1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
2
|
The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress. Inflamm Res 2022; 71:1245-1260. [DOI: 10.1007/s00011-022-01613-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022] Open
|
3
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
4
|
Wang YF, Li JW, Wang DP, Jin K, Hui JJ, Xu HY. Anti-Hyperglycemic Agents in the Adjuvant Treatment of Sepsis: Improving Intestinal Barrier Function. Drug Des Devel Ther 2022; 16:1697-1711. [PMID: 35693534 PMCID: PMC9176233 DOI: 10.2147/dddt.s360348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant treatment of sepsis.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jia-Wei Li
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Da-Peng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Ke Jin
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jiao-Jie Hui
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
6
|
Wang L, Zou H, Xiao X, Wu H, Zhu Y, Li J, Liu X, Shen Q. Abscisic acid inhibited reactive oxygen species-mediated endoplasmic reticulum stress by regulating the PPAR-γ signaling pathway in ARDS mice. Phytother Res 2021; 35:7027-7038. [PMID: 34791723 DOI: 10.1002/ptr.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of a respiratory disorder, and there are few effective therapies. Abscisic acid (ABA) has been proven to be effective in influenza and asthma. Herein, we explored the protective effect of ABA on the resolution of ARDS and the underlying mechanism. Mice were challenged with lipopolysaccharide (LPS) to establish an ARDS model. We found that ABA reduced pulmonary injury, with concomitant suppression of endoplasmic reticulum (ER) stress and reduction of reactive oxygen species (ROS) production. Furthermore, after the elimination of ROS by the specific inhibitor N-acetyl-L-cysteine (NAC), ABA did not further inhibit airway inflammation or ER stress in ARDS mice. In addition, ABA inhibited ROS production through nuclear factor erythroid 2-related factor 2 (Nrf2) activation in parallel with elevated levels of peroxisome proliferator activated receptor γ (PPAR-γ). Furthermore, the addition of a PPAR-γ antagonist abrogated the suppressive action of ABA on inflammation as well as on ER stress and oxidative stress, while NAC restored the protective effect of ABA in ARDS mice treated with a PPAR-γ antagonist. Collectively, ABA protects against LPS-induced lung injury through PPAR-γ signaling, and this effect may be associated with its inhibitory effect on ROS-mediated ER stress.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyun Zou
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Xiao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Yan Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
8
|
The protective effect of PPARγ in sepsis-induced acute lung injury via inhibiting PTEN/β-catenin pathway. Biosci Rep 2021; 40:224379. [PMID: 32420586 PMCID: PMC7256673 DOI: 10.1042/bsr20192639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023] Open
Abstract
The present study aims to reveal the molecular mechanism of peroxisome proliferator-activated receptor γ (PPARγ) on sepsis-induced acute lung injury (ALI). To do that, the rat injury model was established using cecal ligation and perforation (CLP) method, followed by different treatments, and the rats were divided into Sham group, CLP group, CLP + rosiglitazone (PPARγ agonist) group, CLP + GW9662 (PPARγ inhibitor) group, CLP + bpV (phosphatase and tensin homolog (PTEN) inhibitor) group, CLP + GW9662 + bpV group. Compared with Sham group, the mRNA and protein expression levels of PPARγ were down-regulated, the inflammation levels were elevated, and the apoptosis was increased in CLP group. After treatment with rosiglitazone, the protein expression level of PPARγ was significantly up-regulated, the phosphorylation level of PTEN/β-catenin pathway was decreased, the PTEN/β-catenin pathway was inhibited, the lung injury, inflammation and apoptosis were reduced. The opposite effect was observed after treatment with GW9662. Besides, bpV inhibited PTEN/β-catenin pathway, and relieved the lung tissue injury. The overexpression of PPARγ reduced inflammatory response and inhibited apoptosis in sepsis-induced ALI. Furthermore, PPARγ relieved the sepsis-induced ALI by inhibiting the PTEN/β-catenin pathway.
Collapse
|
9
|
Yan C, Chen J, Ding Y, Zhou Z, Li B, Deng C, Yuan D, Zhang Q, Wang X. The Crucial Role of PPARγ-Egr-1-Pro-Inflammatory Mediators Axis in IgG Immune Complex-Induced Acute Lung Injury. Front Immunol 2021; 12:634889. [PMID: 33717177 PMCID: PMC7947684 DOI: 10.3389/fimmu.2021.634889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays crucial roles in diverse biological processes including cellular metabolism, differentiation, development, and immune response. However, during IgG immune complex (IgG-IC)-induced acute lung inflammation, its expression and function in the pulmonary tissue remains unknown. Objectives The study is designed to determine the effect of PPARγ on IgG-IC-triggered acute lung inflammation, and the underlying mechanisms, which might provide theoretical basis for therapy of acute lung inflammation. Setting Department of Pathogenic Biology and Immunology, Medical School of Southeast University Subjects Mice with down-regulated/up-regulated PPARγ activity or down-regulation of Early growth response protein 1 (Egr-1) expression, and the corresponding controls. Interventions Acute lung inflammation is induced in the mice by airway deposition of IgG-IC. Activation of PPARγ is achieved by using its agonist Rosiglitazone or adenoviral vectors that could mediate overexpression of PPARγ. PPARγ activity is suppressed by application of its antagonist GW9662 or shRNA. Egr-1 expression is down-regulated by using the gene specific shRNA. Measures and Main Results We find that during IgG-IC-induced acute lung inflammation, PPARγ expression at both RNA and protein levels is repressed, which is consistent with the results obtained from macrophages treated with IgG-IC. Furthermore, both in vivo and in vitro data show that PPARγ activation reduces IgG-IC-mediated pro-inflammatory mediators’ production, thereby alleviating lung injury. In terms of mechanism, we observe that the generation of Egr-1 elicited by IgG-IC is inhibited by PPARγ. As an important transcription factor, Egr-1 transcription is substantially increased by IgG-IC in both in vivo and in vitro studies, leading to augmented protein expression, thus amplifying IgG-IC-triggered expressions of inflammatory factors via association with their promoters. Conclusion During IgG-IC-stimulated acute lung inflammation, PPARγ activation can relieve the inflammatory response by suppressing the expression of its downstream target Egr-1 that directly binds to the promoter regions of several inflammation-associated genes. Therefore, regulation of PPARγ-Egr-1-pro-inflammatory mediators axis by PPARγ agonist Rosiglitazone may represent a novel strategy for blockade of acute lung injury.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital of Southeast University, Nanjing, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and Integrated Chinese and Western Medicine (ITCWM) Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Jing Chen
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yue Ding
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Zetian Zhou
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Bingyu Li
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chunmin Deng
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Dong Yuan
- Emergency Department, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and Integrated Chinese and Western Medicine (ITCWM) Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and Integrated Chinese and Western Medicine (ITCWM) Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Eva TA, Barua N, Chowdhury MM, Yeasmin S, Rakib A, Islam MR, Emran TB, Simal-Gandara J. Perspectives on signaling for biological- and processed food-related advanced glycation end-products and its role in cancer progression. Crit Rev Food Sci Nutr 2020; 62:2655-2672. [PMID: 33307763 DOI: 10.1080/10408398.2020.1856771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a multifunctional receptor binds a broad spectrum of ligands and mediates responses to cell damage and stress conditions. It also activates programs leading to acute and chronic inflammation and implicated in several pathological diseases, including cancer. In this review, we presented the non-enzymatic reaction of reducing sugar with the amino groups of proteins, lipids, and nucleic acids. This reaction initiates a complex series of rearrangements and dehydrations, and then produces a class of irreversibly cross-linked heterogeneous fluorescent moieties, termed advanced glycation end products (AGEs). There is a growing body of evidence that interaction of processes food-related AGEs with a cell surface receptor RAGE brings out the generation of oxidative stress and subsequently evokes proliferative, angiogenic and inflammatory reactions, thereby being involved in the development and progression of various types of cancers. This review is an insightful assessment of molecular mechanisms through which RAGE signaling contributes to the enhancement and survival of the tumorigenic cell. Here we summarize the procurement of individual ligands of RAGE like amphoterin, calcium-binding proteins, and resultant mediation of RAGE signaling pathway, which partially can elucidate the elevated risk of several cancers. Besides, we summarize many factors or conditions including APE1 (apurinic/apyrimidinic endonuclease 1), retinol mutations, retinoblastoma (Rb), proteinase 3 (PR3) hypoxia and so on through which RAGE signaling presents an establishment of cancerous environment. Additionally, we also reviewed some recent findings that give shreds of evidence for presenting the role of RAGE and its ligands in the advanced stage of cancers.
