1
|
Xiong Y, Chen C, Deng X, Hu Y, Liu H, Wan L, Du L. Study on Quality Markers of Tibetan Medicine Wuwei Shaji San Based on UHPLC-Q-Exactive Orbitrap-MS and Network Pharmacology Multicomponent Quantification. Biomed Chromatogr 2025; 39:e70036. [PMID: 39995278 DOI: 10.1002/bmc.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
The Tibetan medicine Wuwei Shaji powder (WWSJ) has been extensively applied to treating lung diseases such as chronic obstructive pulmonary disease (COPD). However, there are significant limitations in its quality control and evaluation. The purpose of this study was to analyze the overall chemical composition of WWSJ and to predict potential quality markers for WWSJ in the treatment of COPD. Using UHPLC-Q-Exactive Orbitrap-MS, 83 chemical constituents of WWSJ were identified or preliminarily characterized by 14 authentic reference standards, accurate mass counts, and characteristic fragment ions. In addition, serum pharmacology methods were employed to detect 13 blood-migrating components. Further network pharmacological research found that the potential mechanism of WWSJ in the treatment of COPD may be related to the regulation of the immune system and inflammatory response and identified 10 chemicals as key molecules in the treatment of COPD. Finally, the contents of six potential quality markers were determined simultaneously by high-performance liquid chromatography (HPLC). This study lays the foundation for further research on the mechanism of WWSJ in the treatment of COPD.
Collapse
Affiliation(s)
- Yaozu Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xiaohui Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanmei Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haicui Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
3
|
Perveen S, Hamedi A, Pasdaran A, Heidari R, Azam MSU, Tabassum S, Mehmood R, Peng J. Anti-inflammatory potential of some eudesmanolide and guaianolide sesquiterpenes. Inflammopharmacology 2024; 32:1489-1498. [PMID: 37962696 DOI: 10.1007/s10787-023-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10β-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA.
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Shafiq Ul Azam
- Department of Radiology, Yeovil district hospital Somerset foundation trust (NHS), BA21 4AT,, Yeovil, Somerset, UK
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Pakistan
| | - Rashad Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Jiangnan Peng
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
4
|
Abouelwafa E, Zaki A, M Sabry O, Caprioli G, Abdel-Sattar E. Dolomiaea costus: an untapped mine of sesquiterpene lactones with wide magnificent biological activities. Nat Prod Res 2023; 37:4069-4079. [PMID: 36625545 DOI: 10.1080/14786419.2022.2164577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Dolomiaea costus (Falc.) Kasana & A.K. Pandey Family Asteraceae, formerly known as Saussurea costus (Falc.) Lipsch contains a rich treasury of diverse bioactive compounds such as monoterpenes, sesquiterpenes, triterpenes, sterols, cardenolides, flavonoids, coumarins, lignans, phenylpropanoids and alkaloids. The sesquiterpene lactones, costunolide and dehydrocostuslactone in D. costus, possess unique promising in vitro and in vivo biological activities for the prevention and cure of diverse ailments like Parkinson's disease, oxidative stress, hyperpigmentation, ulcerative colitis, breast cancer, hepatocellular carcinoma, colon cancer, prostate cancer, ovarian cancer, leukemia, stomach cancer, prostate cancer, lung cancer, osteosarcoma, neuroblastoma, allergy, type 2 diabetes, hepatotoxicity, bronchitis, pulmonary fibrosis, thrombosis and various microbial infections. Costunolide and dehydrocostuslactone are potential drug candidates that could lead to the development of new medications for a variety of difficult-to-treat diseases.
Collapse
Affiliation(s)
- Ebraheem Abouelwafa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Zaki
- Department of Biochemistry, Animal Health Research Institute, Giza, Egypt
| | - Omar M Sabry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Giovanni Caprioli
- Pharmacy Department, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Arslan ME, Türkez H, Sevim Y, Selvitopi H, Kadi A, Öner S, Mardinoğlu A. Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson's Disease Model. Cells 2023; 12:cells12070992. [PMID: 37048065 PMCID: PMC10093699 DOI: 10.3390/cells12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Yasemin Sevim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Harun Selvitopi
- Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Abdurrahim Kadi
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
6
|
Han JS, Kim JG, Linh Le TP, Cho YB, Lee D, Hong JT, Lee MK, Hwang BY. Targeted isolation of sesquiterpene lactone dimers from Aucklandia lappa guided by LC-HRMS/MS-based molecular networking. PHYTOCHEMISTRY 2023; 206:113557. [PMID: 36496006 DOI: 10.1016/j.phytochem.2022.113557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An LC-HRMS/MS-based molecular networking strategy was applied to investigate the potential sesquiterpene dimers of Aucklandia lappa, leading to the isolation of three undescribed guaiane-guaiane dimers and one guaiane-eudesmane dimer together with six known sesquiterpenes. The structures were determined by analyzing their 1D, 2D NMR, and HRESIMS data as well as ECD calculations. The biogenetic pathway of the sesquiterpene dimers was postulated to involve the Diels-Alder cycloaddition as the key step. All compounds exhibited their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values ranging from 0.3 to 25.1 μM.
Collapse
Affiliation(s)
- Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jun Gu Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Thi Phuong Linh Le
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
7
|
Hao J, Shen X, Lu K, Xu Y, Chen Y, Liu J, Shao X, Zhu C, Ding Y, Xie X, Wu J, Yang Q. Costunolide alleviated DDC induced ductular reaction and inflammatory response in murine model of cholestatic liver disease. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
8
|
Antitumoral Activity of Leptocarpha rivularis Flower Extracts against Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24021439. [PMID: 36674960 PMCID: PMC9862749 DOI: 10.3390/ijms24021439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Leptocarpha rivularis is a native South American plant used ancestrally by Mapuche people to treat gastrointestinal ailments. L. rivularis flower extracts are rich in molecules with therapeutic potential, including the sesquiterpene lactone leptocarpin, which displays cytotoxic effects against various cancer types in vitro. However, the combination of active molecules in these extracts could offer a hitherto unexplored potential for targeting cancer. In this study, we investigated the effect of L. rivularis flower extracts on the proliferation, survival, and spread parameters of gastric cancer cells in vitro. Gastric cancer (AGS and MKN-45) and normal immortalized (GES-1) cell lines were treated with different concentrations of L. rivularis flower extracts (DCM, Hex, EtOAc, and EtOH) and we determined the changes in proliferation (MTS assay, cell cycle analysis), cell viability/cytotoxicity (trypan blue exclusion assay, DEVDase activity, mitochondrial membrane potential MMP, and clonogenic ability), senescence (β-galactosidase activity) and spread potential (invasion and migration assays using the Boyden chamber approach) in all these cells. The results showed that the DCM, EtOAc, and Hex extracts display a selective antitumoral effect in gastric cancer cells by affecting all the cancer parameters tested. These findings reveal an attractive antitumoral potential of L. rivularis flower extracts by targeting several acquired capabilities of cancer cells.
Collapse
|
9
|
Yu W, Li Q, Shao C, Zhang Y, Kang C, Zheng Y, Liu X, Liu X, Yan J. The Cao-Xiang-Wei-Kang formula attenuates the progression of experimental colitis by restoring the homeostasis of the microbiome and suppressing inflammation. Front Pharmacol 2022; 13:946065. [PMID: 36204231 PMCID: PMC9530714 DOI: 10.3389/fphar.2022.946065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction. The Cao-Xiang-Wei-Kang (CW) formula has been utilized to treat gastrointestinal disorders in the clinic. The present study was designed to delineate the pharmacological mechanisms of this formula from different aspects of the etiology of ulcerative colitis (UC), a major subtype of IBD. Dextran sodium sulfate (DSS) was given to mice for a week at a concentration of 2%, and the CW solution was administered for 3 weeks. 16S rRNA gene sequencing and untargeted metabolomics were conducted to examine the changes in the microbiome profile, and biochemical experiments were performed to confirm the therapeutic functions predicted by system pharmacology analysis. The CW treatment hampered DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, which was corroborated by suppressed caspase 3 (Casp3) and interleukin-1b (IL-1b) and increased cleaved caspase 3 expression and casp-3 activity in the colon samples from colitis mice subjected to the CW therapy. Moreover, the CW therapy rescued the decreased richness and diversity, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the altered linoleic acid metabolism and cytochrome P450 activity in murine colitis models. In our in vitro experiments, the CW administration increased the alternative activation of macrophages (Mφs) and inhibited the tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level and subsequent death in intestinal organoids (IOs). We propose that the CW formula alleviates the progression of murine colitis by suppressing inflammation, promoting mucosal healing, and re-establishing a microbiome profile that favors re-epithelization.
