1
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
2
|
Jia Y, Xu L, Wang L, Yan K, Chen J, Xu P, Di B, Yan F, Hu C. A light-up fluorescence probe for wash-free analysis of Mu-opioid receptor and ligand-binding events. Anal Chim Acta 2023; 1261:341220. [PMID: 37147056 DOI: 10.1016/j.aca.2023.341220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
With the aggravated burden of opioid use disorder spreading worldwide, demands for new forms of opioid receptor agonist/antagonist constitute immense research interest. The Mu-opioid receptor (MOR) is currently in the spotlight on account of its general involvement in opioid-induced antinociception, tolerance and dependence. MOR binding assay, however, is often complicated by difficulty in MOR separation and purification, as well as the tedious procedure in standard biolayer interferometry and surface plasmon resonance measurements. To this end, we present TPE2N as a light-up fluorescent probe for MOR, which exhibits satisfactory performance in both live cells and lysates. TPE2N was elaborately designed based on the synergistic effect of twisted intramolecular charge-transfer and aggregation-induced emission by incorporating a tetraphenylethene unit to emit strong fluorescence in a restrained environment upon binding with MOR through the naloxone pharmacore. The developed assay enabled high-throughput screening of a compound library, and successfully identified three ligands as lead compounds for further development.
Collapse
Affiliation(s)
- Yan Jia
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lili Xu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lancheng Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Kun Yan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Jieru Chen
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Pengcheng Xu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Bin Di
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| | - Fang Yan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| | - Chi Hu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| |
Collapse
|
3
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
4
|
Faulkner C, de Leeuw NH. Predicting the Membrane Permeability of Fentanyl and Its Analogues by Molecular Dynamics Simulations. J Phys Chem B 2021; 125:8443-8449. [PMID: 34286980 PMCID: PMC8389899 DOI: 10.1021/acs.jpcb.1c05438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The lipid membrane
is considered a crucial component of opioid
general anesthesia. The main drug used for the induction and maintenance
of opioid anesthesia is fentanyl and its various analogues. However,
these drugs have different clinical effects, and detailed atomic-level
insight into the drug–membrane interactions could lead to a
better understanding how these drugs exert their anesthetic properties.
In this study, we have used extensive umbrella sampling molecular
dynamics simulations to study the permeation process of fentanyl and
three of its analogues into a variety of simple phospholipid membrane
models. Our simulations show that we can accurately predict the permeability
coefficients of these drug molecules, which is an important process
in understanding how pharmaceuticals reach their molecular targets.
We were also able to show that one phospholipid provides more accurate
predictions than other lipids commonly used in these types of permeation
studies, which will aid future studies of these types of processes.
Collapse
Affiliation(s)
- Christopher Faulkner
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Nora H de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.,School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
5
|
Xi J, Yang N, Perez-Aguilar JM, Selling B, Grothusen JR, Lamichhane R, Saven JG, Liu R. Novel variants of engineered water soluble mu opioid receptors with extensive mutations and removal of cysteines. Proteins 2021; 89:1386-1393. [PMID: 34152652 DOI: 10.1002/prot.26160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
We have shown that water-soluble variants of the human mu opioid receptor (wsMOR) containing a reduced number of hydrophobic residues at the lipid-facing residues of the transmembrane (TM) helices can be expressed in E. coli. In this study, we tested the consequences of increasing the number of mutations on the surface of the transmembrane domain on the receptor's aqueous solubility and ligand binding properties, along with mutation of 11 cysteine residues regardless of their solvent exposure value and location in the protein. We computationally engineered 10 different variants of MOR, and tested four of them for expression in E. coli. We found that all four variants were successfully expressed and could be purified in high quantities. The variants have alpha helical structural content similar to that of the native MOR, and they also display binding affinities for the MOR antagonist (naltrexone) similar to the wsMOR variants we engineered previously that contained many fewer mutations. Furthermore, for these full-length variants, the helical content remains unchanged over a wide range of pH values (pH 6 ~ 9). This study demonstrates the flexibility and robustness of the water-soluble MOR variants with respect to additional designed mutations in the TM domain and changes in pH, whereupon the protein's structural integrity and its ligand binding affinity are maintained. These variants of the full-length MOR with less hydrophobic surface residues and less cysteines can be obtained in large amounts from expression in E. coli and can serve as novel tools to investigate structure-function relationships of the receptor.