Collapse
Affiliation(s)
- Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Nizum Barua
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Sharfin Yeasmin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Rashedul Islam
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| |
Collapse
|
11
|
Prantner D, Nallar S, Vogel SN. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J 2020; 34:15659-15674. [PMID: 33131091 DOI: 10.1096/fj.202002136r] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Although the innate immune receptor protein, Receptor for Advanced Glycation End products (RAGE), has been extensively studied, there has been renewed interest in RAGE for its potential role in sepsis, along with a host of other inflammatory diseases of chronic, noninfectious origin. In contrast to other innate immune receptors, for example, Toll-like receptors (TLRs), that recognize ligands derived from pathogenic organisms that are collectively known as "pathogen-associated molecular patterns" (PAMPs) or host-derived "damage-associated molecular patterns" (DAMPs), RAGE has been shown to recognize a broad collection of DAMPs exclusively. Historically, these DAMPs have been shown to be pro-inflammatory in nature. Early studies indicated that the adaptor molecule, MyD88, might be important for this change. More recent studies have explored further the mechanisms underlying this inflammatory change. Overall, the newer results have shown that there is extensive crosstalk between RAGE and TLRs. The three canonical RAGE ligands, Advanced Glycation End products (AGEs), HMGB1, and S100 proteins, have all been shown to activate both TLRs and RAGE to varying degrees in order to induce inflammation in in vitro models. As with any field that delves deeply into innate signaling, obstacles of reagent purity may be a cause of some of the discrepancies in the literature, and we have found that commercial antibodies that have been widely used exhibit a high degree of nonspecificity. Nonetheless, the weight of published evidence has led us to speculate that RAGE may be physically interacting with TLRs on the cell surface to elicit inflammation via MyD88-dependent signaling.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Shreeram Nallar
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
12
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Piao C, Zhuang C, Choi M, Ha J, Lee M. A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy. NANOSCALE 2020; 12:13606-13617. [PMID: 32558842 DOI: 10.1039/d0nr01367f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease. A high mobility group box-1 (HMGB-1) derived RAGE-antagonist peptide (RAP) was previously developed for anti-inflammatory therapy for ALI. Due to its specific binding to RAGE on the surface of inflammatory cells, the RAP may facilitate polymer-mediated intracellular delivery of plasmid DNA (pDNA) into the inflammatory cells. To evaluate this hypothesis, a pDNA/polymer/RAP ternary-complex was produced and applied for ALI gene therapy. Dexamethasone-conjugated polyamidoamine G2 (PAM-D) was used as a gene carrier, and the adiponectin (APN) gene was employed as a therapeutic gene. First, the ratio of pDNA to PAM-D was optimized in terms of anti-inflammation and low toxicity. Then, the RAP was added to the pDNA/PAM-D complex, producing the pDNA/PAM-D/RAP complex. The transfection efficiency of the luciferase plasmid (pLuc)/PAM-D/RAP reached its maximum at a weight ratio of 1 : 2 : 9. At this weight ratio, pLuc/PAM-D/RAP had a higher transfection efficiency than pLuc/PAM-D or pLuc/RAP. The transfection efficiency of pLuc/PAM-D/RAP decreased due to competition with free RAPs, suggesting the RAGE-mediated endocytosis of the complex. In the LPS-activated ALI mouse models, intratracheal administration of APN plasmid (pAPN)/PAM-D/RAP induced higher APN expression and less pro-inflammatory cytokines in the lungs of ALI animal models than pAPN/PEI25k, pAPN/RAP, and pAPN/PAM-D. Hematoxylin and eosin staining confirmed the higher anti-inflammatory effect of pAPN/PAM-D/RAP than the other complexes in the ALI models. Therefore, RAP-mediated enhanced delivery of pAPN/PAM-D may be useful for the development of a treatment for ALI.
Collapse
Affiliation(s)
- Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea.
| | - Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea.
| | - Myoungjee Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea.
| | - Junkyu Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea.
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
14
|
Lu H, Wen D, Sun J, Zeng L, Du J, Du D, Zhang L, Deng J, Jiang J, Zhang A. Enhancer polymorphism rs10865710 associated with traumatic sepsis is a regulator of PPARG gene expression. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:430. [PMID: 31888703 PMCID: PMC6938012 DOI: 10.1186/s13054-019-2707-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Background Peroxisome proliferator-activated receptor gamma (PPARγ) is a major regulator in sepsis. Our previous study identified the enhancer polymorphism rs10865710C/G to be associated with susceptibility to sepsis in trauma patients. We performed two-stage cohort studies integrating biological experiments of potential functional variants that modify susceptibility to traumatic sepsis. Methods Improved multiplex ligation detection reaction (iMLDR) was used to genotype rs10865710 in 797 Han Chinese trauma patients in Chongqing. Clinical relevance was validated in 334 patients in Guizhou. The potential function of rs10865710 in transcriptional regulation was explored through a dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Expression of PPARγ was assessed by expression quantitative trait locus (e-QTL) and western blot analyses. Results The association results confirmed rs10865710 to be significantly strongly associated with sepsis risk in trauma patients of the Chongqing and Guizhou cohorts (OR = 1.41 (1.11–1.79), P = 0.004 and OR = 1.45 (1.01–2.09), P = 0.046, both for allele-dose effect, respectively). A meta-analysis of both cohorts and a previous study indicated strong evidence for this association (OR = 1.41 (1.17–1.71), P = 0.0004 for the dominant model, OR = 1.78 (1.34–2.36), P < 0.0001 for the recessive model and OR = 1.38 (1.20–1.58), P < 0.0001 for the allelic model). Functional experiments verified that rs10865710 was a causative variant influencing enhancer activity (G vs. C, 0.068 ± 0.004 vs. 0.096 ± 0.002, P = 0.0005) and CREB2 binding. Expression analysis also indicatevd rs10865710 genotypes to be associated with levels of PPARγ expression (P = 9.2 × 10−5 for dominant effect and P = 0.005 for recessive effect). Conclusions Our study provides evidence that the enhancer-region polymorphism rs10865710 might influence transcription factor binding and regulate PPARγ expression, thus conferring susceptibility to traumatic sepsis. Trial registration ClinicalTrials.gov, NCT01713205. Registered 18 October 2012, retrospectively registered.