Collapse
|
10
|
Arizmendi N, Alam SB, Azyat K, Makeiff D, Befus AD, Kulka M. The Complexity of Sesquiterpene Chemistry Dictates Its Pleiotropic Biologic Effects on Inflammation. Molecules 2022; 27:2450. [PMID: 35458648 PMCID: PMC9032002 DOI: 10.3390/molecules27082450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Khalid Azyat
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Darren Makeiff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Cai X, Yang C, Qin G, Zhang M, Bi Y, Qiu X, Lu L, Chen H. Antimicrobial Effects and Active Compounds of the Root of Aucklandia Lappa Decne (Radix Aucklandiae). Front Chem 2022; 10:872480. [PMID: 35464223 PMCID: PMC9019365 DOI: 10.3389/fchem.2022.872480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
The development of new biological fungicides using plant metabolites has become an important direction for pesticide development, and previous studies found that Radix Aucklandiae had a certain inhibitory effect on plant pathogens. In this study, we systematically studied the antimicrobial activity of extracts of Radix Aucklandiae, and the active compounds were isolated, purified and structurally identified. Ethanol extracts of Radix Aucklandiae had different inhibitory effects on seven common plant-pathogenic fungi, with EC50 (concentration for 50% of maximal effect) values ranging from 114.18 mg/L to 414.08 mg/L. The extract at concentration of 1,000 mg/L had a significant control effect on strawberry grey mould and wheat powdery mildew of more than 90%. Three active compounds were isolated and purified from the extract, which were identified as alantolactone, dehydrocostus lactone and costunolide. All three compounds showed significant inhibitory effects on Botrytis cinerea, and the MIC (minimal inhibitory concentration) values were 15.63 mg/L, 3.91 mg/L and 15.63 mg/L. Dehydrocostus lactone also showed obvious inhibitory effect on Fusarium graminearum with an MIC value of 62.25 mg/L. The extract of Radix Aucklandiae has high antimicrobial activity against some common plant-pathogenic fungi, and the work lays a foundation for the development of extracts of Radix Aucklandiae as botanical fungicides.
Collapse
|
12
|
Mao J, Zhan H, Meng F, Wang G, Huang D, Liao Z, Chen M. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro. Phytother Res 2022; 36:1268-1283. [PMID: 35084790 DOI: 10.1002/ptr.7383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Huang Z, Wei C, Yang K, Yu Z, Wang Z, Hu H. Aucklandiae Radix and Vladimiriae Radix: A systematic review in ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114372. [PMID: 34186101 DOI: 10.1016/j.jep.2021.114372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR), as commonly used traditional Chinese herbal medicine, were widely used in the treatment of gastrointestinal diseases. The two herbal medicines were warm, pungent and bitter. They entered the spleen, stomach, large intestine and gallbladder meridians, and had the effect of promoting qi circulation to relieve pain. It is usually used for chest and hypochondrium, abdominal fullness and pain, tenesmus, indigestion, and warming the middle to harmonize the stomach in clinically. AIM OF THIS REVIEW To provide a reference for the identification of traditional use, the material basis of efficacy and preclinical research between AR and VR, this review systematically summarized the similarities and differences in ethnopharmacology, phytochemistry and modern pharmacology. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine, master's thesis, doctoral thesis. RESULTS In the plateau areas of Sichuan Province, VR used to be regarded as substitute or local habit for AR, which is regularly used for chest, abdominal fullness and pain, diarrhea, and other related diseases. In Chinese Pharmacopoeia (ChP) 2020 edition, 145 prescription preparations with AR were collected, such as Xianglian Wan, Muxiang Shunqi Wan, Liuwei Muxiang San. However, only one prescription preparation (Jiuxiang Zhitong Wan) contained VR. Additionally, 237 and 254 chemical components were separately isolated and identified from AR and VR, 69 kinds of compounds were common among them, and the significant differences were presented in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids. Moreover, Costunolide (COS) and Dehydrocostus lactone (DEH), two main research objects of modern pharmacology, showed multiple pharmacological activities. Not only could they inhibit the activity of some cancer cells (such as breast cancer and leukemia cells), but they regulated the levels of various inflammatory factors (including TNF-α, NF-κB, IL-1β, IL-6) and repressed the growth and reproduction of various microorganisms (like Helicobacter pylori, Staphylococcus aureus). CONCLUSION COS and DEH as the common active components, provide a certain basis for local medicine about the substitution of VR for AR in Sichuan province of China in the past. In addition, the sesquiterpenoids are the main common compounds in AR and VR by collecting and collating a large number of literature and various data websites. Furthermore, AR and VR have significant differences in ethnopharmacology and phytochemistry, especially in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids, and are probably viewed as reference of a separate list of AR and VR in Chinese Pharmacopoeia.
Collapse
Affiliation(s)
- Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Chunlei Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu, 610106, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
14
|
Costunolide Loaded in pH-Responsive Mesoporous Silica Nanoparticles for Increased Stability and an Enhanced Anti-Fibrotic Effect. Pharmaceuticals (Basel) 2021; 14:ph14100951. [PMID: 34681175 PMCID: PMC8539632 DOI: 10.3390/ph14100951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis remains a significant public health problem. However, few drugs have yet been validated. Costunolide (COS), as a monomeric component of the traditional Chinese medicinal herb Saussurea Lappa, has shown excellent anti-fibrotic efficacy. However, COS displays very poor aqueous solubility and poor stability in gastric juice, which greatly limits its application via an oral administration. To increase the stability, improve the dissolution rate and enhance the anti-liver fibrosis of COS, pH-responsive mesoporous silica nanoparticles (MSNs) were selected as a drug carrier. Methacrylic acid copolymer (MAC) as a pH-sensitive material was used to coat the surface of MSNs. The drug release behavior and anti-liver fibrosis effects of MSNs-COS-MAC were evaluated. The results showed that MSNs-COS-MAC prevented a release in the gastric fluid and enhanced the dissolution rate of COS in the intestinal juice. At half the dose of COS, MSNs-COS-MAC still effectively ameliorated parenchymal necrosis, bile duct proliferation and excessive collagen. MSNs-COS-MAC significantly repressed hepatic fibrogenesis by decreasing the expression of hepatic fibrogenic markers in LX-2 cells and liver tissue. These results suggest that MSNs-COS-MAC shows great promise for anti-liver fibrosis treatment.
Collapse
|
15
|
Zhuang K, Xia Q, Zhang S, Maharajan K, Liu K, Zhang Y. A comprehensive chemical and pharmacological review of three confusable Chinese herbal medicine-Aucklandiae radix, Vladimiriae radix, and Inulae radix. Phytother Res 2021; 35:6655-6689. [PMID: 34431559 DOI: 10.1002/ptr.7250] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Aucklandiae radix (AR, Muxiang), vladimiriae radix (VR, Chuanmuxiang), and inulae radix (IR, Tumuxiang) are widely used in clinical or folk medicine in China. Their Chinese names all have the Chinese character "Muxiang," which makes it confusable in usage, especially AR and VR, because VR was used as a substitute for AR during a historical period. The National Health Commission of the People's Republic of China has approved AR as a functional food. However, VR and IR are not listed. Many research articles on three kinds of "Muxiang" have been published. However, no review was appeared to compare similarities and differences among the three kinds of "Muxiang." Here, the morphological characterization, phytochemistry, and pharmaceutical effects of AR, VR, and IR were reviewed. We found that only six compounds were common in the three species. Twenty-six compounds were common to AR and VR. Twenty-two compounds were common to AR and IR. Only seven compounds were common to VR and IR. The extracts of AR, VR, and IR were all reported with antiinflammatory effects, which is the most important activity of "Muxiang" species. The volatile oil of AR, VR, and IR had antibacterial activities. Extracts of AR and VR showed anti-gastric ulcers and anti-diarrhea effects. Extracts of AR and IR exhibited anticancer effects. In addition, AR extract had liver protective effect. It is worth mentioning that costunolide and dehydrocostus lactone, which were the common representative compounds of "Muxiang" species, showed antiinflammatory, anticancer, anti-gastric ulcers, and liver protective effects. This review will be a benefit reference for correct understanding and application of the three "Muxiang" species.