Collapse
Affiliation(s)
- Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nanmu Yang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jose Manuel Perez-Aguilar
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA.,School of Chemical Science, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Bernard Selling
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Grothusen
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Joseph TT, Bu W, Lin W, Zoubak L, Yeliseev A, Liu R, Eckenhoff RG, Brannigan G. Ketamine Metabolite (2 R,6 R)-Hydroxynorketamine Interacts with μ and κ Opioid Receptors. ACS Chem Neurosci 2021; 12:1487-1497. [PMID: 33905229 PMCID: PMC8154314 DOI: 10.1021/acschemneuro.0c00741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
![]()
Ketamine is an anesthetic,
analgesic, and antidepressant whose
secondary metabolite (2R,6R)-hydroxynorketamine
(HNK) has N-methyl-d-aspartate-receptor-independent
antidepressant activity in a rodent model. In humans, naltrexone attenuates
its antidepressant effect, consistent with opioid pathway involvement.
No detailed biophysical description is available of opioid receptor
binding of ketamine or its metabolites. Using molecular dynamics simulations
with free energy perturbation, we characterize the binding site and
affinities of ketamine and metabolites in μ and κ opioid
receptors, finding a profound effect of the protonation state. G-protein
recruitment assays show that HNK is an inverse agonist, attenuated
by naltrexone, in these receptors with IC50 values congruous
with our simulations. Overall, our findings are consistent with opioid
pathway involvement in ketamine function.
Collapse
Affiliation(s)
- Thomas T. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wenzhen Lin
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lioudmila Zoubak
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Alexei Yeliseev
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
7
|
Kaserer T, Steinacher T, Kainhofer R, Erli F, Sturm S, Waltenberger B, Schuster D, Spetea M. Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Sci Rep 2020; 10:13804. [PMID: 32796875 PMCID: PMC7427800 DOI: 10.1038/s41598-020-70493-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects. Medicinal plants represent important sources of new drug candidates, with morphine and its semisynthetic analogues as well-known examples as analgesic drugs. In this study, combining in silico (pharmacophore-based virtual screening and docking) and pharmacological (in vitro binding and functional assays, and behavioral tests) approaches, we report on the discovery of two naturally occurring plant alkaloids, corydine and corydaline, as new MOR agonists that produce antinociceptive effects in mice after subcutaneous administration via a MOR-dependent mechanism. Furthermore, corydine and corydaline were identified as G protein-biased agonists to the MOR without inducing β-arrestin2 recruitment upon receptor activation. Thus, these new scaffolds represent valuable starting points for future chemical optimization towards the development of novel opioid analgesics, which may exhibit improved therapeutic profiles.
Collapse
Affiliation(s)
- Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Theresa Steinacher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Roman Kainhofer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Filippo Erli
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Sonja Sturm
- Department of Pharmacognosy, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Birgit Waltenberger
- Department of Pharmacognosy, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
- Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
8
|
Zhao B, Li W, Sun L, Fu W. The Use of Computational Approaches in the Discovery and Mechanism Study of Opioid Analgesics. Front Chem 2020; 8:335. [PMID: 32500054 PMCID: PMC7242749 DOI: 10.3389/fchem.2020.00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Opioid receptors that belong to class A G protein-coupled receptors (GPCRs) are vital in pain control. In the past few years, published high-resolution crystal structures of opioid receptor laid a solid basis for both experimental and computational studies. Computer-aided drug design (CADD) has been established as a powerful tool for discovering novel lead compounds and for understanding activation mechanism of target receptors. Herein, we reviewed the computational-guided studies on opioid receptors for the discovery of new analgesics, the structural basis of receptor subtype selectivity, agonist interaction mechanism, and biased signaling mechanism.
