1
|
Zhong Y, Chang X, Zhao Z, Zheng L, Kuang G, Li P, Liu C, Fan Y, Liang Z, Zhuang K, Xie Q, Liu Y. Bacteroides fragilis capsular polysaccharide A ameliorates ulcerative colitis in rat by recovering intestinal barrier integrity and restoring gut microbiota. Front Pharmacol 2024; 15:1402465. [PMID: 39776580 PMCID: PMC11703662 DOI: 10.3389/fphar.2024.1402465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bacteroides fragilis (B. fragilis) is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of B. fragilis is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the B. fragilis strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2. In this study, we explored the impact of TP2 on colonic inflammation and delved into its potential mechanisms. Initially, we used 2,4,6-trinitrobenzenesulfonic acid (TNBS) to induce colitis in rats and found that TP2 treatment significantly ameliorated TNBS-induced weight loss, increased clinical scores, extensive ulcers, and intestinal epithelial damage in UC rats. Further analysis revealed that TP2 effectively restored the intestinal barrier integrity in UC rats by regulating the expression of Muc-2, tight junction proteins (ZO-1, occludin, claudin-1, and claudin-2), as well as apoptosis-related proteins Bcl-2, BAX, and Cleaved-Caspase-3. Additionally, TP2 suppressed the expression of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL23, while promoting the secretion of anti-inflammatory cytokines IL-10 and IL-22, thereby inhibiting the occurrence of inflammation. TP2 also downregulated the phosphorylation levels of AKT and PI3K, effectively inhibiting the abnormal activation of the PI3K/AKT signaling pathway. More interestingly, 16S rRNA sequencing results showed that TP2 restored the ecological imbalance of the rat intestinal microbiota, with an increase in beneficial bacteria such as Lactobacillus and Limosilactobacillus observed in the treatment group. In conclusion, TP2 through the regulation of intestinal barrier-related cells and proteins, inhibition of apoptosis, modulation of inflammation-related cytokine levels, and control of abnormal activation of the PI3K/AKT signaling pathway, restores intestinal barrier integrity. Additionally, by reshaping the ecological imbalance of the gut microbiota, TP2 ultimately alleviates ulcerative colitis in rats.
Collapse
Affiliation(s)
- Yijia Zhong
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiujuan Chang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Zihan Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijun Zheng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gaobo Kuang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Ping Li
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | | | - Yuqin Fan
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhixuan Liang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ke Zhuang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| |
Collapse
|
2
|
Liang C, Tang Y, Gao X, Lei N, Luo Y, Chen P, Duan S, Cao Y, Yang Y, Zhang Y. Depression Exacerbates Dextran Sulfate Sodium-Induced Colitis via IRF5-Mediated Macrophage Polarization. Dig Dis Sci 2023; 68:1269-1279. [PMID: 36088512 DOI: 10.1007/s10620-022-07679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Patients with inflammatory bowel disease (IBD) and concurrent depression are predisposed to severer disease activity and a worse prognosis. Macrophage polarization toward the M1 phenotype may contribute to the exacerbation of IBD with comorbid depression. Moreover, interferon regulatory factor 5 (IRF5) is involved in the pathogenesis of IBD. The aim of this study was to explore the role of IRF5 in macrophage polarization in the impact of depression upon colitis. METHODS Depressive-like behavior was induced by repeated forced swim stress. Colon length, disease activity index (DAI), colon morphology, histology, ultrastructure of epithelial barrier, lamina propria macrophage polarization, and expression of IRF5 were compared between DSS colitis rats with and without depressive-like behavior. IRF5 shRNA was constructed to affect the rat peritoneal macrophages polarization in vitro. After IRF5 shRNA lentivirus was introduced into colon by enema, the colitis severity, lamina propria macrophage polarization, and TNF-α, IL-1β, and IL-10 of colon tissues were measured. RESULTS The study found severer colonic inflammation in depressed versus non-depressed DSS-colitis rats. Depressed DSS-colitis rats exhibited smaller subepithelial macrophages size and reduced intracellular granule diversity compared with nondepressed DSS-colitis rats. Increased polarization toward the M1 phenotype, elevated expression of IRF5, and co-expression of IRF5 with CD86 were found in depressed versus nondepressed DSS-colitis rats. Lentivirus-mediated shRNA interference with IRF5 expression switched rat peritoneal macrophage polarization from the M1 to the M2 phenotype, downregulated TNF-α, IL-1β expression to a greater extent in depressed versus nondepressed colitis rats. CONCLUSIONS IRF5-mediated macrophage polarization may likely underlie the deterioration of DSS-induced colitis caused by depression.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yu Tang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Xin Gao
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Na Lei
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Ying Luo
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Pingrun Chen
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Shihao Duan
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yi Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Investigating Key Targets of Dajianzhong Decoction for Treating Crohn’s Disease Using Weighted Gene Co-Expression Network. Processes (Basel) 2022. [DOI: 10.3390/pr11010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Crohn’s disease (CD) is an inflammatory bowel disease, cases of which have substantially increased in recent years. The classical formula Dajianzhong decoction (DD, Japanese: Daikenchuto) is often used to treat CD, but few studies have evaluated related therapeutic mechanisms. In this study, we investigated the potential targets and mechanisms of DD used for treating CD at the molecular level through the weighted gene co-expression network. Methods: The main chemical components of the three DD herbs (Zanthoxylum bungeanum Maxim., Zingiber officinale (Willd.) Rosc., and Ginseng Radix et Rhizoma) were searched for using the HERB database. The targets for each component were identified using the SwissTargetPrediction and HERB databases, whereas the disease targets for CD were retrieved from the GeneCards and DisGeNET databases. The functional enrichment analysis was performed on the common targets of DD and CD. High-throughput sequencing data for CD patients were retrieved from the Gene Expression Omnibus database, and WGCNA was performed to identify the key targets. The association between the key targets and DD ingredients was verified using molecular docking. Results: By analyzing the interaction targets between DD and CD, 196 overlapping genes were identified. The enrichment results indicated that the PI3K-AKT, TNF, MAPK, and IL-17 signaling pathways influenced the mechanism of action of DD in counteracting CD. Combined with WGCNA, four differentially expressed genes (SLC6A4, NOS2, SHBG, and ABCB1) and their corresponding 24 compounds were closely related to the occurrence of CD. Conclusions: By integrating gene co-expression network analysis, this study preliminarily reveals the internal molecular mechanism of DD in treating CD from a systematic perspective, validated by molecular docking. However, these findings require further validation.