Collapse
Affiliation(s)
- Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| |
Collapse
|
16
|
Li X, Liu Q, Yu J, Zhang R, Sun T, Jiang W, Hu N, Yang P, Luo L, Ren J, Wang Q, Wang Y, Yang Q. Costunolide ameliorates intestinal dysfunction and depressive behaviour in mice with stress-induced irritable bowel syndrome via colonic mast cell activation and central 5-hydroxytryptamine metabolism. Food Funct 2021; 12:4142-4151. [PMID: 33977961 DOI: 10.1039/d0fo03340e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional bowel disease, associated with a high risk of depression and anxiety. The brain-gut axis plays an important role in the pathophysiological changes involved in IBS; however, an effective treatment for the same is lacking. The natural compound costunolide (COS) has been shown to exert gastroprotective, enteroprotective, and neuroprotective effects, but its therapeutic effects in IBS are unclear. Our study explored the effect of COS on intestinal dysfunction and depressive behaviour in stress-induced IBS mice. Mice were subjected to chronic unpredictable mild stress to trigger IBS, and some were administered COS. Behavioural tests, histochemical assays, western blotting, and measurement of 5-hydroxytryptamine (5-HT) levels in the colon and hippocampus were applied to monitor the physiological and molecular consequences of COS treatment in IBS mice. COS administration relieved intestinal dysfunction and depression-like behaviours in IBS mice. Improvements in low-grade colon inflammation and intestinal mucosal permeability, inhibition of the activation of mast cells, upregulation of colonic Occludin expression, and downregulation of Claudin 2 expression were also observed. COS was also found to upregulate GluN2A, BDNF, p-ERK1/2, and p-CREB expression and 5-HT levels in hippocampal cells but inhibited 5-HT metabolism. Molecular docking showed that COS could form hydrogen bonds with the serotonin transporter (SERT) to affect the reuptake of 5-HT in the intercellular space. In conclusion, COS alleviates intestinal dysfunction and depressive behaviour in stress-induced IBS mice by inhibiting mast cell activation in the colon and regulating 5-HT metabolism in the central nervous system.
Collapse
Affiliation(s)
- Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ruitao Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Wei Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Na Hu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Peng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jing Ren
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qinhui Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 986 Hospital, Air Force Medical University, Xi'an, 710054 China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
17
|
Santos SMD, de Oliveira Junior PC, de Matos Balsalobre N, Kassuya CAL, Cardoso CAL, Pereira ZV, Silva RMMF, Formagio ASN. Variation in essential oil components and anti-inflammatory activity of Allophylus edulis leaves collected in central-western Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113495. [PMID: 33091493 DOI: 10.1016/j.jep.2020.113495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An infusion obtained from the leaves of "chal-chal" (Allophylus edulis Radlk.) is used for popular treatment of intestinal disorders and as an anti-inflammatory throat treatment. Because of the anti-inflammatory medicinal folk use, a previous work reported scientific research confirming the anti-inflammatory activity of A. edulis essential oil collected in Dourados, MS, Brazil, in March 2015. AIM OF THE STUDY The aim of this study was to evaluate the variation in the chemical profile of the essential oil of A. edulis plants collected in Dourados (EOAE-D) and Bonito (EOAE-B), two cities in Mato Grosso do Sul State, Brazil. Additionally, we evaluated the anti-inflammatory effects of the essential oil, as well as that of the major compounds (caryophyllene oxide and α-zingiberene), in experimental in vivo models of inflammation in mice. MATERIALS AND METHODS Leaves were collected from plants at both sites in July 2018. The composition of the essential oil (EOAE-D and EOAE-B) was determined by GC/MS, and major compounds (caryophyllene oxide and α-zingiberene) were isolated and identified by chromatographic methods and NMR spectroscopy. Anti-inflammatory capacities were assessed using two classical models of inflammatory models, carrageenan- and CFA-induced paw inflammation (mechanical and thermal hyperalgesia). RESULTS Both EOAE-D and EOAE-B showed sesquiterpenes as a major constituent, namely, caryophyllene oxide (29.5%) and α-zingiberene (45.0%), respectively. In tests, EOAE, caryophyllene oxide and α-zingiberene-induced antiedematogenic and antihyperalgesic effects were found in the different utilized models. CONCLUSIONS The results indicate that samples from the two cities differed in chemical composition but not in their anti-inflammatory and antihyperalgesic effects. This finding corroborates the use of A. edulis as a medicinal plant and indicates its potential in the therapy of inflammatory conditions.
Collapse
Affiliation(s)
- Sidney Mariano Dos Santos
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Pedro Cruz de Oliveira Junior
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Natália de Matos Balsalobre
- Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Candida Aparecida Leite Kassuya
- Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- State University of Mato Grosso do Sul, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Zefa Valdivina Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Rosilda Mara Mussury Franco Silva
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Anelise Samara Nazari Formagio
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil; Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
18
|
Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation. Int J Mol Sci 2021; 22:ijms22042075. [PMID: 33669832 PMCID: PMC7922093 DOI: 10.3390/ijms22042075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Costunolide is a naturally occurring sesquiterpene lactone that demonstrates various therapeutic actions such as anti-oxidative, anti-inflammatory, and anti-cancer properties. Costunolide has recently emerged as a potential anti-cancer agent in various types of cancer, including colon, lung, and breast cancer. However, its mode of action in skin cancer remains unclear. To determine the anti-cancer potential of costunolide in skin cancer, human epidermoid carcinoma cell line A431 was treated with costunolide. A lactate dehydrogenase assay showed that costunolide diminished the viability of A431 cells. Apoptotic cells were detected by annexin V/propidium iodide double staining and Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay assay, and costunolide induced cell apoptosis via activation of caspase-3 as well as induction of poly-ADP ribose polymerase cleavage in A431 cells. In addition, costunolide elevated the level of the pro-apoptotic protein Bax while lowering the levels of anti-apoptotic proteins, including Bcl-2 and Bcl-xL. To address the inhibitory effect of costunolide on cell proliferation and survival, various signaling pathways, including mitogen-activated protein kinases, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NF-κB), and Akt, were investigated. Costunolide activated the p38 and c-Jun N-terminal kinase pathways while suppressing the extracellular signal-regulated kinase (ERK), STAT3, NF-κB, and Akt pathways in A431 cells. Consequently, it was inferred that costunolide suppresses cell proliferation and survival via these signaling pathways. Taken together, our data clearly indicated that costunolide exerts anti-cancer activity in A431 cells by suppressing cell growth via inhibition of proliferation and promotion of apoptosis. Therefore, it may be employed as a potentially tumor-specific candidate in skin cancer treatment.
Collapse
|
19
|
Montenegro I, Moreira J, Ramírez I, Dorta F, Sánchez E, Alfaro JF, Valenzuela M, Jara-Gutiérrez C, Muñoz O, Alvear M, Werner E, Madrid A, Villena J, Seeger M. Chemical Composition, Antioxidant and Anticancer Activities of Leptocarpha rivularis DC Flower Extracts. Molecules 2020; 26:molecules26010067. [PMID: 33375633 PMCID: PMC7795695 DOI: 10.3390/molecules26010067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
An evaluation of antioxidant and anticancer activity was screened in Leptocarpha rivularis DC flower extracts using four solvents (n-hexane (Hex), dichloromethane (DCM), ethyl acetate (AcOEt), and ethanol (EtOH)). Extracts were compared for total extract flavonoids and phenol contents, antioxidant activity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric reducing antioxidant potential (FRAP), total reactive antioxidant properties (TRAP) and oxygen radical absorbance capacity (ORAC)) across a determined value of reduced/oxidized glutathione (GSH/GSSG), and cell viability (the sulforhodamine B (SRB) assay). The most active extracts were analyzed by chromatographic analysis (GC/MS) and tested for apoptotic pathways. Extracts from Hex, DCM and AcOEt reduced cell viability, caused changes in cell morphology, affected mitochondrial membrane permeability, and induced caspase activation in tumor cell lines HT-29, PC-3, and MCF-7. These effects were generally less pronounced in the HEK-293 cell line (nontumor cells), indicating clear selectivity towards tumor cell lines. We attribute likely extract activity to the presence of sesquiterpene lactones, in combination with other components like steroids and flavonoids.