Collapse
Affiliation(s)
- Bangyi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lijie Sun
- Shijiazhuang No. 4 Pharmaceutical Co., Ltd., Shijiazhuang Economic and Technological Development Zone, Shijiazhuang, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt 1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020; 25:E2087. [PMID: 32365707 PMCID: PMC7248707 DOI: 10.3390/molecules25092087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure-activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2',6'-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand-MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
10
|
Szűcs E, Marton J, Szabó Z, Hosztafi S, Kékesi G, Tuboly G, Bánki L, Horváth G, Szabó PT, Tömböly C, Varga ZK, Benyhe S, Ötvös F. Synthesis, biochemical, pharmacological characterization and in silico profile modelling of highly potent opioid orvinol and thevinol derivatives. Eur J Med Chem 2020; 191:112145. [PMID: 32092588 DOI: 10.1016/j.ejmech.2020.112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 02/02/2023]
Abstract
Morphine and its derivatives play inevitably important role in the μ-opioid receptor (MOR) targeted antinociception. A structure-activity relationship study is presented for novel and known orvinol and thevinol derivatives with varying 3-O, 6-O, 17-N and 20-alkyl substitutions starting from agonists, antagonists and partial agonists. In vitro competition binding experiments with [3H]DAMGO showed low subnanomolar affinity to MOR. Generally, 6-O-demethylation increased the affinity toward MOR and decreased the efficacy changing the pharmacological profile in some cases. In vivo tests in osteoarthritis inflammation model showed significant antiallodynic effects of thevinol derivatives while orvinol derivatives did not. The pharmacological character was modelled by computational docking to both active and inactive state models of MOR. Docking energy difference for the two states separates agonists and antagonists well while partial agonists overlapped with them. An interaction pattern of the ligands, involving the interacting receptor atoms, showed more efficient separation of the pharmacological profiles. In rats, thevinol derivatives showed antiallodynic effect in vivo. The orvinol derivatives, except for 6-O-desmethyl-dihydroetorfin (2c), did not show antiallodynic effect.
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454, Radeberg, Germany
| | - Zoltán Szabó
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Organic Chemistry, S-100 44, Stockholm, Sweden
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre utca 9, H-1092, Budapest, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, H-6725, Szeged, Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, Semmelweis u 6, H-6725, Szeged, Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Pál T Szabó
- Research Centre for Natural Sciences, MS Metabolomics Research Laboratory, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Zsuzsanna Katalin Varga
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary.
| |
Collapse
|
11
|
Gummin DD. Potent opioids and implications for national defense. Toxicol Lett 2020; 321:90-94. [DOI: 10.1016/j.toxlet.2019.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
|
12
|
Catechins modulate the activity of mu opioid receptor (μOR): An in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Agonist binding of human mu opioid receptors expressed in the yeast Pichia pastoris: Effect of cholesterol complementation. Neurochem Int 2019; 132:104588. [PMID: 31704091 DOI: 10.1016/j.neuint.2019.104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023]
Abstract
This study compared pharmacological profiles between human mu opioid receptors (hMOR) overexpressed in the SH-SY5Y neuroblastoma cell line (SH-hMOR) and the methylotrophic yeast Pichia pastoris (Pp-hMOR). Affinity determinations were performed by direct binding with the tritiated agonist DAMGO and antagonist diprenorphine (DIP). Additionally, displacement of these drugs with agonists (morphine and DAMGO) and antagonists (β-funaltrexamine, naloxone and diprenorphine) was examined. Tritiated DAMGO could bind to membranes prepared from Pp-hMOR, although the receptor was not coupled with G-proteins. The data obtained with this yeast strain suggested that only 7.5% of receptors were in a high-affinity-state conformation. This value was markedly less than that estimated in SH-hMOR membranes, which reached 50%. Finally, to understand the pharmacological discrepancies between Pp-hMOR and SH-hMOR, the role of sterols was evaluated. The major sterol in P. pastoris is ergosterol, while hMOR naturally functions in a cholesterol-containing membrane environment. Cell membranes were sterol-depleted or cholesterol-loaded with methyl-β-cyclodextrine. The results indicated that cholesterol must be present to ensure Pp-hMOR function. The proportion of high-affinity-state conformation was reversibly increased by cholesterol complementation.