Collapse
|
4
|
You X, Liu M, Liu Q, Li H, Qu Y, Gao X, Huang C, Luo G, Cao G, Xu D. miRNA let-7 family regulated by NEAT1 and ARID3A/NF-κB inhibits PRRSV-2 replication in vitro and in vivo. PLoS Pathog 2022; 18:e1010820. [PMID: 36215225 PMCID: PMC9550049 DOI: 10.1371/journal.ppat.1010820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry worldwide. To investigate the role of miRNAs in the infection and susceptibility of PRRS virus (PRRSV), twenty-four miRNA libraries were constructed and sequenced from PRRSV-infected and mock-infected Porcine alveolar macrophages (PAMs) of Meishan, Landrace, Pietrain and Qingping pigs at 9 hours post infection (hpi), 36 hpi, and 60 hpi. The let-7 family miRNAs were significantly differentially expressed between PRRSV-infected and mock-infected PAMs from 4 pig breeds. The let-7 family miRNAs could significantly inhibit PRRSV-2 replication by directly targeting the 3’UTR of the PRRSV-2 genome and porcine IL6, which plays an important role in PRRSV replication and lung injury. NEAT1 acts as a competing endogenous lncRNA (ceRNA) to upregulate IL6 by attaching let-7 in PAMs. EMSA and ChIP results confirmed that ARID3A could bind to the promoter region of pri-let-7a/let-7f/let-7d gene cluster and inhibit the expression of the let-7 family. Moreover, the NF-κB signaling pathway inhibits the expression of the let-7 family by affecting the nuclear import of ARID3A. The pEGFP-N1-let-7 significantly reduced viral infections and pathological changes in PRRSV-infected piglets. Taken together, NEAT1/ARID3A/let-7/IL6 play significant roles in PRRSV-2 infection and may be promising therapeutic targets for PRRS. There are significant differences in susceptibility/resistance to PRRSV among different pig breeds. Especially the local pig breeds in China had strong resistance to PRRSV. However, due to the complexity of the interaction mechanism between pigs and PRRSV, the genetic mechanism leading to PRRSV susceptibility/resistance in different pig breeds is still unclear. MiRNAs play a vital regulatory role in immune response and development of PRRS. In this study, we found that the expression of miRNA let-7 family members were significantly different in PRRSV-infected/mock-infected PAMs from Pietrain, Qingping, Meishan, and Landrace pigs. Our findings illustrated that NEAT1/ARID3A/let-7/IL6 had a significant role in PRRSV-2 infection. What’s more, let-7 family could significantly reduce PRRSV infection and pathological changes in vitro and in vivo. This discovery provided a new idea for breeding PRRSV resistant pigs by revealing the molecular mechanism of PRRSV susceptibility in different pig breeds. Altogether, let-7 family have significant roles in PRRSV infection and may be promising therapeutic targets for PRRS.
Collapse
Affiliation(s)
- Xiangbin You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Henan University of Science and Technology, Luoyang, China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huijuan Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yilin Qu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiao Gao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Huang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
5
|
Li X, Ren K, Hong X, Guo S, Yu S, Yang S. Ameliorating effects of electroacupuncture on the low-grade intestinal inflammation in rat model of diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol 2022; 37:1963-1974. [PMID: 35959628 DOI: 10.1111/jgh.15981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM We aim to investigate the effects and mechanisms of electroacupuncture (EA) at ST25 and ST37 on the intestinal low-grade inflammation (LGI) in rat model of Diarrhea-predominant irritable bowel syndrome (IBS-D). METHODS IBS-D model rats were established by acetic acid enema combined with restraint and tail clamping. Before EA intervention, they were divided into three groups: blank 1 group, blank 2 group, and IBS-D model group. Diarrhea symptoms and visceral pain sensitivity were evaluated. After constructed the model successfully, the remaining IBS-D model group rats were randomly divided into model group and EA group. Local intestinal inflammation (HE staining), changes of intestinal mucosa (occludin protein and microvascular diameter) were evaluated. Differences between two groups were compared using t-test or Mann-Whitney U-test. Differences among more than two groups were compared using one-way ANOVA or Kruskal-Wallis test. RESULTS After modeling, the results of HE staining in intestinal tract of IBS-D model rats showed LGI. Compared with the model group, 4 h fecal moisture content (diarrhea index) and the AWR score were decreased in the EA group. The results of HE in EA group showed that the infiltration of intestinal inflammatory cells were alleviated. Additionally, EA significantly upregulated the expression of occludin protein and partially dilated the intestinal microvascular diameter. Pearson correlation analysis showed that the symptoms of IBS-D rats were correlated with the changes of intestinal mucosa. CONCLUSION EA may treat intestinal LGI in IBS-D rats by upregulating the expression of occludin protein and dilating the intestinal microvascular diameter.
Collapse
Affiliation(s)
- Xuemei Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuiyu Ren
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Hong
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Sha Guo
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Yu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Sha Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Zhang X, Wang H, Xie C, Hu Z, Zhang Y, Peng S, He Y, Kang J, Gao H, Yuan H, Liu Y, Fan G. Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123189. [PMID: 35219959 DOI: 10.1016/j.jchromb.2022.123189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
The gut microbiota (GM) and metabolites are important factors in mediating the development of type-2 diabetes mellitus (T2DM). An imbalance in the gut microbiota and metabolites can disrupt the function of the intestinal barrier, cause changes in the permeability of the intestinal mucosa and promote the immune inflammatory response, thereby aggravating the fluctuation of blood glucose level and promoting the occurrence and development of the chronic complications of DM. Manipulating the GM and metabolites is a promising therapeutic intervention and is being studied extensively. Shenqi compound (SQC) is a traditional Chinese medicine formulation, which has been widely used to improve T2DM. Studies have demonstrated that SQC can reduce glycemic variability, alleviate the inflammatory response, etc. However, its underlying mechanism remains unknown. Therefore, in this experiment, We administered SQC to Goto-Kakizaki (GK) rats and evaluated its effect on blood glucose homeostasis and the intestinal mucosal barrier. We identified the profiles of the GM and metabolites with the aid of 16S rDNA gene sequencing and non-target metabolomics analysis. It showed that SQC intervention could reduce glycemic variability, regulate serum levels of glucagon and insulin, and improve injury to the intestinal mucosal barrier of GK rats. In the gut, the ratio of bacteria of the phyla Bacteroidetes/Firmicutes could be improved after SQC intervention. SQC also regulated the relative abundance of Prevotellaceae, Butyricimonas, Bacteroides, Blautia, Roseburia, Lactobacillus, and Rothia. We found out that expression of 40 metabolites was significantly improved after SQC intervention. Further analyses of metabolic pathways indicated that the therapeutic effect of SQC might be related predominantly to its ability to improve gluconeogenesis/glycolysis, amino acid metabolism, lipid metabolism, citrate cycle, and butanoate metabolism. These results suggest that SQC may exert a beneficial role in T2DM by modulating the GM and metabolites in different pathways.