Collapse
Affiliation(s)
- Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Jorge Moreira
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Ingrid Ramírez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Fernando Dorta
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Elizabeth Sánchez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Juan Felipe Alfaro
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Manuel Valenzuela
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Laboratorio de Estrés Oxidativo, Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile;
| | - Ociel Muñoz
- Institute of Food Science and Technology, University Austral of Chile, Valdivia 5090000, Chile;
| | - Matias Alvear
- Laboratory of Industrial Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland;
| | - Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío, Avda. Andrés Bello 720, Casilla 447, Chillán 3780000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Michael Seeger
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| |
Collapse
|
20
|
Regulation of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Activity of Advanced Cooling Composition (ACC) in UVB-Irradiated Human HaCaT Keratinocytes. Int J Mol Sci 2020; 21:ijms21186527. [PMID: 32906658 PMCID: PMC7555985 DOI: 10.3390/ijms21186527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
We recently demonstrated that advanced cooling composition (ACC) has effective ingredients that exhibit anti-inflammatory effects in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and exhibit strong antimicrobial effects on Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. To further investigate whether ACC has beneficial effects in ultraviolet B (UVB)-irradiated human keratinocytes (HaCaT cells), HaCaT cells were pretreated with ACC prior to UVB irradiation. Our data showed that ACC, which is effective at 100 µg/mL, is nontoxic and has an antioxidative effect against UVB-induced intracellular reactive oxygen species (ROS) in HaCaT cells. In addition, ACC exerts cytoprotective effects against UVB-induced cytotoxicity in HaCaT cells by inhibiting abnormal inflammation and apoptosis through the regulation of mitogen-activated protein kinase (MAPK) signals, such as jun-amino-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). Therefore, these results indicate that ACC is a potentially beneficial raw material that possesses antioxidative, anti-inflammatory, and antiapoptotic effects against UVB-induced keratinocytes and may have applications in skin health.
Collapse
|
21
|
Liu YC, Feng N, Li WW, Tu PF, Chen JP, Han JY, Zeng KW. Costunolide Plays an Anti-Neuroinflammation Role in Lipopolysaccharide-Induced BV2 Microglial Activation by Targeting Cyclin-Dependent Kinase 2. Molecules 2020; 25:molecules25122840. [PMID: 32575562 PMCID: PMC7355650 DOI: 10.3390/molecules25122840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperactivation of microglia in the brain is closely related to neuroinflammation and leads to neuronal dysfunction. Costunolide (CTL) is a natural sesquiterpene lactone with wide pharmacological activities including anti-inflammation and antioxidation. In this study, we found that CTL significantly inhibited the production of inflammatory mediators including nitric oxide, IL-6, TNF-α, and PGE2 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Moreover, CTL effectively attenuated IKKβ/NF-κB signaling pathway activation. To identify direct cellular target of CTL, we performed high-throughput reverse virtual screening assay using scPDB protein structure library, and found cyclin-dependent kinase 2 (CDK2) was the most specific binding protein for CTL. We further confirmed the binding ability of CTL with CDK2 using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays. Surface plasmon resonance analysis also supported that CTL specifically bound to CDK2 with a dissociation constant at micromole level. Furthermore, knocking down CDK2 obviously reversed the anti-inflammation effect of CTL via AKT/IKKβ/NF-κB signaling pathway on BV-2 cells. Collectively, these results indicate that CTL inhibits microglia-mediated neuroinflammation through directly targeting CDK2, and provide insights into the role of CDK2 as a promising anti-neuroinflammation therapeutic target.
Collapse
Affiliation(s)
- Yan-Chen Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (N.F.); (P.-F.T.)
- Integrated Laboratory of Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China;
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (N.F.); (P.-F.T.)
| | - Wei-Wei Li
- Integrated Laboratory of Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China;
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (N.F.); (P.-F.T.)
| | - Jian-Ping Chen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong 999077, China;
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.-Y.H.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (N.F.); (P.-F.T.)
- Integrated Laboratory of Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China;
- Correspondence: (J.-Y.H.); (K.-W.Z.)
| |
Collapse
|
22
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
23
|
Zhang R, Hao J, Wu Q, Guo K, Wang C, Zhang WK, Liu W, Wang Q, Yang X. Dehydrocostus lactone inhibits cell proliferation and induces apoptosis by PI3K/Akt/Bad and ERS signalling pathway in human laryngeal carcinoma. J Cell Mol Med 2020; 24:6028-6042. [PMID: 32319208 PMCID: PMC7294112 DOI: 10.1111/jcmm.15131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
The anti-cancer effect of dehydrocostus lactone (DHL) derived from Saussurea costus (Falc.) Lipech against laryngeal carcinoma was assessed. The cytotoxic activity of DHL against laryngeal carcinoma is still obscure. Therefore, our study investigated the role of DHL in the growth inhibition of laryngeal carcinoma in vitro and in vivo, and the molecular mechanism of DHL-induced apoptosis in cancer cells of the larynx. The results showed that DHL inhibits the viability, migration and proliferation of Hep-2 and TU212 cells with little toxic effects on human normal larynx epithelial HBE cell line. Flow cytometry analysis (FAC) analysis and staining assay (Hoechst 33258) indicated that DHL stimulated Hep-2 and TU212 cell apoptosis in a dose-dependent manner. Mechanistically, DHL is capable of inhibiting Hep-2 and TU212 cell viability via promoting p53 and P21 function, meanwhile DHL dose-dependently induces Hep-2 and TU212 cells apoptosis via activating mitochondrial apoptosis by inhibiting PI3K/Akt/Bad pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway. In vivo, DHL inhibited the growth of the Hep-2 nude mouse xenograft model and observed no significant signs of toxicity in the organs of nude mice. In vivo experiments further confirmed the anti-cancer effect of DHL on laryngeal carcinoma cells in vitro, and DHL-treated nude mice can reduce the volume of tumours. Together, our study indicated that DHL has the potential to inhibit human laryngeal carcinoma via activating mitochondrial apoptosis pathway by inhibiting PI3K/Akt/Bad signalling pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway, providing a strategy for the treatment of human laryngeal carcinoma.