Collapse
|
14
|
Molecular insights into the interaction of hemorphin and its targets. Sci Rep 2019; 9:14747. [PMID: 31611567 PMCID: PMC6791854 DOI: 10.1038/s41598-019-50619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hemorphins are atypical endogenous opioid peptides produced by the cleavage of hemoglobin beta chain. Several studies have reported the therapeutic potential of hemorphin in memory enhancement, blood regulation, and analgesia. However, the mode of interaction of hemorphin with its target remains largely elusive. The decapeptide LVV-hemorphin-7 is the most stable form of hemorphin. It binds with high affinity to mu-opioid receptors (MOR), angiotensin-converting enzyme (ACE) and insulin-regulated aminopeptidase (IRAP). In this study, computational methods were used extensively to elucidate the most likely binding pose of mammalian LVV-hemorphin-7 with the aforementioned proteins and to calculate the binding affinity. Additionally, alignment of mammalian hemorphin sequences showed that the hemorphin sequence of the camel harbors a variation - a Q > R substitution at position 8. This study also investigated the binding affinity and the interaction mechanism of camel LVV-hemorphin-7 with these proteins. To gain a better understanding of the dynamics of the molecular interactions between the selected targets and hemorphin peptides, 100 ns molecular dynamics simulations of the best-ranked poses were performed. Simulations highlighted major interactions between the peptides and key residues in the binding site of the proteins. Interestingly, camel hemorphin had a higher binding affinity and showed more interactions with all three proteins when compared to the canonical mammalian LVV-hemorphin-7. Thus, camel LVV-hemorphin-7 could be explored as a potent therapeutic agent for memory loss, hypertension, and analgesia.
Collapse
|
15
|
Abstract
This article will briefly overview our efforts in the engineering of water soluble variants of a G-protein coupled receptor (GPCR) and its novel applications to develop biosensors using such water soluble variants of GPCR. While the technologies using water soluble GPCR are still under development, they offer new tools and strategies to study the function of GPCR, explore potential new compounds for potential clinical usage, and monitor endogenous peptides in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Sader S, Anant K, Wu C. To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane. Phys Chem Chem Phys 2018; 20:1724-1741. [PMID: 29265141 DOI: 10.1039/c7cp06745c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IBNtxA, a morphine derivative, is 10-fold more potent and has a better safety profile than morphine. Animal studies indicate that the analgesic effect of IBNtxA appears to be mediated by the activation of truncated splice variants (6TM) of the Mu opioid receptor (MOR-1) where transmembrane helix 1 (TM1) is removed. Interestingly, morphine is unable to activate 6TM variants. To date, a high resolution structure of 6TM variants is missing, and the interaction of 6TM variants with IBNtxA and morphine remains elusive. In this study we used homology modeling, docking and molecular dynamics (MD) simulations to study a representative 6TM variant (G1) and a full-length 7TM variant of human MOR-1 in complex with IBNtxA and morphine respectively. The structural models of human G1 and 7TM were obtained by homology modeling using the X-ray solved crystal structure of the active mouse 7TM bound to an agonist BU72 (PDB id: ) as the template. Our 6000 ns MD data show that either TM1 truncation (i.e. from 7TM to 6TM) or ligand modification (i.e. from morphine to IBNtxA) alone causes the loss of key morphine-7TM interactions that are well-known to be required for MOR-1 activation. Receptor disruptions are mainly located at TMs 2, 3, 6 and 7 in comparison with the active crystal complex. However, when both perturbations occur in the 6TM-IBNtxA complex, the key ligand-receptor interactions and the receptor conformation are recovered to resemble those in the active 7TM-morphine complex. Our molecular switch analysis further explains well why morphine is not able to activate 6TM variants. The close resemblance between 6TM-IBTtxA and 7TM in complex with PZM21, a G-protein biased 7TM agonist, suggests the possible biased agonism of IBNtxA on G1, which is consistent with its reduced side effects.