Collapse
Affiliation(s)
- Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dalin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jianhui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, The Affiliated Central Hospital of Chongqing University, Chongqing, 400042, China
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jin Deng
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| | - Anqiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
15
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Mei L, He M, Zhang C, Miao J, Wen Q, Liu X, Xu Q, Ye S, Ye P, Huang H, Lin J, Zhou X, Zhao K, Chen D, Zhou J, Li C, Li H. Paeonol attenuates inflammation by targeting HMGB1 through upregulating miR-339-5p. Sci Rep 2019; 9:19370. [PMID: 31852965 PMCID: PMC6920373 DOI: 10.1038/s41598-019-55980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.
Collapse
Affiliation(s)
- Liyan Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Meihong He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chaoying Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jifei Miao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Quan Wen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xia Liu
- School of Basic Medical Sciences, Guiyang University of Chinese Medicine, Guiyang, Guizhou Province, 550025, China
| | - Qin Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Peng Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Huina Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Junli Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaojing Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Kai Zhao
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jianhong Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
17
|
Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone Attenuates Lipopolysaccharide-Induced Oxidative Stress, Dopaminergic Neuronal Loss and Neurobehavioral Impairment by Activating Nrf2/ARE/HO-1. Neurochem Res 2019; 44:10.1007/s11064-019-02907-0. [PMID: 31713708 DOI: 10.1007/s11064-019-02907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.
Collapse
Affiliation(s)
- Aya Zakaria
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt.
| | - Mona Rady
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt
| | - Laila Mahran
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt.
| |
Collapse
|
18
|
Anti-Inflammatory Effects of Shenfu Injection against Acute Lung Injury through Inhibiting HMGB1-NF- κB Pathway in a Rat Model of Endotoxin Shock. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9857683. [PMID: 31781288 PMCID: PMC6875290 DOI: 10.1155/2019/9857683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/21/2019] [Indexed: 12/22/2022]
Abstract
Shenfu injection (SFI), a Chinese herbal medicine with substances extracted from Ginseng Radix et Rhizoma Rubra and Aconiti Lateralis Radix Praeparata, is widely used as an anti-inflammatory reagent to treat endotoxin shock in China. However, the mechanism of SFI in endotoxin shock remains to be illuminated. High mobility group box 1 (HMGB1), a vital inflammatory factor in the late stage of endotoxin shock, may stimulate multiple signalling cascades, including κB (NF-κB), a nuclear transcription factor, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-1β, among others in the overexpression of downstream proinflammatory cytokines. An investigation into the effects of SFI on the inhibition of the HMGB1-NF-κB pathway revealed the contribution of SFI to acute lung injury (ALI) in a rat model of endotoxin shock. To assess the anti-inflammatory activity of SFI, 5 ml/kg, 10 ml/kg, or 15 ml/kg of SFI was administered to different groups of rats following an injection of LPS, and the mean arterial pressure (MAP) at 5 h and the survival rate at 72 h were measured. 24 h after LPS injection, we observed pathological changes in the lung tissue and measured the mRNA expression, production, translocation, and secretion of HMGB1, as well as the expression of the NF-κB signal pathway-related proteins inhibitor of NF-κB (IκB)-α, P50, and P65. We also evaluated the regulation of SFI on the secretion of inflammatory factors including interleukin-1 beta (IL-1β) and TNF-α. SFI effectively prevented the drop in MAP, relieved lung tissue damage, and increased the survival rate in the endotoxin shock model in dose-dependent manner. SFI inhibited the transcription, expression, translocation, and secretion of HMGB1, increased the expression of toll-like receptor (TLR4), increased the production of IκB-α, and decreased the levels of P65, P50, and TNF-α in the lung tissue of endotoxin shock rats in a dose-dependent manner. Furthermore, SFI decreased the secretion of proinflammatory cytokines TNF-α and IL-1β. In summary, SFI improves the survival rate of endotoxin shock, perhaps through inhibiting the HMGB1-NF-κB pathway and thus preventing cytokine storm.
Collapse
|
19
|
Zeng Y, Qin Q, Li K, Li H, Song C, Li Y, Dai M, Lin F, Mao Z, Li Q, Long Y, Fan Y, Pan P. PKR suppress NLRP3-pyroptosis pathway in lipopolysaccharide-induced acute lung injury model of mice. Biochem Biophys Res Commun 2019; 519:8-14. [PMID: 31474337 DOI: 10.1016/j.bbrc.2019.08.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022]
Abstract
To explore the effect of double-stranded RNA-dependent kinase (PKR) in acute lung injury (ALI) and resultant acute respiratory distress syndrome (ARDS). A mouse model of lipopolysaccharide (LPS)-induced ALI was used to evaluate the levels of phosphorylated (p)-PKR and NLRP3 in lung tissue, and the protective effects of a PKR inhibitor on lung injury. And in vitro, macrophages were incubated with LPS, with or without PKR inhibitor pre-treatment. It was observed that the levels of p-PKR protein and NLRP3 protein were significantly increased compared with those in control tissues after LPS administration. Meanwhile, treatment with PKR inhibitor decreased inflammation, injury score, wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) protein levels, neutrophil count in BALF, myeloperoxidase activity and expression of high-mobility group box1(HMGB1) and interleukin(IL)-1β in the lungs of LPS-challenged mice. In vitro, we demonstrated that the levels of p-PKR and NLRP3, and cell mortality rate were increased in macrophages which were incubated with LPS compared with those without LPS administration, and PKR inhibitor significantly suppressed the level of NLRP3, caspase-1, HMGB1 and IL-1β. These results indicate that PKR plays a key role in ALI through NLRP3-pyrotosis pathway and pharmacological inhibition of PKR may have potential therapeutic effects in the treatment of patients with ALI and ARDS.