Collapse
Affiliation(s)
- Ren Zhang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Ji Hao
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Kaiwen Guo
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Chao Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Wei Kevin Zhang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Xinzhou Yang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
24
|
Wang W, Li Q, Yan X, Chen Z, Xie Y, Hu H, Wang Z. Comparative study of raw and processed Vladimiriae Radix on pharmacokinetic and anti-acute gastritis effect through anti-oxidation and anti-inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153224. [PMID: 32353684 DOI: 10.1016/j.phymed.2020.153224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Vladimiriae Radix (VR) is the dry root of Vladimiria souliei (Franch.) Ling or Vladimiria souliei (Franch.) Ling var. cinerea Ling. Costunolide (CO) and dehydrocostus lactone (DE) are the two most effective active ingredients of VR. Raw Vladimiriae radix (rVR) and processed Vladimiriae radix (pVR) are the two most common forms. They have been used for hundreds of years to treat gastritis, gastric ulcer and gastrointestinal pain, but their protective effects on gastric mucosa have been widely considered to be different, and the mechanism is not clear. PURPOSE A comparative study of in vivo process and efficacy difference of raw and processed Vladimiriae Radix was carried out to explore the treatment mechanism and to provide reference for the rationality of clinical usage. METHODS In this study, multi-batch rVR and pVR were used to establish the characteristic chromatograms through high performance liquid chromatography (HPLC) to control the qualities of their extracts. A rapid and accurate ultra-high performance liquid chromatography - mass spectrometry (UPLC-MS) method was established and verified, and the concentrations of CO and DE in plasma of rats after oral administration were determined to analyze the pharmacokinetics. The anti-inflammatory and antioxidant activities of ethanol-induced acute gastric mucosa injury (AGMI) in rats were quantitatively analyzed by ELISA and Westernblot methods. RESULTS Characteristic chromatograms study showed that there were 9 common characteristic peaks between the chromatograms of rVR and pVR, and there was a high level (> 0.90) of the similarity between batches (only one batch less than 0.90). The increased levels of Tmax, T1/2 and MRT were found in rats treated with the pVR. Animal model studies indicated that both the two forms of VR could relieve AGMI, but pVR could more effectively reduce the content of ethanol in blood and lower the levels of TNF-α, IL-6, IL-1β, NO, iNOS and MDA, and increase the level of SOD. Results of Westernblot proved that pVR also could inhibit the expression of NF-κB p65, IκBα and up-regulate the expression of HO-1 and NRF2 more operatively to protect gastric mucosa through anti-inflammatory and antioxidant stress mechanisms. CONCLUSION Compared with rVR, pVR has an accelerated absorption in vivo and its effect time was prolonged, and the observed improvement of anti-AGMI effect was achieved through anti-oxidation and anti-inflammation regulation.
Collapse
Affiliation(s)
- Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qijuan Li
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Xie
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory Breeding Base of Characteristic Chinese Medicine resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhanguo Wang
- Collaborative Innovation Laboratory of Metabonomics, Standard Research and Extension Base& Collaborative Innovation Center of Qiang Medicine, School of Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
25
|
Nan L, Nam HH, Park BY, Kim BT, Choo BK. Ameliorative effects of Magnolia sieboldii buds hexane extract on experimental reflux esophagitis. Phytother Res 2020; 34:2385-2396. [PMID: 32255235 DOI: 10.1002/ptr.6689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Gastroesophageal reflux disease (GERD) is a disease that stomach contents continually refluxing into esophagus causes symptoms and/or complications. The study was working to find natural plant extracts with good effects and small side effects to treat reflux esophagitis (RE). The anti-inflammatory effects of hexane extract of Magnolia sieboldii (MsHE) were conducted on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The ameliorative effects of MsHE on esophageal damage in rats induced by gastric acid reflux was explored in vivo. The results showed that MsHE decreased the production of nitric oxide (NO) and expression levels of iNOS, COX-2 and TNF-α on LPS-stimulated RAW 264.7 cells and MsHE treatment ameliorated the rats' esophageal tissue damage induced by gastric acid and inhibited the increase of inflammatory mediators and pro-inflammatory cytokines by regulating NF-κB signaling pathway. In addition, MsHE protected the function of barrier of epithelial cells against inflammatory conditions through increasing the expression of tight junctions. Furthermore, liquid chromatography-mass spectrometry analysis was used for determine the active ingredients contained in MsHE. The results show that MsHE can alleviate experimental rat RE by regulating NF-κB signaling pathway. In summary, MsHE may be used as a source material of drug candidate for the treatment of RE.
Collapse
Affiliation(s)
- Li Nan
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hyeon Hwa Nam
- Herbal Medicine Resources Research Center Korea Institute of Oriental Medicine, Naju-si, South Korea
| | - Byung Yong Park
- College of Medicine and Biosafety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Beom Tae Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Byung Kil Choo
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
26
|
Coricello A, Adams JD, Lien EJ, Nguyen C, Perri F, Williams TJ, Aiello F. A Walk in Nature: Sesquiterpene Lactones as Multi-Target Agents Involved in Inflammatory Pathways. Curr Med Chem 2020; 27:1501-1514. [DOI: 10.2174/0929867325666180719111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/08/2023]
Abstract
Inflammatory states are among the most common and most treated medical conditions.
Inflammation comes along with swelling, pain and uneasiness in using the affected
area. Inflammation is not always a simple symptom; more often is part of a defensive response
of the body to an external threat or is a sign that the damaged tissue has not healed yet
and needs to rest. The management of the pain associated with an inflammatory state could be
a tricky task. In fact, most remedies simply quench the pain, leaving the inflammatory state
unaltered. This review focuses on sesquiterpene lactones, a class of natural compounds, that
represents a future promise in the treatment of inflammation. Sesquiterpene lactones are efficient
inhibitors of multiple targets of the inflammatory process. Their natural sources are often
ancient remedies with relevant traditional uses in folk medicines. This work also aims to
elucidate how these compounds may represent the starting material for the development of
new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Adriana Coricello
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende (CS), Italy
| | - James D. Adams
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Eric J. Lien
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Christopher Nguyen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Filomena Perri
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende (CS), Italy
| | - Travis J. Williams
- Department of Chemistry, Dana and David Dornisfe College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende (CS), Italy
| |
Collapse
|
27
|
Zhou Q, Zhang WX, He ZQ, Wu BS, Shen ZF, Shang HT, Chen T, Wang Q, Chen YG, Han ST. The Possible Anti-Inflammatory Effect of Dehydrocostus Lactone on DSS-Induced Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5659738. [PMID: 32082397 PMCID: PMC7011397 DOI: 10.1155/2020/5659738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Dehydrocostus lactone (DL), one of the main active constituents in Aucklandia lappa Decne. (Muxiang), reported to have anti-inflammatory, antiulcer, and immunomodulatory properties. However, the effect of DL on ulcerative colitis (UC) has not been reported. To analyze the anti-inflammatory potential role of DL in UC, we provide a mechanism for the pharmacological action of DL. METHODS The experimental model of UC was induced by using oral administration of 2% dextran sulfate sodium (DSS) with drinking water in BALB/c mice. Mesalazine (Mes, 0.52 g/kg/d), DL-high doses (DL-H, 20 mg/kg/d), DL-middle doses (DL-M, 15 mg/kg/d), DL-low doses (DL-L, 10 mg/kg/d) were gavaged once a day from day 4 to day 17. Disease activity index (DAI) was calculated daily. On day 18, mice were rapidly dissected and the colorectal tissues were used to detect the levels of UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), and colorectal mucosal barrier-related regulatory factors (MUC2, XBP1s, and α, IL-1. RESULTS DL reduced the colorectal inflammation histological assessment, decreased UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), and colorectal mucosal barrier-related regulatory factors (MUC2, XBP1s, and α, IL-1. CONCLUSIONS DL possessed the potential of anti-inflammatory effect to treated colitis. The protective mechanism of DL may involve in reducing inflammation and improving colorectal barrier function via downregulating the IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-xin Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zong-qi He
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, China
| | - Ben-sheng Wu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, China
| | - Zhao-feng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong-tao Shang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tuo Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-gen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu-tang Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Woo YK, Park J, Ryu JH, Cho HJ. The anti-inflammatory and anti-apoptotic effects of advanced anti-inflammation composition (AAIC) in heat shock-induced human HaCaT keratinocytes. J Cosmet Dermatol 2019; 19:2114-2124. [PMID: 31868297 DOI: 10.1111/jocd.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The development of natural cosmetic materials without side effects to protect skin from heat shock is necessary. We recently reported that advanced cooling composition (ACC) has anti-inflammatory effect in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and strong anti-microbial effect against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. AIMS To further investigate whether advanced anti-inflammation composition (AAIC), newly developed from existing ACC has beneficial effects in heat shock-induced immortalized human keratinocytes (HaCaT cells), HaCaT cells were pretreated with AAIC before heat shock treatment. METHODS Cell viability for heat shock treatment and different concentrations of AAIC in HaCaT cells were assessed by MTT assay. Anti-oxidative activity of AAIC was measured using the DPPH assay. The protein expression in heat shock-induced HaCaT cells treated with AAIC was evaluated by immunofluorescence staining and western blot analysis. RESULTS AAIC, which is effective at 100 µg/mL concentration, was nontoxic in HaCaT cells and had an anti-oxidative effect demonstrated by scavenging DPPH free radicals. AAIC treatment significantly attenuated the aberrant levels of pro-inflammatory and pro-apoptotic signaling molecules in heat shock-induced HaCaT cells compared with control cells. CONCLUSION AAIC potentially includes effective anti-oxidative activity, anti-inflammatory, and anti-apoptotic properties against heat shock-induced keratinocytes, suggesting that it can be provided as a raw material for imparting skin health.