Collapse
Affiliation(s)
- Safaa Sader
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
17
|
Bhunia D, Mondal P, Das G, Saha A, Sengupta P, Jana J, Mohapatra S, Chatterjee S, Ghosh S. Spatial Position Regulates Power of Tryptophan: Discovery of a Major-Groove-Specific Nuclear-Localizing, Cell-Penetrating Tetrapeptide. J Am Chem Soc 2018; 140:1697-1714. [DOI: 10.1021/jacs.7b10254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Debmalya Bhunia
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Prasenjit Mondal
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Gaurav Das
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Abhijit Saha
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Jagannath Jana
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Saswat Mohapatra
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Surajit Ghosh
- Organic
and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
18
|
Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today 2017; 22:1719-1729. [PMID: 28743488 DOI: 10.1016/j.drudis.2017.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Biased activation of G-protein-coupled receptors (GPCRs) is shifting drug discovery efforts and appears promising for the development of safer drugs. The most effective analgesics to treat acute pain are agonists of the μ opioid receptor (μ-OR), a member of the GPCR superfamily. However, the analgesic use of opioid drugs, such as morphine, is hindered by adverse effects. Only a few μ-OR agonists have been reported to selectively activate the Gi over β-arrestin signaling pathway, resulting in lower gastrointestinal dysfunction and respiratory suppression. Here, we discuss the strategies that led to the development of biased μ-OR agonists, and potential areas for improvement, with an emphasis on structural aspects of the ligand-receptor recognition process.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Andrés F Marmolejo-Valencia
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Yangmei Li
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Karina Martinez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico.
| |
Collapse
|
19
|
Sweeney CG, Rando JM, Panas HN, Miller GM, Platt DM, Vallender EJ. Convergent Balancing Selection on the Mu-Opioid Receptor in Primates. Mol Biol Evol 2017; 34:1629-1643. [PMID: 28333316 PMCID: PMC6279279 DOI: 10.1093/molbev/msx105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mu opioid receptor is involved in many natural processes including stress response, pleasure, and pain. Mutations in the gene also have been associated with opiate and alcohol addictions as well as with responsivity to medication targeting these disorders. Two common and mutually exclusive polymorphisms have been identified in humans, A118G (N40D), found commonly in non-African populations, and C17T (V6A), found almost exclusively in African populations. Although A118G has been studied extensively for associations and in functional assays, C17T is much less well understood. In addition to a parallel polymorphism previously identified in rhesus macaques (Macaca mulatta), C77G (P26R), resequencing in additional non-human primate species identifies further common variation: C140T (P47L) in cynomolgus macaques (Macaca fascicularis), G55C (D19H) in vervet monkeys (Chlorocebus aethiops sabeus), A111T (L37F) in marmosets (Callithrix jacchus), and C55T (P19S) in squirrel monkeys (Saimiri boliviensis peruviensis). Functional effects on downstream signaling are observed for each of these variants following treatment with the endogenous agonist β-endorphin and the exogenous agonists morphine, DAMGO ([d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), and fentanyl. In addition to demonstrating the importance of functional equivalency in reference to population variation for minority health, this also shows how common evolutionary pressures have produced similar phenotypes across species, suggesting a shared response to environmental needs and perhaps elucidating the mechanism by which these organism-environment interactions are mediated physiologically and molecularly. These studies set the stage for future investigations of shared functional polymorphisms across species as a new genetic tool for translational research.