Collapse
Affiliation(s)
- Xiyu Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Zhang
- First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Sihan Peng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Kang
- Department of Anorectal, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Lashgari NA, Roudsari NM, Momtaz S, Abdolghaffari AH. Mammalian target of rapamycin; novel insight for management of inflammatory bowel diseases. World J Pharmacol 2022; 11:1-5. [DOI: 10.5497/wjp.v11.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/11/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Department of Pharmacology, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Department of Pharmacology, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| |
Collapse
|
9
|
Zhang Y, Wei Z, Yang M, Liu D, Pan M, Wu C, Zhang W, Mai K. Dietary taurine modulates hepatic oxidative status, ER stress and inflammation in juvenile turbot (Scophthalmus maximus L.) fed high carbohydrate diets. FISH & SHELLFISH IMMUNOLOGY 2021; 109:1-11. [PMID: 33285166 DOI: 10.1016/j.fsi.2020.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the beneficial role of taurine against chronic high carbohydrate diet-induced oxidative stress, endoplasmic reticulum (ER) stress and inflammation, and to understand the underlying molecular mechanisms in turbot. Two 10-week feeding trials were simultaneously conducted. For the one, six experimental diets with graded levels of taurine supplementation (0, 0.4%, 0.8%, 1.2%, 1.6% and, 2.0%, respectively) and 15% of carbohydrate were used. For the other one, three graded levels of dietary taurine supplementation (0.4%, 1.2% and 2.0%, respectively) with 21% of carbohydrate were used. The results showed that higher expression level of inflammation cytokines and ER stress related genes were detected in higher dietary carbohydrate group. In both feeding trials, 1.2% of dietary taurine supplementation improved anti-oxidative status by decreasing the content of malondialdehyde, increasing the catalase activity and total anti-oxidative capacities. In feeding trial 1, appropriate taurine supplementation lowered contents of tumour necrosis factor-a, interleukin-6, aspartate aminotransferase and alkaline phosphatase in plasma, and decreased the expressions of pro-inflammatory cytokines, such as interleukin-8 (il-8) and interferon-γ (ifn-γ). Furthermore, dietary taurine reduced ER stress by decreasing the mRNA levels of activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and G protein-coupled receptor 78. The optimal dietary taurine content was estimated as 1.40% based on the analysis of specific growth rate. In feeding trial 2, dietary taurine supplementation attenuated liver inflammation partly referring to significantly down-regulated mRNA levels of nuclear transcription factor-κB p65, ifn-γ, interleukin1β and up-regulate the transcript of ribosomal protein S6 kinase 1. Dietary taurine supplementation in feeding trial 2 significantly increased the Nrf2-related factor 2 protein level and decreased the NFκB p65 protein level only at 21% of dietary carbohydrate level. Taurine can alleviate the oxidative damage and inflammation caused by 21% of dietary carbohydrate to a certain degree. Overall, the present study confirmed that dietary taurine supplementation improved growth performance and anti-oxidative response, and reduced liver inflammatory and ER stress processes induced by high dietary carbohydrate in turbot.
Collapse
Affiliation(s)
- Yue Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zehong Wei
- State Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Danni Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Chenglong Wu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
10
|
Chaudhary CL, Chaudhary P, Dahal S, Bae D, Nam TG, Kim JA, Jeong BS. Inhibition of colitis by ring-modified analogues of 6-acetamido-2,4,5-trimethylpyridin-3-ol. Bioorg Chem 2020; 103:104130. [PMID: 32745758 DOI: 10.1016/j.bioorg.2020.104130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
6-Aminopyridin-3-ol scaffold has shown an excellent anti-inflammatory bowel disease activity. Various analogues with the scaffold were synthesized in pursuit of the diversity of side chains tethering on the C(6)-position. Structure-activity relationship among the analogues was investigated to understand the effects of the side chains and their linkers on their anti-inflammatory activities. In this study, structural modification moved beyond side chains on the C(6)-position and reached to pyridine ring itself. It expedited us to synthesize diverse ring-modified analogues of a representative pyridine-3-ol, 6-acetamido-2,4,5-trimethylpyridin-3-ol (9). In the evaluation of compounds on their inhibitory actions against TNF-α-induced adhesion of monocytic cells to colonic epithelial cells, an in vitro model mimicking colon inflammation, the effects of compounds 9, 17, and 19 were greater than tofacitinib, an orally available anti-colitis drug, and compound 17 showed the greatest activity. In addition, TNF-α-induced angiogenesis, which permits more inflammatory cell migration into inflamed tissues, was significantly blocked by compounds 17 and 19 in a concentration-dependent manner. In the comparison of in vivo therapeutic effects of compounds 9, 17, and 19 on dextran sulfate sodium (DSS)-induced colitis in mice, compound 17 was the most potent and efficacious, and compound 19 was better than compound 9 which showed a similar degree of inhibitory effect to tofacitinib. Taken together, it seems that either the trimethyl system or the hydroxyl group on the pyridinol ring is essential to the activity. This finding might become a new milestone in the development of pyridinol-based anti-inflammatory bowel disease agents.
Collapse
Affiliation(s)
- Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadan Dahal
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dawon Bae
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
11
|
Sapkota M, Gao M, Li L, Yang M, Shrestha SK, Choi H, Soh Y. Macrolactin A protects against LPS-induced bone loss by regulation of bone remodeling. Eur J Pharmacol 2020; 883:173305. [PMID: 32673673 DOI: 10.1016/j.ejphar.2020.173305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
An imbalance between bone resorption and bone formation leads to several kinds of bone diseases such as rheumatoid arthritis, osteoporosis and Paget's disease. The imbalance between bone formations relative to bone resorption is responsible in bone remodeling. Several studies have suggested that macrolactin A (MA) has potent anti-inflammatory, anti-cancer and anti-angiogenic effects in various cell types. We investigate whether macrolactin A (MA) could inhibit bone loss and enhance bone formation. We used bone marrow monocytes/macrophages (BMMs) cells to study osteoclast activity and MC3T3-E1 cells to study osteoblast activity. MA suppressed tartrate resistant acid phosphatase (TRAP) positive multinucleated cells in a concentration-dependent manner, as well as at a specific time point. MA markedly reduced bone resorption activity and F-actin ring formation. Moreover, MA markedly suppressed receptor activator of nuclear factor k-B ligand (RANKL)-induced osteoclastogenic marker genes and transcription factors in-vitro. MA repressed osteoclast differentiation via activation of the phosphoinositide kinase-3/Akt, extracellular signal-regulated kinase 1/2 (ERK 1/2), c-Jun N-terminal kinase (JNK), nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c-Fos signaling pathways. MA enhanced pre-osteoblast cell differentiation on mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including osterix, RUNX-2, SMAD4, BMP-2, and ALP. Importantly, MA repressed lipopolysaccharide (LPS)-induced inflammatory bone loss in mice as shown by TRAP staining of femurs and μCT analysis. Therefore, MA could be a promising candidate for the inhibition and management of osteoporosis, arthritis, and bone lytic diseases.
Collapse
Affiliation(s)
- Mahesh Sapkota
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | - Ming Gao
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Liang Li
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | - Ming Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | | | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Yunjo Soh
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea.
| |
Collapse
|
12
|
Marine Microorganism-Derived Macrolactins Inhibit Inflammatory Mediator Effects in LPS-Induced Macrophage and Microglial Cells by Regulating BACH1 and HO-1/Nrf2 Signals through Inhibition of TLR4 Activation. Molecules 2020; 25:molecules25030656. [PMID: 32033079 PMCID: PMC7037854 DOI: 10.3390/molecules25030656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, many natural products with unique structure and promising pharmacological potential have been reported from marine-derived microorganisms. The macrolactin A (MA), 15-epi-dihydromacrolactin F (DMF) and macrolactin F (MF) were obtained from the culture broth extract of a marine sediment derived microorganism Bacillus sp. HC001. In this study, MA, DMF and MF inhibited the production and expression of proinflammatory mediators of inducible nitric oxide synthase (iNOS) and cyclooxygenase–2 (COX-2) in LPS-stimulated RAW264.7 and BV2 cells. Also, MA, DMF and MF exert anti-inflammatory effects through the expression of heme oxygenase (HO) -1, a stress-inducing enzyme that converts heme to carbon monoxide (CO), iron and biliberdine. Toll-like receptor 4 (TLR4) expressed by lipopolysaccharide (LPS) was inhibited by increased expression of HO-1 transcription factor Nrf2 and down regulation of BTB Domain And CNC Homolog 1 (BACH1), inhibited phosphorylation of Mitogen-activated protein kinase kinase kinase 7 (MAP3K7, TAK1) and nuclear factor kappaB (NF-κB). These results show that MA, DMF and MF effectively inhibited TLR4 by regulating BACH1 and HO-1/Nrf2 signals in LPS-stimulated RAW264.7 and BV2 cells, which suggests the possibility of use as an anti-inflammatory agent.