Collapse
Affiliation(s)
- Yanjun Zeng
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qingwu Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Keyu Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan, 410008, PR China
| | - Haitao Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Fengyu Lin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zhi Mao
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yuan Long
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yifei Fan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
20
|
Ahmad A, Ali T, Rehman SU, Kim MO. Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment. J Clin Med 2019; 8:E850. [PMID: 31207963 PMCID: PMC6616651 DOI: 10.3390/jcm8060850] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Phytomedicine based natural flavonoids have potent antioxidant, anti-inflammatory, and neuroprotective activities against neurodegenerative diseases. The aim of the present study is to investigate the potent neuroprotective and antioxidant potential effects of fisetin (natural flavonoid) against central nervous system (CNS)-insult, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), neuroinflammation, neurodegeneration, and synaptic/memory deficits in adult mice. The mice were injected intraperitoneally (i.p.) with LPS (250 μg/kg/day for 1 week) and a fisetin dosage regimen (20 mg/kg/day i.p. for 2 weeks, 1 week pre-treated to LPS and 1 week co-treated with LPS). Behavioral tests, and biochemical and immunofluorescence assays were applied. Our results revealed that fisetin markedly abrogated the LPS-induced elevated ROS/oxidative stress and activated phosphorylated c-JUN N-terminal Kinase (p-JNK) in the adult mouse hippocampus. Fisetin significantly alleviated LPS-induced activated gliosis. Moreover, fisetin treatment inhibited LPS-induced activation of the inflammatory Toll-like Receptors (TLR4)/cluster of differentiation 14 (CD14)/phospho-nuclear factor kappa (NF-κB) signaling and attenuated other inflammatory mediators (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). Furthermore, immunoblotting and immunohistochemical results revealed that fisetin significantly reversed LPS-induced apoptotic neurodegeneration. Fisetin improved the hippocampal-dependent synaptic and memory functions in LPS-treated adult mice. In summary, our results strongly recommend that fisetin, a natural potent antioxidant, and neuroprotective phytomedicine, represents a promising, valuable, and therapeutic candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
21
|
Khaket TP, Kang SC, Mukherjee TK. The Potential of Receptor for Advanced Glycation End Products (RAGE) as a Therapeutic Target for Lung Associated Diseases. Curr Drug Targets 2019; 20:679-689. [DOI: 10.2174/1389450120666181120102159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition
receptor that is highly expressed in lung epithelial cells. It helps alveolar epithelial cells to
maintain their morphology and specific architecture. However, in various pathophysiological conditions,
pulmonary tissues express a supraphysiological level of RAGE and its ligands including advanced
glycation end products, high mobility group box 1 proteins, and S100 proteins. On interaction
with RAGE, these ligands stimulate downstream signaling that generates inflammation and oxidative
stress leading to asthma, chronic obstructive pulmonary disease, lung cancers, idiopathic pulmonary
fibrosis, acute lung injury, pneumonia, bronchopulmonary dysplasia, cystic fibrosis, and sepsis. Thus,
pharmacological agents that can either suppress the production of RAGE or block its biological activity
would offer promising therapeutic value against pathogenesis of the aforementioned lungassociated
diseases. This review presents a comprehensive overview of the recent progress made in
defining the functions of RAGE in lung-associated diseases.
Collapse
Affiliation(s)
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Korea
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Haryana, India
| |
Collapse
|
22
|
Kipfmueller F, Heindel K, Geipel A, Berg C, Bartmann P, Reutter H, Mueller A, Holdenrieder S. Expression of soluble receptor for advanced glycation end products is associated with disease severity in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1061-L1069. [PMID: 30838867 DOI: 10.1152/ajplung.00359.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) and lung hypoplasia are major contributors to morbidity and mortality in newborns with congenital diaphragmatic hernia (CDH). The soluble receptor for advanced glycation end products (sRAGE) is a marker of endothelial function and might be associated with disease severity in CDH newborns. In a cohort of 30 CDH newborns and 20 healthy control newborns, sRAGE concentration was measured at birth and at 6 h, 12 h, 24 h, 48 h, and 7-10 days. In healthy newborns, sRAGE was significantly higher at birth and at 48 h compared with CDH newborns (both P < 0.001). Among CDH newborns, sRAGE was significantly lower at birth (P = 0.033) and at 7-10 days (P = 0.035) in patients receiving extracorporeal membrane oxygenation (ECMO) compared with patients not receiving ECMO. In contrast, CDH newborns receiving ECMO had significantly higher values at 6 h (P = 0.001), 12 h (P = 0.004), and 48 h (0.032). Additionally, sRAGE correlated significantly with PH severity, intensity and duration of mechanical ventilation, and prenatally assessed markers of CDH severity (lung size, liver herniation). The probability to receive ECMO therapy was five times higher in CDH newborns with sRAGE concentrations below the calculated cutoff of 650 pg/ml at birth (P = 0.002) and nine times higher in CDH newborns with sRAGE concentrations above the cutoff of 3,500 pg/ml at 6 h (P = 0.001). These findings suggest a potential involvement of sRAGE in the pathophysiology of CDH and may act as a therapeutic target in future treatment approaches.
Collapse
Affiliation(s)
- Florian Kipfmueller
- Department of Neonatology and Pediatric Critical Care Medicine, University of Bonn , Bonn , Germany
| | - Katrin Heindel
- Department of Neonatology and Pediatric Critical Care Medicine, University of Bonn , Bonn , Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University of Bonn , Bonn , Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn , Bonn , Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Critical Care Medicine, University of Bonn , Bonn , Germany
| | - Heiko Reutter
- Department of Neonatology and Pediatric Critical Care Medicine, University of Bonn , Bonn , Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Critical Care Medicine, University of Bonn , Bonn , Germany
| | - Stefan Holdenrieder
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn , Germany.,Institute for Laboratory Medicine, German Heart Center of the State of Bavaria and the Technical University Munich , Munich , Germany
| |
Collapse
|
23
|
Feng Y, Fang Z, Liu B, Zheng X. p38MAPK plays a pivotal role in the development of acute respiratory distress syndrome. Clinics (Sao Paulo) 2019; 74:e509. [PMID: 31411275 PMCID: PMC6683303 DOI: 10.6061/clinics/2019/e509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by a complex pathophysiology, involving not only the respiratory system but also nonpulmonary distal organs. Although advances in the management of ARDS have led to a distinct improvement in ARDS-related mortality, ARDS is still a life-threatening respiratory condition with long-term consequences. A better understanding of the pathophysiology of this condition will allow us to create a personalized treatment strategy for improving clinical outcomes. In this article, we present a general overview p38 mitogen-activated protein kinase (p38MAPK) and recent advances in understanding its functions. We consider the potential of the pharmacological targeting of p38MAPK pathways to treat ARDS.
Collapse
Affiliation(s)
- Ying Feng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| | - Zhicheng Fang
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| | - Boyi Liu
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- *Corresponding author. E-mail:
| |
Collapse
|
24
|
Yang P, Chen S, Zhong G, Kong W, Wang Y. Agonist of PPAR-γ Reduced Epithelial-Mesenchymal Transition in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps via Inhibition of High Mobility Group Box1. Int J Med Sci 2019; 16:1631-1641. [PMID: 31839751 PMCID: PMC6909805 DOI: 10.7150/ijms.35936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been reported to occur in eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP). Among the cytokines that cause EMT, high mobility group box 1 (HMGB1) has been shown to give rise to EMT in airway epithelial cells. However, the mechanism of HMGB1-induced EMT in ECRSwNP is unknown. We explored the mechanism and possible inhibitor. Immunohistochemistry (IHC), immunofluorescence (IF), and western blot assay were used to detect the expression and location of HMGB1, peroxisome proliferator-activated receptor-γ (PPAR-γ), and EMT markers in eighteen ECRSwNP and twelve normal nasal mucosa tissues. Epithelial cells isolated from ECRSwNP were cultured with various doses of recombinant human HMGB1 (rhHMGB1) to study the expression of PPAR-γ, and EMT markers. Additionally, the ligand of PPAR-γ was incubated with epithelial cells to interfere with the effects of lipopolysaccharide (LPS) or rhHMGB1 to explore the effect on expression of HMGB1 and EMT markers. These results suggest that HMGB1 was highly expressed in ECRSwNP compared with its expression in control tissues, and EMT was also found highly in ECRSwNP compared with control tissues. Moreover, the cytoplasmic accumulation of HMGB1 in ECRSwNP was obvious compared with normal tissues. We also found dose-dependent induction by rhHMGB1 of up-regulation of N-cadherin and vimentin and down-regulation of ZO-1 and E-cadherin in epithelial cells isolated from ECRSwNP. The agonist of PPAR-γ not only reduced release of HMGB1 induced by LPS, but also reversed the EMT. The protective role of PPAR-γ also appeared in cells that had been incubated with rhHMGB1. In the current study, we discovered that the agonist of PPAR-γ has a potential role in inhibited HMGB1-induced EMT in ECRSwNP. The agonist of PPAR-γ may contribute to inhabit epithelial cells to become mesenchymal-like cells which play an important role in the pathogenesis of ECRSwNP.