Collapse
Affiliation(s)
- Carolyn G. Sweeney
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Juliette M. Rando
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Helen N. Panas
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Gregory M. Miller
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Donna M. Platt
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Eric J. Vallender
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA
| |
Collapse
|
20
|
Noha S, Schmidhammer H, Spetea M. Molecular Docking, Molecular Dynamics, and Structure-Activity Relationship Explorations of 14-Oxygenated N-Methylmorphinan-6-ones as Potent μ-Opioid Receptor Agonists. ACS Chem Neurosci 2017; 8:1327-1337. [PMID: 28125215 PMCID: PMC5481819 DOI: 10.1021/acschemneuro.6b00460] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.
Collapse
Affiliation(s)
- Stefan
M. Noha
- Computer-Aided
Molecular Design (CAMD) Group, Department of Pharmaceutical Chemistry,
Institute of Pharmacy and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Opioid
Research Group, Department of Pharmaceutical Chemistry, Institute
of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Opioid
Research Group, Department of Pharmaceutical Chemistry, Institute
of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Sutcliffe KJ, Henderson G, Kelly E, Sessions RB. Drug Binding Poses Relate Structure with Efficacy in the μ Opioid Receptor. J Mol Biol 2017; 429:1840-1851. [PMID: 28502792 PMCID: PMC5472181 DOI: 10.1016/j.jmb.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
The μ-opioid receptor (MOPr) is a clinically important G protein-coupled receptor that couples to Gi/o proteins and arrestins. At present, the receptor conformational changes that occur following agonist binding and activation are poorly understood. This study has employed molecular dynamics simulations to investigate the binding mode and receptor conformational changes induced by structurally similar opioid ligands of widely differing intrinsic agonist efficacy, norbuprenorphine, buprenorphine, and diprenorphine. Bioluminescence resonance energy transfer assays for Gi activation and arrestin-3 recruitment in human embryonic kidney 293 cells confirmed that norbuprenorphine is a high efficacy agonist, buprenorphine a low efficacy agonist, and diprenorphine an antagonist at the MOPr. Molecular dynamics simulations revealed that these ligands adopt distinct binding poses and engage different subsets of residues, despite sharing a common morphinan scaffold. Notably, norbuprenorphine interacted with sodium ion-coordinating residues W2936.48 and N1503.35, whilst buprenorphine and diprenorphine did not. Principal component analysis of the movements of the receptor transmembrane domains showed that the buprenorphine-bound receptor occupied a distinct set of conformations to the norbuprenorphine-bound receptor. Addition of an allosteric sodium ion caused the receptor and ligand to adopt an inactive conformation. The differences in ligand-residue interactions and receptor conformations observed here may underlie the differing efficacies for cellular signalling outputs for these ligands.
Collapse
Affiliation(s)
- Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
22
|
Mapping the naloxone binding sites on the mu-opioid receptor using cell-based photocrosslinkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:336-343. [DOI: 10.1016/j.bbapap.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
23
|
Jarończyk M, Lipiński PFJ, Dobrowolski JC, Sadlej J. The FMO analysis of the molecular interaction of fentanyl derivatives with the μ-opioid receptor. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0136-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Strack M, Bedini A, Yip KT, Lombardi S, Siegmund D, Stoll R, Spampinato SM, Metzler-Nolte N. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. Chemistry 2016; 22:14605-10. [PMID: 27553294 DOI: 10.1002/chem.201602432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/12/2023]
Abstract
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies.
Collapse
Affiliation(s)
- Martin Strack
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Andrea Bedini
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - King T Yip
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Sara Lombardi
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Daniel Siegmund
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
25
|
Rosa M, Bech-Serra JJ, Canals F, Zajac JM, Talmont F, Arsequell G, Valencia G. Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines. J Proteome Res 2015; 14:3162-73. [PMID: 26090583 DOI: 10.1021/acs.jproteome.5b00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR. Recombinant hMOR was overexpressed as a C-terminal c-myc and 6-his tagged protein using an optimized expression procedure in Pichia pastoris cells. After membrane solubilization and metal-affinity chromatography purification, a procedure was devised to enhance the concentration of the receptor. Subsequent combinations of in-solution and in-gel digestions using either trypsin, chymotrypsin, or proteinase K, followed by matrix-assisted laser desorption ionization time-of-flight MS or nanoliquid chromatography coupled with tandem MS analyses afforded an overall sequence coverage of up to >80%, a level of description first attained for an opioid receptor and one of the six such high-coverage MS-based analyses of any GPCR.
