with 2.7, 5.4, or 10.8 g/kg HLXLD. The results showed that administration of HLXLD increased mean arterial pressure, left ventricular systolic pressure, heart rate, and maximal rate of rise/descent of left ventricular pressure levels. Administration of HLXLD significantly ameliorated coronary artery ligation-induced tissue damage in the left ventricle, with restored arrangement of myocardial fibers and recovered myoplasm in rats. Furthermore, HLXLD markedly increased the expression level of Bcl-2 but decreased the level of cleaved caspase 3. Taken together, administration of HLXLD attenuated acute myocardial ischemia-induced damage in cardiomyocytes and inhibited apoptotic death of cardiomyocytes, thereby exerting a cardioprotective effect in rats with IHD. These findings suggest that HLXLD may represent a promising herbal formula for the treatment of cardiovascular disease by counteracting apoptotic cell death via multiple active compounds. More studies are warranted to fully elucidate the mechanisms of action, identify the therapeutic targets, and validate the efficacy and safety of HLXLD in the treatment of IHD.
Collapse
Affiliation(s)
- Xiang-Dong Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Guizhou Medical University, Guiyang, People's Republic of China ; Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, People's Republic of China
| | - Wei Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hang-Cheng Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying-Zi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yun-Feng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
31
|
Cao H, Zhang L, Sun ZB, Cheng XH, Zhang Y, Zou HB. Salvia miltiorrhiza prevents deep vein thrombosis via antioxidative effects in endothelial cells. Mol Med Rep 2015; 11:3593-600. [PMID: 25572347 DOI: 10.3892/mmr.2015.3153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common clinical problem, which represents a significant clinical and economic burden. The present study investigated whether Salvia miltiorrhiza (S. miltiorrhiza) could prevent DVT. A total of 30 rabbits were randomly divided into three groups (n=10 per group): The control, model and Salvia groups. A ligation model was used, where the femoral veins of rabbits were exposed and ligated. Measurements of coagulation function, blood rheological parameters, antioxidative function and effects on endothelial cells were conducted. Treatment with S. miltiorrhiza one week prior to generation of the ligation model did not affect the coagulation function much, except to increase the prothrombin time. There was a statistically significant difference (P<0.05) in whole blood viscosity (1/s, 5/s, 30/s) on the third and seventh days (1/s, 5/s, 30/s and 200/s) following generation of the model. S. miltiorrhiza exhibited promising antioxidative effects, as demonstrated by a significant decrease in malondialdehyde content (P<0.05), and an increase in the activities of superoxide dismutase (P<0.05), as compared with the model group. S. miltiorrhiza was also shown to protect the vascular endothelial cells, as compared with the model group. These results suggest that S. miltiorrhiza may have potential applications for the treatment of DVT.
Collapse
Affiliation(s)
- Hong Cao
- Department of Orthopedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lei Zhang
- Department of Orthopedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhi-Bo Sun
- Department of Orthopedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xin-Hua Cheng
- Department of Orthopedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ying Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hai-Bing Zou
- Department of Orthopedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
32
|
Anti-Inflammatory and Immunomodulatory Mechanism of Tanshinone IIA for Atherosclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:267976. [PMID: 25525444 PMCID: PMC4267215 DOI: 10.1155/2014/267976] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/06/2014] [Indexed: 01/28/2023]
Abstract
Tanshinone IIA (Tan II A) is widely used in the treatment of cardiovascular diseases as an active component of Salvia miltiorrhiza Bunge. It has been demonstrated to have pleiotropic effects for atherosclerosis. From the anti-inflammatory and immunomodulatory mechanism perspective, this paper reviewed major progresses of Tan IIA in antiatherosclerosis research, including immune cells, antigens, cytokines, and cell signaling pathways.
Collapse
|
33
|
Su Y, Qadri SM, Hossain M, Wu L, Liu L. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem Pharmacol 2013; 86:1762-74. [PMID: 24144633 DOI: 10.1016/j.bcp.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte-endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300μM) or MnTBAP (300μM), by BH4 supplementation (100μM) or by NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 20μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by L-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by L-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
34
|
Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Diabetol 2013; 12:142. [PMID: 24093550 PMCID: PMC3851327 DOI: 10.1186/1475-2840-12-142] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/04/2013] [Indexed: 01/14/2023] Open
Abstract
Background Endothelial dysfunction precedes pathogenesis of vascular complications in diabetes. In recent years, the mechanisms of endothelial dysfunction were investigated to outline strategies for its treatment. However, the therapies for dysfunctional endothelium resulted in multiple clinical trial failures and remain elusive. There is a need for defining hyperglycemia-induced endothelial dysfunction with both generic and specific dysfunctional changes in endothelial cells (EC) using a systems approach. In this study, we investigated hyperglycemia-induced endothelial dysfunction in HUVEC and HMVEC. We investigated hyperglycemia-induced functional changes (superoxide (O2‾), and hydrogen peroxide (H2O2) production and mitochondrial membrane polarization) and gene expression fingerprints of related enzymes (nitric oxide synthase, NAD(P)H oxidase, and reactive oxygen species (ROS) neutralizing enzymes) in both ECs. Method Gene expression of NOS2, NOS3, NOX4, CYBA, UCP1, CAT, TXNRD1, TXNRD2, GPX1, NOX1, SOD1, SOD2, PRDX1, 18s, and RPLP0 were measured using real-time PCR. O2‾ production was measured with dihydroethidium (DHE) fluorescence measurement. H2O2 production was measured using Amplex Red assay. Mitochondrial membrane polarization was measured using JC-10 based fluorescence measurement. Results We showed that the O2‾ levels increased similarly in both ECs with hyperglycemia. However, these endothelial cells showed significantly different underlying gene expression profile, H2O2 production and mitochondrial membrane polarization. In HUVEC, hyperglycemia increased H2O2 production, and hyperpolarized mitochondrial membrane. ROS neutralizing enzymes SOD2 and CAT gene expression were downregulated. In contrast, there was an upregulation of nitric oxide synthase and NAD(P)H oxidase and a depolarization of mitochondrial membrane in HMVEC. In addition, ROS neutralizing enzymes SOD1, GPX1, TXNRD1 and TXNRD2 gene expression were significantly upregulated in high glucose treated HMVEC. Conclusion Our findings highlighted a unique framework for hyperglycemia-induced endothelial dysfunction. We showed that multiple pathways are differentially affected in these endothelial cells in hyperglycemia. High occurrences of gene expression changes in HMVEC in this study supports the hypothesis that microvasculature precedes macrovasculature in epigenetic regulation forming vascular metabolic memory. Identifying genomic phenotype and corresponding functional changes in hyperglycemic endothelial dysfunction will provide a suitable systems biology approach for understanding underlying mechanisms and possible effective therapeutic intervention.
Collapse
Affiliation(s)
- Hemang Patel
- Department of Biomedical Engineering, Wayne State University, 2322 Engineering, 5050 Anthony Wayne Dr,, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|