Collapse
Affiliation(s)
- Pingli Yang
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of otorhinolaryngology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Shan Chen
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhong
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijia Kong
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institutes of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanjun Wang
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
25
|
Chen X, Wu S, Tang L, Ma L, Wang F, Feng H, Meng J, Han Z. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J Cell Physiol 2018; 234:7301-7319. [PMID: 30362554 DOI: 10.1002/jcp.27488] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and potentially lethal clinical syndromes characterized by acute respiratory failure resulting from excessive pulmonary inflammation, noncardiogenic pulmonary edema, and alveolar-capillary barrier disruption. At present, there is no effective and specific therapy for ALI/ARDS. Mesenchymal stem cells (MSCs) have well-known therapeutic potential in patients with ALI/ARDS. Heme oxygenase-1 (HO-1), a cytoprotective enzyme, possesses antioxidative, anti-inflammatory, and antiapoptotic effects. Thus, a combination of MSC transplantation with HO-1 delivery may have an additional protective effect against ALI/ARDS. This study investigated the effect of HO-1-modified bone-marrow-derived MSCs (MSCs-HO-1) on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We established MSCs-HO-1 through lentiviral transduction. The ALI rat model was established by successive LPS inhalations following injection with MSCs-HO-1. The survival rate, histological changes in the lungs, total protein concentration and neutrophil counts in bronchoalveolar lavage fluid, lung wet/dry weight ratio, cytokine levels in serum and lungs, nuclear transcription factor-κB activity, and protein expression of Toll-like receptor 4 signaling adaptors were examined. Furthermore, the cell viability, apoptosis, and paracrine activity of MSCs-HO-1 were examined under inflammatory stimuli in vitro. MSCs-HO-1 injection improved these parameters compared with primary unmodified MSCs. Moreover, MSCs-HO-1 had superior prosurvival and antiapoptotic properties and enhanced paracrine functions in vitro. Therefore, MSCs-HO-1 exert an enhanced protective effect to alleviate LPS-induced ALI in rats, and the mechanisms may be partially associated with superior prosurvival, antiapoptosis, and enhanced paracrine functions of MSCs-HO-1. These findings provide a novel insight into MSC-based therapeutic strategies for treating ALI/ARDS.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| | - Shanshan Wu
- Department of Radiation Oncology, Navy General Hospital of the PLA, Beijing, China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Lei Ma
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| | - Fan Wang
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| | - Huasong Feng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| | - Jiguang Meng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| | - Zhihai Han
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing, China
| |
Collapse
|
26
|
Huang L, Zhang X, Ma X, Zhang D, Li D, Feng J, Pan X, Lü J, Wang X, Liu X. Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS. Int Immunopharmacol 2018; 65:96-107. [PMID: 30308440 DOI: 10.1016/j.intimp.2018.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
In the pathogenesis of acute respiratory distress syndrome (ARDS), an increase in vascular endothelial permeability may trigger pulmonary edema and ultimately lead to respiratory failure. Endothelial glycocalyx damage is an important factor that causes an increase in vascular endothelial permeability. Berberine (BBR) is an isoquinoline alkaloid extracted from Coptis chinensis, a plant used in traditional Chinese medicine that exerts multiple pharmacological effects. In this study, pretreatment with BBR inhibited the increase in vascular endothelial permeability in mice with lipopolysaccharide (LPS)-induced ARDS. BBR pretreatment inhibited the shedding of syndecan-1 (SDC-1) and heparan sulfate (HS), which are important components of the endothelial glycocalyx that lessen endothelial glycocalyx damage. BBR further significantly inhibited increases in important endothelial glycocalyx damage factors, including reactive oxygen species (ROS), heparanase (HPA), and matrix metalloproteinase 9 (MMP9) in LPS-induced ARDS mice and in LPS-stimulated human umbilical vein endothelial cells. BBR pretreatment also decreased the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and inhibited NF-κB signaling pathway activation in LPS-induced ARDS. In addition, BBR promoted the recovery of SDC-1 and HS content in injured endothelial glycocalyx after LPS treatment and accelerated its restoration. This is the first report of BBR maintaining the integrity of endothelial glycocalyx. These results provide a new theoretical basis for the use of BBR in the treatment of ARDS and other diseases related to endothelial glycocalyx damage.
Collapse
Affiliation(s)
- Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohua Zhang
- Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohong Ma
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dong Zhang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dongxiao Li
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Jiali Feng
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xinjie Pan
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Junhong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaozhi Wang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| |
Collapse
|
27
|
Cho R, Yang C, Tseng H, Hsiao L, Lin C, Yang C. Haem oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br J Pharmacol 2018; 175:3928-3946. [PMID: 30088830 PMCID: PMC6151343 DOI: 10.1111/bph.14465] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Haem oxygenase-1 (HO-1) is induced by thiazolidinediones including rosiglitazone and exerts anti-inflammatory effects in various models. However, the molecular mechanisms underlying rosiglitazone-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). EXPERIMENTAL APPROACH HO-1 expression was determined by real time-PCR, Western blotting and promoter reporter analyses. Signalling pathways were investigated using pharmacological inhibitors or specific siRNAs. Interactions between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of the HO-1 promoter were investigated with chromatin immunoprecipitation assays. KEY RESULTS Up-regulation of HO-1 in HPAEpiCs or in mice by rosiglitazone blunted ICAM-1 expression and monocyte adhesion to HPAEpiCs challenged with LPS. Rosiglitazone-induced HO-1 expression was significantly attenuated by NADPH oxidase (NOX) inhibitors (apocynin and diphenyleneiodonium) or ROS scavenger (N-acetyl cysteine). The involvement of NOX activity and ROS generation in rosiglitazone-induced HO-1 expression was confirmed by transfection with p47phox or NOX2 siRNA. Moreover, pretreatment with the inhibitors of c-Src (c-Srci II), proline-rich tyrosine kinase 2 (Pyk2) (PF431396), Akt (Akti VIII) or PPARγ (GW9662) and transfection with siRNA of c-Src, Pyk2, Akt or PPARγ abolished the rosiglitazone-induced HO-1 expression in HPAEpiCs. Subsequently, Nrf2 was activated by phosphorylation of c-Src, Pyk2 and Akt, which turned on transcription of HO-1 gene by binding to AREs binding site and enhancing ARE promoter activity. CONCLUSIONS AND IMPLICATIONS Rosiglitazone induces HO-1 expression via either NOX/ROS/c-Src/Pyk2/Akt-dependent Nrf2 activation or PPARγ in HPAEpiCs and suppresses LPS-mediated inflammatory responses, suggesting that PPARγ agonists may be useful for protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Rou‐Ling Cho
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
| | - Chien‐Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
- Department of Traditional Chinese MedicineChang Gung Memorial Hospital at Tao‐YuanTao‐YuanTaiwan
| | - Hui‐Ching Tseng
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
| | - Li‐Der Hsiao
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
| | - Chih‐Chung Lin
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
| | - Chuen‐Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human EcologyChang Gung University of Science and TechnologyTao‐YuanTaiwan
| |
Collapse
|
28
|
Liu X, Xu Q, Mei L, Lei H, Wen Q, Miao J, Huang H, Chen D, Du S, Zhang S, Zhou J, Deng R, Li Y, Li C, Li H. Paeonol attenuates acute lung injury by inhibiting HMGB1 in lipopolysaccharide-induced shock rats. Int Immunopharmacol 2018; 61:169-177. [PMID: 29883962 DOI: 10.1016/j.intimp.2018.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/02/2023]
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that facilitates gene transcription and the DNA repair response. However, HMGB1 may be released by necrotic cells as well as activated monocytes and macrophages following stimulation with lipopolysaccharide (LPS), interleukin-1β (IL-1β), or tumor necrosis factor-α (TNF-α). Extracellular HMGB1 plays a critical role in the pathogenesis of acute lung injury (ALI) through activating the nuclear transcription factor κB (NF-κB) P65 pathway, thus, it may be a promising therapeutic target in shock-induced ALI. Paeonol (Pae) is the main active component of Paeonia suffruticosa, which has been used to inhibit the inflammatory response in traditional Chinese medicine. We have proven that Pae inhibits the expression, relocation and secretion of HMGB1 in vitro. However, the role of Pae in the HMGB1-NF-κB pathway remains unknown. We herein investigated the role of Pae in LPS-induced ALI rats. In this study, LPS induced a marked decrease in the mean arterial pressure (MAP) and survival rate (only 25% after 72 h), and induced severe pathological changes in the lung tissue of rats, which was accompanied by elevated expression of HMGB1 and its downstream protein NF-κB P65. Treatment with Pae significantly improved the survival rate (>60%) and MAP, and attenuated the pathological damage to the lung tissue in ALI rats. Western blotting revealed that Pae also inhibited the total expression of HMGB1, NF-κB P65 and TNF-α in the lung tissue of ALI rats. Moreover, Pae increased the expression of HMGB1 in the nucleus, inhibited the production of HMGB1 in the cytoplasm, and decreased the expression of P65 both in the nucleus and cytoplasm of lung tissue cells in LPS-induced ALI rats. The results were in agreement with those observed in the in vitro experiment. These findings indicate that Pae may be a potential treatment for ALI through its repression of the HMGB1-NF-κB P65 signaling pathway.