Collapse
Affiliation(s)
- Mònica Rosa
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Joan Josep Bech-Serra
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Francesc Canals
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Jean Marie Zajac
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Franck Talmont
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Gemma Arsequell
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gregorio Valencia
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
26
|
On the modularity of the intrinsic flexibility of the µ opioid receptor: a computational study. PLoS One 2014; 9:e115856. [PMID: 25549261 PMCID: PMC4280117 DOI: 10.1371/journal.pone.0115856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
The µ opioid receptor (µOR), the principal target to control pain, belongs to the G protein-coupled receptors (GPCRs) family, one of the most highlighted protein families due to their importance as therapeutic targets. The conformational flexibility of GPCRs is one of their essential characteristics as they take part in ligand recognition and subsequent activation or inactivation mechanisms. It is assessed that the intrinsic mechanical properties of the µOR, more specifically its particular flexibility behavior, would facilitate the accomplishment of specific biological functions, at least in their first steps, even in the absence of a ligand or any chemical species usually present in its biological environment. The study of the mechanical properties of the µOR would thus bring some indications regarding the highly efficient ability of the µOR to transduce cellular message. We therefore investigate the intrinsic flexibility of the µOR in its apo-form using all-atom Molecular Dynamics simulations at the sub-microsecond time scale. We particularly consider the µOR embedded in a simplified membrane model without specific ions, particular lipids, such as cholesterol moieties, or any other chemical species that could affect the flexibility of the µOR. Our analyses highlighted an important local effect due to the various bendability of the helices resulting in a diversity of shape and volume sizes adopted by the µOR binding site. Such property explains why the µOR can interact with ligands presenting highly diverse structural geometry. By investigating the topology of the µOR binding site, a conformational global effect is depicted: the correlation between the motional modes of the extra- and intracellular parts of µOR on one hand, along with a clear rigidity of the central µOR domain on the other hand. Our results show how the modularity of the µOR flexibility is related to its pre-ability to activate and to present a basal activity.
Collapse
|
27
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
28
|
Characterization of a computationally designed water-soluble human μ-opioid receptor variant using available structural information. Anesthesiology 2014; 121:866-75. [PMID: 24835677 DOI: 10.1097/aln.0000000000000308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The recent X-ray crystal structure of the murine μ-opioid receptor (MUR) allowed the authors to reengineer a previously designed water-soluble variant of the transmembrane portion of the human MUR (wsMUR-TM). METHODS The new variant of water-soluble MUR (wsMUR-TM_v2) was engineered based on the murine MUR crystal structure. This novel variant was expressed in Escherichia coli and purified. The properties of the receptor were characterized and compared with those of wsMUR-TM. RESULTS Seven residues originally included for mutation in the design of the wsMUR-TM were reverted to their native identities. wsMUR-TM_v2 contains 16% mutations of the total sequence. It was overexpressed and purified with high yield. Although dimers and higher oligomers were observed to form over time, the wsMUR-TM_v2 stayed predominantly monomeric at concentrations as high as 7.5 mg/ml in buffer within a 2-month period. Its secondary structure was predominantly helical and comparable with those of both the original wsMUR-TM variant and the native MUR. The binding affinity of wsMUR-TM_v2 for naltrexone (K(d) approximately 70 nM) was in close agreement with that for wsMUR-TM. The helical content of wsMUR-TM_v2 decreased cooperatively with increasing temperature, and the introduction of sucrose was able to stabilize the protein. CONCLUSIONS A novel functional wsMUR-TM_v2 with only 16% mutations was successfully engineered, expressed in E. coli, and purified based on information from the crystal structure of murine MUR. This not only provides a novel alternative tool for MUR studies in solution conditions but also offers valuable information for protein engineering and structure-function relations.
Collapse
|