Collapse
|
13
|
Khajah MA, Orabi KY, Hawai S, Sary HG, El-Hashim AZ. Onion bulb extract reduces colitis severity in mice via modulation of colonic inflammatory pathways and the apoptotic machinery. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112008. [PMID: 31158441 DOI: 10.1016/j.jep.2019.112008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of nutraceutical-based products has increased in recent years due to their demonstrated efficacy and their good safety profile. Onion is one of the most commonly used plants in the traditional medicine for the management of various conditions including inflammatory and gastrointestinal diseases. However, little is known regarding the molecular mechanism of the anti-inflammatory effects of onion particularly in inflammatory bowel disease (IBD). AIM OF THE STUDY To test the anti-inflammatory effects of onion bulb extract (OBE) in an IBD mouse model and the molecular mechanisms responsible for these effects such as modulation of the expression and/or the activity profile of various pro-inflammatory molecules. MATERIALS AND METHODS Colitis was induced in mice by dextran sulfate sodium (DSS) daily administration for 5 days. Animals were sacrificed, colons were removed and the severity of the inflammation was determined by the gross and histological assessments. The colonic level/activity of various cytokines and chemokines were measured using proteome profiling-based assay, western blotting, and immunofluorescence techniques. RESULTS DSS-induced colitis was significantly reduced by the daily OBE treatment and 5-aminosalicylic acid (5-ASA, positive control), particularly at 100-200 mg/kg doses, at both the gross and histological levels. OBE was also shown to reduce colonic expression and activity of several pro-inflammatory molecules and signaling pathways, such as mitogen activated protein kinase family, mammalian target of rapamycin, cyclooxygenase-2, and tissue inhibitors of metalloproteinases. In addition, OBE reduced the expression of interferon-γ, various C-C and C-X-C chemokines, and molecules involved in the apoptotic machinery such as cytochrome c, caspase-3 and -8, B-cell lymphoma-extra-large and -2. CONCLUSIONS OBE showed anti-inflammatory actions in IBD mouse model, which is attributed, in part, to the modulation of the expression and the activity of important pro-inflammatory molecules and signaling pathways involved in the inflammatory response. These data suggest that OBE may be a promising lead in the therapeutic management of IBD.
Collapse
Affiliation(s)
- Maitham A Khajah
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait.
| | - Khaled Y Orabi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Sana Hawai
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Hanan G Sary
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Ahmed Z El-Hashim
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| |
Collapse
|
14
|
Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:2038-2053. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Peter Neubauer
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Matthias Gimpel
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
15
|
Park SW, Banskota S, Gurung P, Jin YJ, Kang HE, Chaudhary CL, Lee SY, Jeong BS, Kim JA, Nam TG. Synthesis and evaluation of 6-heteroarylamino-2,4,5-trimethylpyridin-3-ols as inhibitors of TNF-α-induced cell adhesion and inflammatory bowel disease. MEDCHEMCOMM 2018; 9:1305-1310. [PMID: 30151084 PMCID: PMC6096353 DOI: 10.1039/c8md00156a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal tract with complex pathogenesis. Here, we synthesized 6-heteroarylamino analogues to inhibit TNF-α-induced adhesion of monocytes to colon epithelial cells which are implicated in the initial inflammation process of IBD. The best analogue, 16a, showed IC50 = 0.29 μM, which is about five orders of magnitude better than that of 5-aminosalicylic acid (5-ASA), a positive control. Oral administration of 6f and 16a dramatically ameliorated 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colon inflammation in rat. The ameliorating effects were accompanied by a high level of recovery in colon and body weights and in the myeloperoxidase (MPO) level. Consistently, the compounds suppressed the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1). Moreover, they significantly suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 while increasing the level of IL-10, an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Pallavi Gurung
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - You Jin Jin
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Han-Eol Kang
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Sang Yeul Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| |
Collapse
|
16
|
Chen Q, Duan X, Fan H, Xu M, Tang Q, Zhang L, Shou Z, Liu X, Zuo D, Yang J, Deng S, Dong Y, Wu H, Liu Y, Nan Z. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol 2018; 53:149-157. [PMID: 29107215 DOI: 10.1016/j.intimp.2017.10.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Oxymatrine (OMT), an alkaloid derived from the root of the Sophora flavescens, has been reported to possess a significant effect on relieving UC owing to its anti-inflammatory property. But the other therapeutic mechanism of OMT remains unclear. Recent studies have found, PI3K/AKT signaling pathway is involved in the pathogenesis of UC by pro-inflammatory effects and activating T cells. Moreover, PI3K/AKT pathway is one of the most important pathways for regulating cell apoptosis. Thus, we aim to explore whether OMT protects against UC by targeting PI3K/AKT pathway. We established the UC mice models, using LY294002 (a specific inhibitor of PI3K/AKT) as a positive control, to observe the effect of low, medium and high dose of OMT on UC and its influence on PI3K/AKT signaling pathway. Our data indicated that OMT can significantly ameliorate UC through anti-inflammatory, pro-apoptotic, down-regulating the differentiation of Th1 and Th17 cells via PI3K/AKT pathway. This study reveals that PI3K/AKT signaling pathway is a potential mechanism of OMT-induced UC remission and suggests that OMT is a promising therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyun Duan
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Nan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Gurung P, Banskota S, Katila N, Gautam J, Kadayat TM, Choi DY, Lee ES, Jeong TC, Kim JA. Ameliorating effect of TI-1-162, a hydroxyindenone derivative, against TNBS-induced rat colitis is mediated through suppression of RIP/ASK-1/MAPK signaling. Eur J Pharmacol 2018; 827:94-102. [DOI: 10.1016/j.ejphar.2018.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022]
|
18
|
Su YN, Wu P, Feng L, Jiang WD, Jiang J, Zhang YA, Figueiredo-Silva C, Zhou XQ, Liu Y. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:101-118. [PMID: 29292200 DOI: 10.1016/j.fsi.2017.12.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of dietary DL-methionyl-DL-methionine (Met-Met) on growth performance, intestinal immune function and the underlying signalling molecules in juvenile grass carp (Ctenopharyngodon idella). Fish were fed one DL-methionine (DL-Met) group (2.50 g/kg diet) and six graded levels of Met-Met groups (0, 0.79, 1.44, 1.84, 2.22 and 2.85 g/kg diet) for 10 weeks, and then challenged with Aeromonas hydrophila for 14 days. Results indicated that the optimal Met-Met supplementation: (1) increased fish growth performance, intestinal lysozyme (LZ) and acid phosphatase (ACP) activities, complement (C3 and C4) and immunoglobulin M (IgM) contents, up-regulated hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, β-defensin-1 and Mucin2 mRNA levels; (2) down-regulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-8 [only in the distal intestine (DI)], IL-12p35, IL-12p40 and IL-15 (not IL-17D) mRNA levels partially related to the down-regulation of IκB kinase β (IKKβ) and IKKγ (rather than IKKα), nuclear factor kappa B (NF-κB) p65 and c-Rel (rather than NF-κB p52) mRNA levels and the up-regulation of inhibitor of κBα (IκBα) mRNA levels; (3) up-regulated IL-4/13A, IL-4/13B, IL-6, IL-10, IL-11 and transforming growth factor (TGF)-β1 (not TGF-β2) mRNA levels partially associated with the target of rapamycin (TOR) signalling pathway [TOR/ribosomal protein S6 kinases 1 (S6K1), eIF4E-binding proteins (4E-BP)] in three intestinal segments of juvenile grass carp. These results suggest that Met-Met supplementation improves growth and intestinal immune function in fish. Furthermore, according to a positive effect, the optimal Met-Met supplementation was superior to the optimal DL-Met supplementation at improving the growth performance and enhancing the intestinal immune function in fish. Finally, based on percent weight gain (PWG), protection against enteritis morbidity and immune index (LZ activity), the optimal Met-Met supplementation for juvenile grass carp was estimated as 1.61, 1.64 and 1.68 g/kg diet, respectively, as the basal diet contains 8.03 g/kg total sulfur amino acids (TSAA) (4.26 g methionine/kg and 3.77 g cysteine/kg).