Collapse
Affiliation(s)
| | | | | | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| |
Collapse
|
29
|
Woo JH, Ahn JH, Jang DS, Choi JH. Effect of Dehydrocostus Lactone Isolated from the Roots of Aucklandia lappa on the Apoptosis of Endometriotic Cells and the Alternative Activation of Endometriosis-Associated Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1289-1305. [PMID: 31488032 DOI: 10.1142/s0192415x19500666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The roots of Aucklandia lappa have been used in traditional medicine in Asia to treat inflammation and diseases associated with pain, including endometriosis. The aim of this study was to investigate the anti-endometriotic effect of dehydrocostus lactone, an active compound in A. lappa roots, using human endometriotic cells and macrophages stimulated by these cells. Dehydrocostus lactone induced apoptotic cell death in 12Z human endometriotic cells. Dehydrocostus lactone stimulated the activation of caspase-3, -8, and -9, while caspase inhibitors significantly reversed the dehydrocostus lactone-induced cell death in 12Z cells. In addition, dehydrocostus lactone decreased the production of PGE2 and neurotrophins (BDNF, NGF, NT3, and NT4/5), which are regarded as endometriosis-associated pain factors in human endometriotic cells. Moreover, dehydrocostus lactone inhibited the expression of M2 markers (CD206, and Trem-2), IL-10, VEGF, and MMP-2/-9 in endometriosis-associated macrophages (EAMs). Furthermore, dehydrocostus lactone inhibited the Akt and NFκB pathways in both endometriotic cells and EAMs. Taken together, our findings suggest that dehydrocostus lactone, an active compound of A, lappa, has anti-endometriotic activities via induction of apoptosis and downregulation of pain factors in endometriotic cells and inhibition of the alternative activation of EAMs.
Collapse
Affiliation(s)
- Jeong-Hwa Woo
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemoon-Gu, Seoul 02447, South Korea
| | - Ji-Hye Ahn
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Pinn Hall 1232, Charlottesville, VA 22908, USA
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemoon-Gu, Seoul 02447, South Korea
| | - Jung-Hye Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemoon-Gu, Seoul 02447, South Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemoon-Gu, Seoul 02447, South Korea
| |
Collapse
|
30
|
Costunolide alleviates HKSA-induced acute lung injury via inhibition of macrophage activation. Acta Pharmacol Sin 2019; 40:1040-1048. [PMID: 30644422 DOI: 10.1038/s41401-018-0192-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus (S. aureus) infection leads to a severe inflammatory response and causes acute lung injury (ALI), eventually threatening human life. Therefore, it is of importance to find an agent to inhibit inflammation and reduce ALI. Here, we found that costunolide, a sesquiterpene lactone, displays anti-inflammatory effects and ameliorates heat-killed S. aureus (HKSA)-induced pneumonia. Costunolide treatment attenuated HKSA-induced murine ALI in which pulmonary neutrophil infiltration was inhibited, lung edema was decreased, and the production of pro-inflammatory cytokines was significantly reduced. In addition, costunolide dose-dependently inhibited the generation of IL-6, TNF-α, IL-1β, and keratinocyte-derived cytokine (KC), as well as the expression of iNOS, in HKSA-induced macrophages. Furthermore, costunolide attenuated the phosphorylation of p38 MAPK and cAMP response element-binding protein (CREB). Collectively, our findings suggested that costunolide is a promising agent for alleviating bacterial-induced ALI via the inhibition of the MAPK signaling pathways.
Collapse
|
31
|
Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20122926. [PMID: 31208018 PMCID: PMC6627852 DOI: 10.3390/ijms20122926] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Sesquiterpene lactones constitute a major class of bioactive natural products. One of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively investigated for a wide range of biological activities. Multiple lines of preclinical studies have reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these bioactivities are supported by mechanistic details, such as the modulation of various intracellular signaling pathways involved in precipitating tissue inflammation, tumor growth and progression, bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase, cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2, inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an overview of the therapeutic potential of costunolide in the management of various diseases and their underlying mechanisms.
Collapse
|
32
|
Molecular mechanism of action responsible for carrageenan-induced inflammatory response. Mol Immunol 2019; 109:38-42. [PMID: 30851635 DOI: 10.1016/j.molimm.2019.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/04/2023]
Abstract
Carrageenan-induced inflammation has long been used as an in vivo model of local inflammation. We developed an in vitro model of inflammation using primary blood cells to characterize gene induction following carrageenan (λ-CGN) stimulation and identify the signal transduction pathway(s) through which λ-CGN worked, using swine whole blood cultures from Yorkshire barrows. Blood samples were divided into stimulated and unstimulated groups. Unstimulated blood was a control for λ-CGN treated cultures to delineate treatment effects from time-in-culture effects. All cultures were collected and separated into two fractions; supernatant for ELISA analyses and white blood cells for mRNA expression. Lambda (λ)-CGN induced MCP-1 at the proteomic and the genomic levels. Lambda-CGN increased IL-8 protein production but had no impact on serum amyloid A protein levels. Alveolar Macrophage-Derived Neutrophil Chemotactic Factor-II (AMCF-II), a swine-specific member of the IL8/GRO family, showed increased gene expression. TNF-α and IL-6 protein levels were not induced by λ-CGN stimulation. Stimulation of HEK-293 cells co-transfected with a single pattern recognition receptor and the secreted embryonic alkaline phosphatase (SEAP) read-out system demonstrated that λ-CGN signals through the TLR-2 and TLR-4 signal transduction pathways. Using silencing RNA to inhibit TLR6 expression in TLR2 transfected HEK-293 cells indicated that λ-CGN works through the TLR2/6 pathway. Silencing TLR6 expression in TLR4 transfected HEK-293 cells showed that λ-CGN stimulation of this cell line worked through a TLR4/6 heterodimer, as lipopolysaccharide (LPS) induced SEAP production through a TLR4 homodimer. These results demonstrate that although carrageenan can stimulate through TLR4 signaling pathways, it initiates an inflammatory response in these cells that differs from a typical endotoxin effect such as LPS stimulation, in terms of the pathways and gene products altered, suggesting that activation of TLR2/6 and TLR4/6 are the predominant pathways through which carrageenan induces inflammatory responses.