Collapse
Affiliation(s)
- Xia Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; School of Basic Medical Sciences, Guiyang University of Chinese Medicine, Guiyang, Guizhou Province 550025, China
| | - Qin Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Liyan Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Hang Lei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Guangzhou Orthopedic Trauma Hospital, Guangzhou, Guangdong Province 510045, China
| | - Quan Wen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jifei Miao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Huina Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Shaohui Du
- Department of Internal Medicine, Affiliated Shenzhen Hospital to Guangzhou University of Chinese Medicine, Shenzhen 518003, China
| | - Saixia Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jianhong Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Rudong Deng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yiwei Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
29
|
Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, Godovikova T, Silnikov V, Moinuddin. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol 2018; 49:44-55. [DOI: 10.1016/j.semcancer.2017.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
30
|
Cheng K, Yang A, Hu X, Zhu D, Liu K. Curcumin Attenuates Pulmonary Inflammation in Lipopolysaccharide Induced Acute Lung Injury in Neonatal Rat Model by Activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) Pathway. Med Sci Monit 2018; 24:1178-1184. [PMID: 29480285 PMCID: PMC5839073 DOI: 10.12659/msm.908714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study aimed to investigate the therapeutic effect of curcumin in lipopolysaccharide (LPS) induced neonatal acute lung injury (ALI) and the possibly associated molecular mechanisms. Material/Methods ALI neonatal animal model was established by using LPS. Curcumin and/or peroxisome proliferator-activated receptor γ (PPARγ) inhibitor BADGE (bisphenol A diglycidyl ether) were administrated to animals. Lung edema was evaluated by PaO2 and lung wet/dry weight ratio (W/D) measurements. EMSA was used to determine the PPARγ activity. Levels of high-mobility group box 1 (HMGB1), secretory receptor for advanced glycation end products (RAGE), tumor necrosis factor α (TNFα), interleukin 6 (IL6), and transforming growth factor β1 (TGFβ1) in bronchoalveolar lavage fluid (BALF) were examined by ELISA. Western blotting was used to evaluate the expression levels of HMGB1, RAGE, heme oxygenase 1 (HO1), TNFα, IL6, and TGFβ1 in lung tissue. Results Curcumin administration significantly improved lung function by increasing PaO2 and decreasing W/D in neonatal ALI rats. Curcumin treatment upregulated the PPARγ activity and expression level of HO1 which were suppressed in lung tissue of neonatal ALI rats. Elevated levels of HMGB1, RAGE, TNFα, IL6, and TGFβ1 in both lung tissue and BALF from neonatal ALI rats were decreased dramatically by curcumin treatment. PPARγ inhibitor BADGE administration impaired curcumin’s alleviation on lung edema, inhibitory effects on inflammatory cytokine expression and recovery of PPARγ/HO1 signaling activation. Conclusions Curcumin alleviated lung edema in LPS-induced ALI by inhibiting inflammation which was induced by PPARγ/HO1 regulated-HMGB1/RAGE pro-inflammatory pathway.
Collapse
Affiliation(s)
- Keping Cheng
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Aijuan Yang
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Xiaohui Hu
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Dongbo Zhu
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Kaizhong Liu
- Department of Critical Care Medicine, Zhejiang Cancer Hospital , Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
31
|
New thiazolidinedione LPSF/GQ-2 inhibits NFκB and MAPK activation in LPS-induced acute lung inflammation. Int Immunopharmacol 2018; 57:91-101. [PMID: 29475100 DOI: 10.1016/j.intimp.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/26/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are responsible for high mortality rates in critical patients. Despite >50 years of intensive research, there is no pharmacologically effective treatment to treat ALI. PPARs agonists, chemically named thiazolidinediones (TZDs) have emerged as potential drugs for the treatment of ALI and ARDS due to their anti-inflammatory efficacy. The present study aims to evaluate the potential anti-inflammatory effects of new TZDs derivatives, LPSF/GQ-2 and LPSF/RA-4, on ALI induced by LPS. BALB/c mice were divided into five groups: 1) Control; 2) LPS intranasal 25 μg; 3) LPSF/GQ-2 30 mg/kg + LPS; 4) LPSF/RA-4 20 mg/kg + LPS; and 5) DEXA 1 mg/Kg + LPS. BALF analyses revealed that LPSF/GQ-2 and LPSF/RA-4 reduced NO levels in BALF and inflammatory cell infiltration induced by LPS. MPO levels were also reduced by the LPSF/GQ-2 and LPSF/RA-4 pre-treatments. In contrast, histopathological analyses showed better tissue protection with LPSF/GQ-2 than DEXA and LPSF/RA-4 groups. Similarly, LPSF/GQ-2 reduced inflammatory markers (IL-1, iNOS, TNFα, IL-1β, IL-6) better than LPSF/RA-4. The LPSF/GQ-2 anti-inflammatory action could be attributed to the inhibition of NFκB, ERK, p38, and PARP pathways. In contrast, LPSF/RA-4 had no effect on the expression of p38, JNK, NFκB. The present study indicates that LPSF/GQ-2 presents a potential therapeutic role as an anti-inflammatory drug for ALI.