Collapse
Affiliation(s)
- Yue-Ning Su
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Figueiredo-Silva
- Evonik Nutrition & Care GmbH, NC, 10-B531, Postfach 1345, Rodenbacher Chausse 4, 63404 Hanau, Germany
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
19
|
Jin J, Hwang K, Joo JD, Han JH, Kim CY. Combination therapy of 7-O-succinyl macrolactin A tromethamine salt and temozolomide against experimental glioblastoma. Oncotarget 2017; 9:2140-2147. [PMID: 29416760 PMCID: PMC5788628 DOI: 10.18632/oncotarget.23295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
7-O-succinyl macrolactin A has shown anti-inflammatory, anti-angiogenesis, and anti-metastatic effects. It also exhibits strong suppression of tumor growth. In our previous study, we assessed the anti-neoplastic effects of 7-O-succinyl macrolactin A tromethamine salt (SMA salt) on a glioma cell line. Moreover, according to our data, SMA salt might be contributed to the inhibitory effects on migration and invasion, as well as a cytotoxic effect on the glioblastoma cell lines. In the present study, we investigated the anti-tumor effects of combination therapy with SMA salt and temozolomide (TMZ) in glioblastoma cell lines. The combination therapy affected cell viability significantly, decreasing in glioblastoma cell lines. In cell migration assays, combination therapy showed more inhibitory effects than TMZ in these cell lines. The tumor volume was significantly decreased in the combination group compared with both TMZ and control groups by using the orthotopic mouse model. The effects of combination therapy with SMA salt and TMZ attributed to the inhibition of migration, invasion activities and anti-tumor effects. SMA salt could be one of the promising candidates for combination therapy in clinical settings.
Collapse
Affiliation(s)
- Jun Jin
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea
| | - Jin-Deok Joo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-Si, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Noh K, Kang ΨW. Calculation of a First-In-Man Dose of 7- O-Succinyl Macrolactin A Based on Allometric Scaling of Data from Mice, Rats, and Dogs. Biomol Ther (Seoul) 2017; 25:648-658. [PMID: 28274094 PMCID: PMC5685435 DOI: 10.4062/biomolther.2016.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
7-O-Succinyl macrolactin A (SMA) exerts several pharmacological effects including anti-bacterial, anti-inflammation, and anti-cancer activities. Recently, SMA has been extensively evaluated as an anti-cancer drug. Thus, the objectives of the present study were to characterise the pharmacokinetics of SMA via both non-compartmental and compartmental analysis in mice, rats, and dogs, and to derive an appropriate first-in-man dose based on allometric scaling of the animal data. The time courses of plasma SMA concentrations after intravenous administration to rats and dogs were analysed retrospectively, as were data collected after intraperitoneal SMA injection in mice. Pharmacokinetic parameters were estimated via both noncompartmental and compartmental analysis, and were correlated with body weight and/or the potential maximum life-span. The clearance and distribution volume of SMA in humans were predicted, and a first-in-man dose proposed. A two-compartment model best described the time courses of SMA plasma concentrations after a saturation elimination process was applied to fit the dataset obtained from rats. Incorporation of the maximum potential life-span during allometric scaling was required to improve the estimation of human clearance. The SMA clearance and the distribution volume in the steady state, in a 70-kg adult male, were estimated to be 30.6 L/h and 19.5 L, respectively. To meet the area under the curve (AUC) required for anti-tumour activity, a dose of 100 mg (∼1.5 mg/kg) was finally proposed as the first dose for a 70-kg human. Although toxicological profiles derived from non-clinical studies must be considered before any final decision is made, our work will facilitate clinical studies on SMA.
Collapse
Affiliation(s)
- Keumhan Noh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ψ Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Sulphur dioxide suppresses inflammatory response by sulphenylating NF-κB p65 at Cys38 in a rat model of acute lung injury. Clin Sci (Lond) 2017; 131:2655-2670. [PMID: 28935810 DOI: 10.1042/cs20170274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
The present study was designed to investigate whether endogenous sulphur dioxide (SO2) controlled pulmonary inflammation in a rat model of oleic acid (OA)-induced acute lung injury (ALI). In this model, adenovirus expressing aspartate aminotransferase (AAT) 1 was delivered to the lungs, and the levels of SO2 and proinflammatory cytokines in rat lung tissues were measured. In the human alveolar epithelial cell line A549, the nuclear translocation and DNA binding activities of wild-type (wt) and C38S (cysteine-to-serine mutation at p65 Cys38) NF-κB p65 were detected. GFP-tagged C38S p65 was purified from HEK 293 cells and the sulphenylation of NF-κB p65 was studied. OA caused a reduction in SO2/AAT pathway activity but increased pulmonary inflammation and ALI. However, either the presence of SO2 donor, a combination of Na2SO3 and NaHSO3, or AAT1 overexpression in vivo successfully blocked OA-induced pulmonary NF-κB p65 phosphorylation and consequent inflammation and ALI. Either treatment with an SO2 donor or overexpression of AAT1 down-regulated OA-induced p65 activity, but AAT1 knockdown in alveolar epithelial cells mimicked OA-induced p65 phosphorylation and inflammation in vitro. Mechanistically, OA promoted NF-κB nuclear translocation, DNA binding activity, recruitment to the intercellular cell adhesion molecule (ICAM)-1 promoter, and consequent inflammation in epithelial cells; these activities were reduced in the presence of an SO2 donor. Furthermore, SO2 induced sulphenylation of p65, which was blocked by the C38S mutation on p65 in epithelial cells. Hence, down-regulation of SO2/AAT is involved in pulmonary inflammation during ALI. Furthermore, SO2 suppressed inflammation by sulphenylating NF-κB p65 at Cys38.