Collapse
|
33
|
Mao J, Yi M, Tao Y, Huang Y, Chen M. Costunolide isolated from Vladimiria souliei inhibits the proliferation and induces the apoptosis of HepG2 cells. Mol Med Rep 2019; 19:1372-1379. [PMID: 30569137 DOI: 10.3892/mmr.2018.9736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/05/2018] [Indexed: 11/05/2022] Open
Abstract
Costunolide (cos) is one of the major sesquiterpenes isolated from the ethyl acetate soluble fraction of the roots of Vladimiria souliei. In order to explore the effects and molecular mechanism of cos, the anti‑proliferative and apoptotic effects of cos against the human hepatoblastoma HepG2 cell line was examined in vitro in the current study. Cell viability was measured using an MTT assay, and IC50 values (indicating the concentration required to achieve half‑maximal inhibition) were calculated to detect the inhibitory effect of cos on HepG2 cell growth. Cell morphology was subsequently observed under an inverted microscope, and cell cycle distribution and apoptosis were detected using flow cytometric analysis. In addition, changes in the protein expression levels of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), and caspases‑3, ‑8 and ‑9 were detected by western blotting. The results of cell analyses indicated that cos treatment inhibited the proliferation and promoted the apoptosis of HepG2 cells in vitro. Cos markedly induced HepG2 cell apoptosis by arresting the cell cycle at the G2/M phase in a dose‑dependent manner. In terms of the underlying mechanism, cos was revealed to inhibit the anti‑apoptotic capacity of the cells, possibly via upregulating the expression levels of Bax protein and caspases‑3, ‑8 and ‑9, and downregulating the expression of Bcl‑2 protein. Taken together, the results of the present study indicate that cos may be a promising candidate for liver cancer therapy, and have provided an insight into the mechanism of action involved in its anti‑cancer properties.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Man Yi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Yunyi Tao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Yuanshe Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
34
|
Mao J, Yi M, Wang R, Huang Y, Chen M. Protective Effects of Costunolide Against D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice. Front Pharmacol 2018; 9:1469. [PMID: 30618760 PMCID: PMC6307542 DOI: 10.3389/fphar.2018.01469] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Costunolide, a sesquiterpene isolated from Vladimiria souliei (Franch.) Ling, is known to exhibit anti-inflammatory, anti-viral, and anti-tumor activities. However, the effects of costunolide on liver injury are poorly understood. The current study aimed to investigate the hepatoprotective effects of costunolide against lipopolysaccharide (LPS) and D-galactosamine-induced acute liver injury (ALI) in mice. The results indicated that costunolide (40 mg/kg) could significantly improve the pathological changes of hepatic tissue, and reduced the LPS and D-galactosamine-induced increases of alanine aminotransferase (from 887.24 ± 21.72 to 121.67 ± 6.56 IU/L) and aspartate aminotransferase (from 891.01 ± 45.24 to 199.94 ± 11.53 IU/L) activities in serum. Further research indicated that costunolide significantly reduced malondialdehyde content (from 24.56 ± 1.39 to 9.17 ± 0.25 nmol/ml) and reactive oxygen species (from 203.34 ± 7.68 to 144.23 ± 7.12%), increased the activity of anti-oxidant enzymes superoxide dismutase (from 153.74 ± 10.33 to 262.27 ± 8.39 U/ml), catalase (from 6.12 ± 0.30 to 12.44 ± 0.57 U/ml), and total anti-oxidant capacity (from 0.64 ± 0.06 to 6.29 ± 0.11 U/ml) in hepatic tissues. Western blot results revealed that costunolide may trigger the anti-oxidative defense system by inhibiting kelch-like ECH-associated protein 1 and nuclear factor-related factor 2 (cytosol), increasing nuclear factor-related factor 2 (nucleus), heme oxygenase-1 and NAD (P) H quinone oxidoreductase 1 activity. Moreover, costunolide significantly decreased the protein expression of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor. Pretreatment with costunolide could reduce the expression of toll-like receptor 4, myeloid differentiation factor 88, p65 (Nucleus), phosphorylated IκB kinase α/β, inhibitor of nuclear factor kappa-B kinase, inhibitor kappa Bα and prevent the expression of phosphorylated inhibitor kappa B kinase which repressed translocation of p65 from cytoplasm to nucleus. In addition, pretreatment with costunolide also inhibited hepatocyte apoptosis by reducing the expression of B-cell lymphoma 2 associated X, cytochrome C, cysteinyl aspartate specific proteinase 3, cysteinyl aspartate specific proteinase 8 and cysteinyl aspartate specific proteinase 9, and by increasing B-cell lymphoma 2. From the above analysis, the protective effects of costunolide against LPS and D-galactosamine-induced ALI in mice may be attributed to its anti-oxidative activity in nuclear factor-related factor 2 signaling pathways, anti-inflammatory suppression in nuclear factor-kappa B signaling pathways, and inhibition of hepatocyte apoptosis. Thus, costunolide may be a potential therapeutic agent in attenuating LPS and D-galactosamine -induced ALI in the future.
Collapse
Affiliation(s)
| | | | | | | | - Min Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Dong S, Ma LY, Liu YT, Yu M, Jia HM, Zhang HW, Yu CY, Zou ZM. Pharmacokinetics of costunolide and dehydrocostuslactone after oral administration of Radix aucklandiae extract in normal and gastric ulcer rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:1055-1063. [PMID: 30130142 DOI: 10.1080/10286020.2018.1489379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Costunolide and dehydrocostuslactone are the main active ingredients of Radix Aucklandiae (RA). An accurate and sensitive LC-MS/MS method was established to simultaneously determine contents of costunolide and dehydrocostuslactone in plasma. There were significant differences in pharmacokinetic parameters (AUC0-t, Cmax,1, Cmax,2, Tmax,1, Vd, and CL) of costunolide and dehydrocostuslactone between RA group and costunolide group or dehydrocostuslactone group. The relative bioavailability of costunolide or dehydrocostuslactone of RA extract was improved. As compared to normal group, the Tmax,2 values of dehydrocostuslactone of RA in gastric ulcer group were prolonged, while the Cmax,1, Cmax,2, and AUC0-t values decreased.
Collapse
Affiliation(s)
- Shu Dong
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
- b College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
- c Laboratory of Food Test & Scientific Research , Institute of the State Administration of Internal Trade , Beijing 100070 , China
| | - Li-Yan Ma
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Yue-Tao Liu
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Meng Yu
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Hong-Mei Jia
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Hong-Wu Zhang
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| | - Chang-Yuan Yu
- b College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhong-Mei Zou
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , China
| |
Collapse
|
36
|
Chen Z, Zhang D, Li M, Wang B. Costunolide ameliorates lipoteichoic acid-induced acute lung injury via attenuating MAPK signaling pathway. Int Immunopharmacol 2018; 61:283-289. [PMID: 29906743 DOI: 10.1016/j.intimp.2018.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/22/2018] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
Lipoteichoic acid (LTA)-induced acute lung injury (ALI) is an experimental model for mimicking Gram-positive bacteria-induced pneumonia that is a refractory disease with lack of effective medicines. Here, we reported that costunolide, a sesquiterpene lactone, ameliorated LTA-induced ALI. Costunolide treatment reduced LTA-induced neutrophil lung infiltration, cytokine and chemokine production (TNF-α, IL-6 and KC), and pulmonary edema. In response to LTA challenge, treatment with costunolide resulted less iNOS expression and produced less inflammatory cytokines in bone marrow derived macrophages (BMDMs). Pretreatment with costunolide also attenuated the LTA-induced the phosphorylation of p38 MAPK and ERK in BMDMs. Furthermore, costunolide treatment reduced the phosphorylation of TAK1 and inhibited the interaction of TAK1 with Tab1. In conclusion, we have demonstrated that costunolide protects against LTA-induced ALI via inhibiting TAK1-mediated MAPK signaling pathway, and our studies suggest that costunolide is a promising agent for treatment of Gram-positive bacteria-mediated pneumonia.
Collapse
Affiliation(s)
- Zhengxu Chen
- Department of Clinical Laboratory, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Dan Zhang
- Research Center for Cancer Precision Medicine, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China.
| | - Man Li
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Baolong Wang
- Department of Clinical Laboratory, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
37
|
Zhong J, Gong W, Chen J, Qing Y, Wu S, Li H, Huang C, Chen Y, Wang Y, Xu Z, Liu W, Li H, Long H. Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-γ-mediated NF-кB and AMPK/mTOR signaling. Int Immunopharmacol 2018; 59:197-208. [PMID: 29656210 DOI: 10.1016/j.intimp.2018.03.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
The anti-inflammatory, immunomodulatory, and anticancer effects of micheliolide (MCL) isolated from Michelia champaca were previously reported, but its role and underlying mechanisms in relieving liver steatosis remain unclear. Herein, we investigated the effects of MCL on hepatic steatosis using a db/db mouse model and lipid mixture (LM)-induced AML12 and LO2 cells. The body and liver weights, food consumption, lipid content and liver aminotransferase levels in serum, the lipid content and inflammatory cytokine levels in liver tissue, and the extent of hepatic steatosis in db/db mice were increased compared with those in db/m mice, and these increases were reversed by MCL treatment. Similarly, MCL also attenuated the inflammatory responses and lipid accumulation in LM-treated AML12 and L02 cells by upregulating PPAR-γ and decreasing p-IкBα and p-NF-κB/p65, thereby inhibiting the NF-κB pathway and reducing lipotoxicity. Furthermore, MCL administration increased LC3B, Atg7 and Beclin-1 expression and the LC3B-II/I ratio in db/db mouse livers and LM-treated AML12 and L02 cells, and these MCL-induced increases were mediated by the activation of PPAR-γ and p-AMPK and inhibition of p-mTOR and induce autophagy. These effects were blocked by PPAR-γ and AMPK inhibitors. Our findings suggest that MCL ameliorates liver steatosis by upregulating PPAR-γ expression, thereby inhibiting NF-κB-mediated inflammation and activating AMPK/mTOR-dependent autophagy.