Collapse
|
32
|
Tan Y, Zhang H, Guo D, Wang J, Yuan X, Yuan Z. Adipophilin Involved in Lipopolysaccharide-Induced Inflammation in RAW264.7 Cell via Extracellular Signal-Regulated Kinase 1/2-Peroxisome Proliferator-Activated Receptor Gamma Pathway. DNA Cell Biol 2017; 36:1159-1167. [DOI: 10.1089/dna.2017.3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yanmei Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
- Department of Pathology, Changde Vocational Technical College, Changde, China
| | - Hai Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dongming Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Jiangbo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Xu Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| |
Collapse
|
33
|
Chen Z, Wang Q. Activation of PPARγ by baicalin attenuates pulmonary hypertension in an infant rat model by suppressing HMGB1/RAGE signaling. FEBS Open Bio 2017; 7:477-484. [PMID: 28396833 PMCID: PMC5377406 DOI: 10.1002/2211-5463.12180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/06/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a vascular disease, and proinflammatory factors are strongly implicated in its pathogenesis, causing right ventricular (RV) hypertrophy and heart failure. Baicalin exhibits potent anti‐inflammation activity. This study aimed to investigate the curative effects of baicalin in an infant rodent model of PH and to further explore the underlying mechanisms. A PH model in infant rats was induced by hypoxia and the resulting rats were administered baicalin in incremental dosages. Invasive hemodynamic methods were used to measure mean pulmonary arterial pressure (mPAP) and RV end‐diastolic pressure (RVEDP). RV hypertrophy was assessed by mass pathology and histology. ELISAs were used to determine concentrations of high‐mobility group box 1 (HMGB1), secretory receptor for advanced glycation end products (sRAGE), interleukin 6 (IL6) and transforming growth factor β (TGFβ1) in bronchoalveolar lavage fluid (BALF). Electrophoretic mobility shift and phosphorylation in nuclear extracts were used to evaluate the activation of peroxisome proliferator‐activated receptor γ (PPARγ). Western blotting was used to detect the expression levels of heme oxygenase 1 (HO1), HMGB1, RAGE, IL6 and TGFβ1 in lung tissue. Baicalin administration significantly attenuated mPAP, RVEDP and RV hypertrophy in infant rats with PH. HMGB1, sRAGE, IL6 and TGFβ1 levels in BALF were also reduced by baicalin treatment. Baicalin activated PPARγ, which promoted expression of HO1. Furthermore, expression levels of HMGB1, RAGE, IL6 and TGFβ1 in lung tissue were dramatically decreased by baicalin in a dosage‐dependent manner. Baicalin showed curative effects in infant rats with PH. Activation of PPARγ that inhibited HMGB1/RAGE inflammatory signaling was involved.
Collapse
Affiliation(s)
- Zhenjie Chen
- Department of PICU The Children's Hospital Zhejiang University School of Medicine Hangzhou China
| | - Qiuxia Wang
- Department of PICU The Children's Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
34
|
PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1. PPAR Res 2016; 2016:2612743. [PMID: 27563308 PMCID: PMC4985574 DOI: 10.1155/2016/2612743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment.
Collapse
|
35
|
Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5302069. [PMID: 27556035 PMCID: PMC4983395 DOI: 10.1155/2016/5302069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 07/10/2016] [Indexed: 12/24/2022]
Abstract
Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-mediated lung protection following trauma-hemorrhage. Methods. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ inhibitor GW9662 (1 mg/kg, intravenously), GW9662, or vehicle was administered. Lung water content, tissue histology, and other various parameters were measured (n = 8 rats/group) 24 hours after resuscitation. One-way ANOVA and Tukey's testing were used for statistical analysis. Results. Trauma-hemorrhage significantly increased lung water content, myeloperoxidase activity, intercellular adhesion molecule-1, interleukin-6, and interleukin-1β levels. These parameters significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also decreased lung tissue damage as compared to the vehicle-treated trauma-hemorrhaged rats. Coadministration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on these parameters and lung injury. Conclusion. These results suggest that PPARγ might play a key role in maraviroc-mediated lung protection following trauma-hemorrhage.
Collapse
|
36
|
Lui G, Wong CK, Ip M, Chu YJ, Yung IMH, Cheung CSK, Zheng L, Lam JSY, Wong KT, Sin WWY, Choi KW, Lee N. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis. PLoS One 2016; 11:e0159132. [PMID: 27434276 PMCID: PMC4951129 DOI: 10.1371/journal.pone.0159132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB). METHODS A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals (tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients' PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo. RESULTS In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6-15.1) vs 3.6(3.6-3.6) pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02-1.23 per unit increase, P = 0.021) and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08-1.87, P = 0.012) concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2-2.8 fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α) when combined with lipoarabinomannan. CONCLUSION In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may play important roles in pathogenesis and disease manifestations. Our clinico-immunological data can provide basis for the development of new strategies for disease monitoring, management and control.
Collapse
Affiliation(s)
- Grace Lui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Jun Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Irene M. H. Yung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
| | | | - Lin Zheng
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Judy S. Y. Lam
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ka Tak Wong
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Winnie W. Y. Sin
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong SAR, China
| | - Kin Wing Choi
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong SAR, China
| | - Nelson Lee
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
37
|
Wang G, Song Y, Feng W, Liu L, Zhu Y, Xie X, Pan Y, Ke R, Li S, Li F, Yang L, Li M. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1. Exp Ther Med 2016; 12:1551-1555. [PMID: 27602077 DOI: 10.3892/etm.2016.3465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/19/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions.
Collapse
Affiliation(s)
- Guizuo Wang
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yang Song
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Wei Feng
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lu Liu
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yanting Zhu
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Xinming Xie
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yilin Pan
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Rui Ke
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Shaojun Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Fangwei Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lan Yang
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Manxiang Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|
38
|
Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice. PLoS One 2016; 11:e0155723. [PMID: 27195494 PMCID: PMC4873150 DOI: 10.1371/journal.pone.0155723] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose LPS- induced severe ARDS in mice.
Collapse
|
39
|
Li K, Yang J, Han X. Ketamine attenuates sepsis-induced acute lung injury via regulation of HMGB1-RAGE pathways. Int Immunopharmacol 2016; 34:114-128. [PMID: 26945830 DOI: 10.1016/j.intimp.2016.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
High mobility group box protein 1 (HMGB1) and receptor for the advanced glycation end product (RAGE) play important roles in the development of sepsis-induced acute lung injury (ALI). Ketamine is considered to confer protective effects on ALI during sepsis. In this study, we investigated the effects of ketamine on HMGB1-RAGE activation in a rat model of sepsis-induced ALI. ALI was induced in wild type (WT) and RAGE deficient (RAGE(-/-)) rats by cecal ligation and puncture (CLP) or HMGB1 to mimic sepsis-induced ALI. Rats were randomly divided to six groups: sham-operation+normal saline (NS, 10 mL/kg), sham-operation+ketamine (10 mg/kg), CLP/HMGB1+NS (10 mL/kg), CLP/HMGB1+ketamine (5 mg/kg), CLP/HMGB1+ketamine (7.5 mg/kg), and CLP/HMGB1+ketamine (10 mg/kg) groups. NS and ketamine were administered at 3 and 12 h after CLP/HMGB1 via intraperitoneal injection. Pathological changes of lung, inflammatory cell counts, expression of HMGB1 and RAGE, and concentrations of various inflammatory mediators in bronchoalveolar lavage fluids (BALF) and lung tissue were then assessed. Nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathways in the lung were also evaluated. CLP/HMGB1 increased the wet to dry weight ratio and myeloperoxidase activity in lung, the number of total cells, neutrophils, and macrophages in the BALF, and inflammatory mediators in the BALF and lung tissues. Moreover, expression of HMGB1 and RAGE in lung tissues was increased after CLP. Ketamine inhibited all the above effects. It also inhibited the activation of IκB-α, NF-κB p65, and MAPK. Ketamine protects rats against HMGB1-RAGE activation in a rat model of sepsis-induced ALI. These effects may partially result from reductions in NF-κB and MAPK.