Collapse
|
22
|
Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1 H -inden-1-one and benzofuran-3(2 H )-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Din FU, Kim DW, Choi JY, Thapa RK, Mustapha O, Kim DS, Oh YK, Ku SK, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 2017; 54:239-248. [PMID: 28285074 DOI: 10.1016/j.actbio.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. In this study, to solve this problem, a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan was developed. This irinotecan-loaded DRTG was prepared by dispersing the irinotecan-loaded thermoreversible solid lipid nanoparticles (SLNs) in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. The DRTG was easily administered intramuscularly. Its particle size and drug content were not noticeably changeable, resulting that it was stable at 40°C for at least 6months. Compared to the irinotecan-loaded solution and conventional hydrogel, the DRTG significantly delayed drug release, leading to a reduced burst effect. Moreover, it showed decreased Cmax and maintained the sustained plasma concentrations at a relatively low level for the long period of 60h in rats, resulting in ameliorated side effects of the anti-tumour drug. Furthermore, it gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Thus, this DRTG with improved antitumor efficacy without initial burst effect and toxicity could provide a potential pharmaceutical system for the intramuscular administration of irinotecan. STATEMENT OF SIGNIFICANCE Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. To solve this problem, we developed a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan. Unlike the conventional hydrogel, the DRTG is a dispersion of the irinotecan-loaded thermoreversible solid lipid nanoparticles in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. This DRTG gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle.
Collapse
|
24
|
Kim A, Nam YJ, Shin YK, Lee MS, Sohn DS, Lee CS. Rotundarpene inhibits TNF-α-induced activation of the Akt, mTOR, and NF-κB pathways, and the JNK and p38 associated with production of reactive oxygen species. Mol Cell Biochem 2017; 434:113-125. [PMID: 28432555 DOI: 10.1007/s11010-017-3041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
Ilex Rotunda Thunb has been shown to have anti-inflammatory and antioxidant effects. In human keratinocytes, we investigated the effect of rotundarpene (4-caffeoyl-3-methyl-but-2-ene-1,4-diol) on the TNF-α-stimulated production of inflammatory mediators in relation to the Akt, mTOR, and NF-κB pathways, and the JNK and p38-MAPK. Rotundarpene, Akt inhibitor, Bay 11-7085, rapamycin, and N-acetylcysteine inhibited the TNF-α-stimulated production of cytokines and chemokines, increase in the levels of p-Akt and mTOR, activation of NF-κB, and production of reactive oxygen species in keratinocytes. TNF-α treatment induced phosphorylation of the JNK and p38-MAPK. Inhibitors of the c-JNK (SP600125) and p38-MAPK (SB203580) reduced the TNF-α-induced production of inflammatory mediators, binding of NF-κB to DNA, and activation of the JNK and p38-MAPK in keratinocytes. The results show that rotundarpene may reduce the TNF-α-stimulated inflammatory mediator production by suppressing the reactive oxygen species-dependent activation of the Akt, mTOR, and NF-κB pathways, and activation of the JNK and p38-MAPK in human keratinocytes. Additionally, rotundarpene appears to attenuate the Akt, mTOR, and NF-κB pathways and the JNK and p38-MAPK-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Arum Kim
- Department of Pharmacology, College of Medicine, and The BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea
| | - Yoon Jeong Nam
- Department of Pharmacology, College of Medicine, and The BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, and The BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea
| | - Min Sung Lee
- Department of Internal Medicine, SoonChunHyang University Hospital, Bucheon, Kyung-Gi-Do, 420-767, South Korea
| | - Dong Suep Sohn
- Department of Thoracic and Cardiovascular Surgery, Chung-Ang University Hospital, Seoul, 156-755, South Korea
| | - Chung Soo Lee
- Department of Pharmacology, College of Medicine, and The BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea.
| |
Collapse
|
25
|
Din FU, Choi JY, Kim DW, Mustapha O, Kim DS, Thapa RK, Ku SK, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv 2017; 24:502-510. [PMID: 28181835 PMCID: PMC8241086 DOI: 10.1080/10717544.2016.1272651] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1–3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.
Collapse
Affiliation(s)
- Fakhar Ud Din
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea.,b Department of Pharmacy, Quaid-I-Azam University , Islamabad , Pakistan
| | - Ju Yeon Choi
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Omer Mustapha
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea.,d International Center of Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Raj Kumar Thapa
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Sae Kwang Ku
- e College of Oriental Medicine, Daegu Haany University , Gyongsan , South Korea
| | - Yu Seok Youn
- f School of Pharmacy, Sungkyunkwan University , Suwon , South Korea , and
| | - Kyung Taek Oh
- g College of Pharmacy, Chung-Ang University , Seoul , Republic of Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
26
|
Jin J, Choi SH, Lee JE, Joo JD, Han JH, Park SY, Kim CY. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model. Oncol Lett 2017; 13:3767-3773. [PMID: 28529591 DOI: 10.3892/ol.2017.5918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/17/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo. These results suggest that SMA salt has significant antitumor effects on glioblastoma.
Collapse
Affiliation(s)
- Jun Jin
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Suh Hee Choi
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jin-Deok Joo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Su-Young Park
- Research and Development Center, Daewoo Pharmaceutical Ind. Co., Ltd., Busan 49393, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
27
|
Crespo I, San-Miguel B, Mauriz JL, Ortiz de Urbina JJ, Almar M, Tuñón MJ, González-Gallego J. Protective Effect of Protocatechuic Acid on TNBS-Induced Colitis in Mice Is Associated with Modulation of the SphK/S1P Signaling Pathway. Nutrients 2017; 9:E288. [PMID: 28300788 PMCID: PMC5372951 DOI: 10.3390/nu9030288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
(1) Background: The present study aimed to investigate whether beneficial effects of protocatechuic acid (PCA) are associated with inhibition of the SphK/S1P axis and related signaling pathways in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammatory bowel disease; (2) Methods: Colitis was induced in male Balb/c mice by intracolonic administration of 2 mg of TNBS. PCA (30 or 60 mg/kg body wt) was given intraperitoneally daily for five days; (3) Results: Administration of PCA prevented the macroscopic and microscopic damage to the colonic mucosa, the decrease in body weight gain and the increase in myeloperoxidase activity induced by TNBS. PCA-treated mice exhibited a lower oxidized/reduced glutathione ratio, increased expression of antioxidant enzymes and Nrf2 and reduced expression of proinflammatory cytokines. Following TNBS treatment mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production and expression of S1P receptor 1 and S1P phosphatase 2 were significantly elevated. However, there was a decreased expression of S1P lyase. Furthermore, TNBS-treated mice exhibited increased phosphorylation of AKT and ERK, and a higher expression of pSTAT3 and the NF-κB p65 subunit. PCA administration significantly prevented those changes; (4) Conclusions: Data obtained suggest a contribution of the SphK/S1P system and related signaling pathways to the anti-inflammatory effect of PCA.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | - José Luis Mauriz
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | | | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| |
Collapse
|
28
|
Khajah MA, Ananthalakshmi KV, Edafiogho I. Anti-Inflammatory Properties of the Enaminone E121 in the Dextran Sulfate Sodium (DSS) Colitis Model. PLoS One 2016; 11:e0168567. [PMID: 27997590 PMCID: PMC5173236 DOI: 10.1371/journal.pone.0168567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enaminones are synthetic compounds with an established role in the prevention of various forms of seizures. Recent evidence suggests potent anti-tussive, bronchodilation and anti-inflammatory properties. Pre-treatment with particularly E121 compound resulted in a decrease in leukocyte recruitment in the ovalbumin induced-model of asthma, immune cell proliferation and cytokine release in vitro. We hypothesize that E121 might serve as a therapeutic potential in intestinal inflammation through modulating immune cell functions. METHODS Colitis was induced by daily dextran sulfate sodium (DSS) administration for 5 days, and its severity was determined by gross and histological assessments. The plasma level of various cytokines was measured using flow cytometry-based assay. The colonic expression/ phosphorylation level of various molecules was determined by immunofluorescence and western blotting. The effects of E121 treatment on in vitro neutrophil chemotaxis (under-agarose assay), superoxide release (luminol oxidation assay) and apoptosis (annexin V/7AAD) were also determined. RESULTS DSS-induced colitis in mice was significantly reduced by daily E121 treatment (30-100 mg/kg) at gross and histological levels. This effect was due to modulated plasma levels of interleukin (IL-2) and colonic expression levels of various signaling molecules and proteins involved in apoptosis. In vitro neutrophil survival, chemotaxis, and superoxide release were also reduced by E121 treatment. CONCLUSION Our results indicate important anti-inflammatory actions of E121 in the pathogenesis of IBD.