Collapse
Affiliation(s)
- Juan Zhong
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Wangqiu Gong
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Jing Chen
- Laboratory Medicine Center, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yao Qing
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Shuyue Wu
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Hongbei Li
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Chunxi Huang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Yihua Chen
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuxian Wang
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhaozhong Xu
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Wenting Liu
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - HongYu Li
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Haibo Long
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China.
| |
Collapse
|
38
|
Wang Y, Zhang X, Zhao L, Shi M, Wei Z, Yang Z, Guo C, Fu Y. Costunolide protects lipopolysaccharide/d-galactosamine–induced acute liver injury in mice by inhibiting NF-κB signaling pathway. J Surg Res 2017; 220:40-45. [DOI: 10.1016/j.jss.2017.06.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/01/2017] [Accepted: 06/29/2017] [Indexed: 11/17/2022]
|
39
|
Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug. Inflamm Res 2017; 66:701-709. [PMID: 28456844 DOI: 10.1007/s00011-017-1051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Inflammation plays a key role in the pathogenesis of several chronic diseases. The urokinase plasminogen activator receptor (uPAR) exerts a plethora of functions in both physiological and pathological processes, including inflammation. OBJECTIVE AND DESIGN In this study, we evaluated the anti-inflammatory effect of a novel peptide ligand of uPAR, UPARANT, in different animal models of inflammation. SUBJECTS AND TREATMENT Rats and mice were divided in different groups (n = 5) for single or repeated administration of vehicle (9% DMSO in 0.9% NaCl), UPARANT (6, 12 and 24 mg/kg) or dexamethasone (2 mg/kg). Animals were subjected to carrageenan-induced paw oedema or zymosan-induced peritonitis. METHODS UPARANT effects were tested on: (1) the carrageenan-induced paw oedema volume, (2) the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the nitrite/nitrate (NOx) levels in the paw exudates, (3) cells recruitment into the peritoneal cavity after zymosan injection and (4) NOx levels in the peritoneal lavage. RESULTS UPARANT (12 and 24 mg/kg) reduced inflammation in both experimental paradigms. Analysis of pro-inflammatory enzymes revealed that administration of UPARANT reduced iNOS, COX2 and NO over-production. CONCLUSIONS Our study provides a solid evidence that UPARANT reduces the severity of inflammation in diverse animal models, thus representing a novel anti-inflammatory drug with potential advantages with respect to the typical steroidal agents.
Collapse
|
40
|
Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016; 5:cells5020015. [PMID: 27043634 PMCID: PMC4931664 DOI: 10.3390/cells5020015] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| |
Collapse
|
41
|
Zheng H, Chen Y, Zhang J, Wang L, Jin Z, Huang H, Man S, Gao W. Evaluation of protective effects of costunolide and dehydrocostuslactone on ethanol-induced gastric ulcer in mice based on multi-pathway regulation. Chem Biol Interact 2016; 250:68-77. [PMID: 26970604 DOI: 10.1016/j.cbi.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to evaluate the anti-ulcerogenic activity of costunolide (Co) and dehydrocostuslactone (De) on ethanol-induced gastric ulcer in mice and to elucidate the potential mechanisms of the action involved. Mice were pretreated orally with Co (5 or 20 mg/kg), De (5 or 20 mg/kg) and omeprazole (OME, 20 mg/kg) for 7 consecutive days, followed by ulcer induction using absolute ethanol (0.2 mL/20 g body weight). Treatment with Co had a remarkable gastroprotection compared to the ethanol-ulcerated mice that significantly reduced the ulcerative lesion index (ULI) and histopathological damage. Daily intragastric administration of Co exerted a powerful anti-inflammatory activity as evidenced by the suppression of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, as well as increased interleukin (IL)-10. Also, pretreatment with Co effectively inhibited ethanol-induced malondialdehyde (MDA) overproduction, increased the depleted superoxide dismutase (SOD) and promoted gastric mucosa epithelial cell proliferation by up-regulating proliferating cell nuclear antigen (PCNA) expression. Similarly, De had a protective effect on ethanol-induced ulcer, which was dependent on the inhibition of inflammatory cytokines and MDA generation, but independent of IL-10, SOD and PCNA improvement. Conclusively, the results have clearly demonstrated the anti-ulcerogenic potential of Co and De on ethanol-induced gastric ulcer; nevertheless, the gastroprotective activity of Co was superior to De due to more multi-pathway regulation than De. These findings suggested that Co or De could be a new useful natural gastroprotective tool against gastric ulcer, which provided a scientific basis for the gastroprotection of sesquiterpene lactones.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuling Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jingze Zhang
- Special Drugs R & D Center of People's Armed Police Forces, Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Hanhan Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Reparative activity of costunolide and dehydrocostus in a mouse model of 5-fluorouracil-induced intestinal mucositis. RSC Adv 2016. [DOI: 10.1039/c5ra22371g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the protective effects of costunolide (Co) and dehydrocostus (De) in 5-fluorouracil (5-FU)-induced intestinal mucositis (IM) as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jingze Zhang
- Department of Pharmacy
- Logistics University of Chinese People's Armed Police Forces
- Special Drugs R & D Center of People's Armed Police Forces
- Tianjin 300162
- China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
43
|
Lin X, Peng Z, Su C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 2015; 16:10888-906. [PMID: 25984608 PMCID: PMC4463681 DOI: 10.3390/ijms160510888] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/10/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.
Collapse
Affiliation(s)
- Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|
44
|
Scarponi C, Butturini E, Sestito R, Madonna S, Cavani A, Mariotto S, Albanesi C. Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide. PLoS One 2014; 9:e107904. [PMID: 25226283 PMCID: PMC4166670 DOI: 10.1371/journal.pone.0107904] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH)/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorate the disease. Recently, dehydrocostuslactone (DCE) and costunolide (CS), two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-γ, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-γ-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. In light of our findings, we can hypothesize that the employment of DCE and CS in psoriasis could efficiently counteract the pro-inflammatory effects of IFN-γ and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit hyperproliferation in the psoriatic epidermis.
Collapse
Affiliation(s)
| | - Elena Butturini
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | - Andrea Cavani
- Experimental Immunology Laboratory, IDI-IRCCS, Rome, Italy
| | - Sofia Mariotto
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | |
Collapse
|
45
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
46
|
Park EJ, Park SW, Kim HJ, Kwak JH, Lee DU, Chang KC. Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo. Int Immunopharmacol 2014; 22:332-40. [PMID: 25066549 DOI: 10.1016/j.intimp.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
We investigated the hypothesis that the administration of dehydrocostuslactone (DL), a sesquiterpene lactone found in Saussurea lappa Clarke (Compositae), might reduce organ failure and increase survival in a cecal ligation and puncture (CLP)-induced mouse model of sepsis due to HO-1 induction. Treatment of RAW264.7 cells with DL increased HO-1 expression in a time- and concentration-dependent manner, and this up-regulation of HO-1 by DL was significantly inhibited by silencing either Nrf2 and p38 or treating cells with SB203580 (a p38MAPK inhibitor), but it was not inhibited in the presence of SP600125 (an ERK inhibitor), PD98059 (a JNK inhibitor), or LY294002 (PI3K inhibitor). As expected, DL concentration dependently inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and the productions of NO and PGE2 in LPS-activated cells, and these inhibitions were reversed by silencing HO-1. Most importantly, administration of DL significantly reduced mortality and reduced serum IL-1β and TNF-α and the infiltration of macrophages into liver tissues of CLP-mice. Inducible NOS expression in lung and liver tissues of CLP-mice was reduced by DL, which was reversed by the co-administration of zinc-protoporphyrin IX (ZnPPIX; a competitive inhibitor of HO-1). Our findings indicate that DL might be useful for the treatment of sepsis.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jong-Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea.
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea.
| |
Collapse
|