Collapse
Affiliation(s)
- Kehan Li
- Department of Anesthesiology, The First Affiliated Hospital of Henan Science and Technology University, Luoyang, Henan, China.
| | - Jianxue Yang
- Department of Neurology, The First Affiliated Hospital of Henan Science and Technology University, Luoyang, Henan, China
| | - Xuechang Han
- Department of Anesthesiology, The First Affiliated Hospital of Henan Science and Technology University, Luoyang, Henan, China
| |
Collapse
|
40
|
Griggs RB, Donahue RR, Adkins BG, Anderson KL, Thibault O, Taylor BK. Pioglitazone Inhibits the Development of Hyperalgesia and Sensitization of Spinal Nociresponsive Neurons in Type 2 Diabetes. THE JOURNAL OF PAIN 2016; 17:359-73. [PMID: 26687453 PMCID: PMC4791042 DOI: 10.1016/j.jpain.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Renee R Donahue
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Braxton G Adkins
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Bradley K Taylor
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
41
|
Lei C, Jiao Y, He B, Wang G, Wang Q, Wang J. RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation. Pulm Pharmacol Ther 2016; 37:57-64. [PMID: 26921464 DOI: 10.1016/j.pupt.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
Abstract
Seriously inflammatory response of the lungs can induce acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) which are serious public health threats due to their high patient morbidity and mortality. While RIP140 is known to modulate proinflammatory cytokine production during an inflammatory response, its role in ALI/ARDS is unclear. In this study, we examined RIP140 and PPARγ protein expression in RAW 264.7 cells and lung tissue following LPS-induced ALI. RIP140 shRNA adenoviral knockdown significantly elevated PPARγ expression, inhibited TNF-α, IL-1β, and IL-6 production in vivo and in vitro. Conversely, treatment with a PPARγ antagonist (GW9662) reversed these outcomes. Furthermore, co-IP showed that endogenous and exogenous RIP140 interacted with DNMT3b in RAW 264.7 cells. Bisulfite conversion, pyrosequencing and activity assays demonstrated that PPARγ promoter methylation levels were increased and that PPARγ transcriptional activity was inhibited following LPS treatment in macrophages. Nevertheless, RIP140 knockdown reduced PPARγ promoter methylation levels and restored its transcriptional activity. These results indicate that RIP140 knockdown can inhibit the production of inflammation mediators and remit ALI via the repression of DNMT3b mediated PPARγ promoter methylation.
Collapse
Affiliation(s)
- Chuanjiang Lei
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Yan Jiao
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Bingfeng He
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Guansong Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Qin Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China
| | - Jianchun Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, 40037, China.
| |
Collapse
|
42
|
Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Nomoto M, Miyashita S, Suzuki K, Nakamura M, Ueno K, Watanabe K. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression. Cytokine 2015; 76:206-213. [DOI: 10.1016/j.cyto.2015.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023]
|
43
|
Shao G, Tian Y, Wang H, Liu F, Xie G. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2015; 29:263-268. [PMID: 26590117 DOI: 10.1016/j.intimp.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Guoxi Shao
- The Second Hospital of Jilin University, China
| | - Yinggang Tian
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Haiyu Wang
- College of Veterinary Medicine, Jilin University, China
| | - Fangning Liu
- College of Veterinary Medicine, Jilin University, China
| | - Guanghong Xie
- College of Veterinary Medicine, Jilin University, China.
| |
Collapse
|
44
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
45
|
El-Naa MM, El-Refaei MF, Nasif WA, Abduljawad SH, El-Brairy AI, El-Readi MZ. In-vivo antioxidant and anti-inflammatory activity of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists in animal model of bronchial asthma. ACTA ACUST UNITED AC 2015; 67:1421-30. [PMID: 26099551 DOI: 10.1111/jphp.12445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/12/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Peroxisome proliferator activated receptor-gamma (PPAR-γ) has been shown to play an important role in the control of immunological and inflammatory responses. This study aims at investigating the potential role of rosiglitazone, a strong PPAR-γ agonist in a murine model of bronchial asthma. METHODS Adult male guinea pigs were administered ovalbumin 100 mg/kg subcutaneous (SC) and 100 mg/kg intraperitoneal (IP). Treatment with rosiglitazone [5 mg/kg/day, per oral (PO)] was assessed for 21 days. On day 21, the animals were challenged with the same dose of ovalbumin. The forced expiratory volume in 1 s (FEV1 ) to forced vital capacity (FVC), FEV1 /FVC, was measured using a spirometer to diagnosis lung obstruction. Serum levels of interleukin-5 (IL-5) and immunoglobulin E (IgE) were assessed. The activity of superoxide dismutase (SOD) and catalase and the level of reduced glutathione (GSH) were determined in lung tissue homogenates. KEY FINDINGS Our results demonstrated that treatment with rosiglitazone resulted in a statistically significant improvement in lung function and histopathological features. Significant decrease in the serum levels of IL-5 and IgE were observed. The activity of SOD and catalase as well as the GSH level were significantly increased in the lung tissues of treated animals compared with untreated asthmatic animals. Serum IgE concentrations and IL-5 levels were directly correlated to each other and inversely correlated to the SOD, GSH and catalase levels in the all studied guinea pigs. CONCLUSIONS Our results provide evidence that the PPAR-γ agonist rosiglitazone may have potential in the development of therapies for bronchial asthma.
Collapse
Affiliation(s)
- Mona M El-Naa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6 October City, Egypt
| | - Mohamed F El-Refaei
- Molecular Biology Department, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt
| | - Wesam A Nasif
- Molecular Biology Department, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suha H Abduljawad
- Department of Food Sciences, Faculty of Family Science, Taibah University, Al Madinah Al-Munawarah, Saudi Arabia
| | - Amany I El-Brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6 October City, Egypt
| | - Mahmoud Z El-Readi
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
46
|
Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression. J Trauma Acute Care Surg 2015; 78:784-92. [PMID: 25807407 DOI: 10.1097/ta.0000000000000588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.
Collapse
|
47
|
Xu J, Zhu YT, Wang GZ, Han D, Wu YY, Zhang DX, Liu Y, Zhang YH, Xie XM, Li SJ, Lu JM, Liu L, Feng W, Sun XZ, Li MX. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma. Acta Pharmacol Sin 2015; 36:171-8. [PMID: 25619395 DOI: 10.1038/aps.2014.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/07/2014] [Indexed: 01/13/2023]
Abstract
AIM Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. METHODS Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, p.o.). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. RESULTS Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. CONCLUSION Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA-induced asthma of mice by activating PPARγ/HO-1 signaling pathway.
Collapse
|
48
|
Curcumin attenuated acute Propionibacterium acnes -induced liver injury through inhibition of HMGB1 expression in mice. Int Immunopharmacol 2015; 24:159-165. [PMID: 25510585 DOI: 10.1016/j.intimp.2014.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
49
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|