Collapse
Affiliation(s)
| | | | - Ivan Edafiogho
- Department of Pharmaceutical Sciences, University of Saint Joseph School of Pharmacy, Hartford, Connecticut, United States of America
| |
Collapse
|
29
|
Yuan J, Zhao M, Li R, Huang Q, Rensing C, Raza W, Shen Q. Antibacterial Compounds-Macrolactin Alters the Soil Bacterial Community and Abundance of the Gene Encoding PKS. Front Microbiol 2016; 7:1904. [PMID: 27965639 PMCID: PMC5126139 DOI: 10.3389/fmicb.2016.01904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
Macrolactin produced by many soil microbes has been shown to be an efficient antibacterial agent against many bacterial pathogens. However, studies examining the effect of macrolactin on both the soil bacterial community and the intrinsic bacterial species that harbor genes responsible for the production of this antibiotic have not been conducted so far. In this study, a mixture of macrolactin was isolated from the liquid culture of Bacillus amyloliquefaciens NJN-6, and applied to the soil once a week for four weeks. 16S rRNA Illumina MiSeq sequencing showed that continuous application of macrolactin reduced the α-diversity of the soil bacterial community and thereby changed the relative abundance of microbes at both the phylum and genus level. The relative abundance of Proteobacteria and Firmicutes was significantly increased along with a significant decrease in the relative abundance of Acidobacteria. However, the application of macrolactins had an insignificant effect on the total numbers of bacteria. Further, the native gene responsible for the production of macrolactin, the gene encoding polyketide synthase was reduced in copy number after the application of macrolactin. The results of this study suggested that a bactericide from a microbial source could decrease the diversity of the soil bacterial community and change the bacterial community structure. Moreover, the populations of the intrinsic bacterial species which harbor genes responsible for macrolactin production were inhibited when the external source antibiotic was applied.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Mengli Zhao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Qiwei Huang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China; J. Craig Venter InstituteLa Jolla, CA, USA
| | - Waseem Raza
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization - College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
30
|
Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets. Transl Res 2016; 176:38-68. [PMID: 27220087 DOI: 10.1016/j.trsl.2016.04.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/17/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are the 2 major phenotypes of inflammatory bowel disease (IBD), which are influenced by a complex interplay of immunological and genetic elements, though the precise etiology still remains unknown. With IBD developing into a globally prevailing disease, there is a need to explore new targets and a thorough understanding of the pathophysiological differences between the healthy and diseased gut could unearth new therapeutic opportunities. In this review, we provide an overview of the major aspects of IBD pathogenesis and thereafter present a comprehensive analysis of the gut pathophysiology leading to a discussion on some of the most promising targets and biologic therapies currently being explored. These include various gut proteins (CXCL-10, GATA-3, NKG2D, CD98, microRNAs), immune cells recruited to the gut (mast cells, eosinophils, toll-like receptors 2, 4), dysregulated proinflammatory cytokines (interleukin-6, -13, -18, -21), and commensal microbiota (probiotics and fecal microbiota transplantation). We also evaluate some of the emerging nonconventional therapies being explored in IBD treatment focusing on the latest developments in stem cell research, oral targeting of the gut-associated lymphoid tissue, novel anti-inflammatory signaling pathway targeting, adenosine deaminase inhibition, and the beneficial effects of antioxidant and nutraceutical therapies. In addition, we highlight the growth of biologics and their targets in IBD by providing information on the preclinical and clinical development of over 60 biopharmaceuticals representing the state of the art in ulcerative colitis and Crohn's disease drug development.
Collapse
|
31
|
In vitro and in vivo inhibitory activity of 6-amino-2,4,5-trimethylpyridin-3-ols against inflammatory bowel disease. Bioorg Med Chem Lett 2016; 26:4587-4591. [PMID: 27597248 DOI: 10.1016/j.bmcl.2016.08.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Although the pathogenesis of inflammatory bowel disease (IBD) is complex, attachment and infiltration of leukocytes to gut epithelium induced by pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) represents the initial step of inflammation in IBD. Previously, we have reported that some 6-amino-2,4,5-trimethylpyridin-3-ols have significant levels of antiangiogenic activity via PI3K inhibition. Based on the reports that angiogenesis is involved in the aggravation of IBD and that PI3K is a potential target for IBD therapy, we investigated whether the scaffold has inhibitory activity against in vitro and in vivo models of colitis. Many analogues showed >80% inhibition against TNF-α-induced monocyte adhesion to colon epithelial cells at 1μM. Compound 8m showed IC50=0.19μM, which is about five orders of magnitude better than that of 5-aminosalicylic acid (5-ASA, IC50=18.1mM), a positive control. In a rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, orally administered 8m dramatically ameliorated TNBS-induced colon inflammation. It was demonstrated by a high level of suppression in myeloperoxidase (MPO), a surrogate marker of colitis, as well as almost perfect recovery of colon and body weights in a dose-dependent manner. Compared to sulfasalazine, a prodrug of 5-ASA, compound 8m showed >300-fold better efficacy in those parameters. Taken together, 6-amino-2,4,5-trimethylpyridin-3-ols can provide a novel platform for anti-IBD drug discovery.
Collapse
|
32
|
Lee S, Chae MR, Lee BC, Kim YC, Choi JS, Lee SW, Cheong JH, Park CS. Urinary Bladder-Relaxant Effect of Kurarinone Depending on Potentiation of Large-Conductance Ca2+-Activated K+ Channels. Mol Pharmacol 2016; 90:140-50. [PMID: 27251362 DOI: 10.1124/mol.115.102939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/31/2016] [Indexed: 02/14/2025] Open
Abstract
The large-conductance calcium-activated potassium channel (BKCa channel) plays critical roles in smooth muscle relaxation. In urinary bladder smooth muscle, BKCa channel activity underlies the maintenance of the resting membrane potential and repolarization of the spontaneous action potential triggering the phasic contraction. To identify novel BKCa channel activators, we screened a library of natural compounds using a cell-based fluorescence assay and a hyperactive mutant BKCa channel (Lee et al., 2013). From 794 natural compounds, kurarinone, a flavanone from Sophora flavescens, strongly potentiated BKCa channels. When treated from the extracellular side, this compound progressively shifted the conductance-voltage relationship of BKCa channels to more negative voltages and increased the maximum conductance in a dose-dependent manner. Whereas kurarinone strongly potentiated the homomeric BKCa channel composed of only the α subunit, its effects were much smaller on heteromeric channels coassembled with auxiliary β subunits. Although the activation kinetics was not altered significantly, the deactivation of BKCa channels was dramatically slowed by kurarinone treatment. At the single-channel level, kurarinone increased the open probability of the BKCa channel without affecting its single-channel conductance. Kurarinone potently relaxed acetylcholine-induced contraction of rat bladder smooth muscle and thus decreased the micturition frequency of rats with overactive bladder symptoms. These results indicate that kurarinone can directly potentiate BKCa channels and demonstrate the therapeutic potentials of kurarinone and its derivatives for developing antioveractive bladder medications and supplements.
Collapse
Affiliation(s)
- Sojung Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Mee Ree Chae
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Byoung-Cheol Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Jae Sue Choi
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Sung Won Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Jae Hoon Cheong
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| |
Collapse
|
33
|
Lee DH, Lee CS. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes. Eur J Pharmacol 2016; 784:164-72. [PMID: 27221774 DOI: 10.1016/j.ejphar.2016.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 01/30/2023]
Abstract
Flavonoid myricetin has been shown to exhibit anti-inflammatory and anti-oxidant effects. Nevertheless, the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in keratinocytes has not been studied. Using human keratinocytes, we examined the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in relation to the Akt, mTOR and NF-κB pathways, which regulate the transcription genes involved in immune and inflammatory responses. TNF-α stimulated production of the inflammatory mediators and reactive oxygen species in keratinocytes, and activation of the Akt, mTOR and NF-κB pathways in HaCaT cells and primary keratinocytes. Myricetin, Akt inhibitor, Bay 11-7085 (an inhibitor of NF-κB activation), rapamycin (mTOR inhibitor) and N-acetylcysteine attenuated TNF-α-induced activation of Akt, mTOR and NF-κB. Myricetin and N-acetylcysteine attenuated the TNF-α-stimulated production of cytokines and chemokines, and production of reactive oxygen species in keratinocytes. The results show that myricetin may reduce TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of the Akt, mTOR and NF-κB pathways. The effect of myricetin appears to be associated with inhibition of the production of reactive oxygen species. Further, myricetin appears to attenuate the proinflammatory mediator-induced inflammatory skin diseases.
Collapse
Affiliation(s)
- Da Hee Lee
- Department of Pharmacology, College of Medicine, and the BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul 156-756, South Korea
| | - Chung Soo Lee
- Department of Pharmacology, College of Medicine, and the BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
34
|
Brefeldin A reduces tumor necrosis factor-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR, and NF-κB pathways in human keratinocytes. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:951-60. [DOI: 10.1007/s00210-016-1242-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
|
35
|
Li W, Tang XX, Yan X, Wu Z, Yi ZW, Fang MJ, Su X, Qiu YK. A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Nat Prod Res 2016. [DOI: 10.1080/14786419.2016.1155576 pmid: 27071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Li
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, The State Oceanic Administration, Xiamen, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| | - Xia Yan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhen Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhi-Wei Yi
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, The State Oceanic Administration, Xiamen, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| | - Mei-Juan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xin Su
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying-Kun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Li W, Tang XX, Yan X, Wu Z, Yi ZW, Fang MJ, Su X, Qiu YK. A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Nat Prod Res 2016; 30:2777-2782. [DOI: 10.1080/14786419.2016.1155576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Li
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, The State Oceanic Administration, Xiamen, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| | - Xia Yan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhen Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhi-Wei Yi
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, The State Oceanic Administration, Xiamen, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| | - Mei-Juan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xin Su
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying-Kun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Regmi SC, Park SY, Kim SJ, Banskota S, Shah S, Kim DH, Kim JA. The Anti-Tumor Activity of Succinyl Macrolactin A Is Mediated through the β-Catenin Destruction Complex via the Suppression of Tankyrase and PI3K/Akt. PLoS One 2015; 10:e0141753. [PMID: 26544726 PMCID: PMC4636297 DOI: 10.1371/journal.pone.0141753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022] Open
Abstract
Accumulated gene mutations in cancer suggest that multi-targeted suppression of affected signaling networks is a promising strategy for cancer treatment. In the present study, we report that 7-O-succinyl macrolactin A (SMA) suppresses tumor growth by stabilizing the β-catenin destruction complex, which was achieved through inhibition of regulatory components associated with the complex. SMA significantly reduced the activities of PI3K/Akt, which corresponded with a decrease in GSK3β phosphorylation, an increase in β-catenin phosphorylation, and a reduction in nuclear β-catenin content in HT29 human colon cancer cells. At the same time, the activity of tankyrase, which inhibits the β-catenin destruction complex by destabilizing the axin level, was suppressed by SMA. Despite the low potency of SMA against tankyrase activity (IC50 of 50.1 μM and 15.5 μM for tankyrase 1 and 2, respectively) compared to XAV939 (IC50 of 11 nM for tankyrase 1), a selective and potent tankyrase inhibitor, SMA had strong inhibitory effects on β-catenin-dependent TCF/LEF1 transcriptional activity (IC50 of 39.8 nM), which were similar to that of XAV939 (IC50 of 28.1 nM). In addition to suppressing the colony forming ability of colon cancer cells in vitro, SMA significantly inhibited tumor growth in CT26 syngenic and HT29 xenograft mouse tumor models. Furthermore, treating mice with SMA in combination with 5-FU in a colon cancer xenograft model or with cisplatin in an A549 lung cancer xenograft model resulted in greater anti-tumor activity than did treatment with the drugs alone. In the xenograft tumor tissues, SMA dose-dependently inhibited nuclear β-catenin along with reductions in GSK3β phosphorylation and increases in axin levels. These results suggest that SMA is a possible candidate as an effective anti-cancer agent alone or in combination with cytotoxic chemotherapeutic drugs, such as 5-FU and cisplatin, and that the mode of action for SMA involves stabilization of the β-catenin destruction complex through inhibition of tankyrase and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Sushil C Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Su Young Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Seung Joo Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sajita Shah
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong-Hee Kim
- Research and Development Center, Daewoo Pharm. Co. Ltd, Busan, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
38
|
Li Y, Yang G, Yang X, He Y, Wang W, Zhang J, Li T, Zhang W, Lin R. Nicotinic acid inhibits vascular inflammation via the SIRT1-dependent signaling pathway. J Nutr Biochem 2015; 26:1338-47. [DOI: 10.1016/j.jnutbio.2015.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/17/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
|
39
|
Soubh AA, Abdallah DM, El-Abhar HS. Geraniol ameliorates TNBS-induced colitis: Involvement of Wnt/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways. Life Sci 2015; 136:142-50. [DOI: 10.1016/j.lfs.2015.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/13/2015] [Accepted: 07/03/2015] [Indexed: 02/07/2023]
|
40
|
Din FU, Mustapha O, Kim DW, Rashid R, Park JH, Choi JY, Ku SK, Yong CS, Kim JO, Choi HG. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur J Pharm Biopharm 2015; 94:64-72. [DOI: 10.1016/j.ejpb.2015.04.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
|
41
|
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 2014; 38:249-60. [PMID: 25547980 DOI: 10.1007/s12272-014-0535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Abstract
In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Tokuhira N, Kitagishi Y, Suzuki M, Minami A, Nakanishi A, Ono Y, Kobayashi K, Matsuda S, Ogura Y. PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy (Review). Int J Mol Med 2014; 35:10-6. [PMID: 25352295 DOI: 10.3892/ijmm.2014.1981] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease, is a subject of increasing interest. Loss-of-function mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) are strong genetic factors linked to Crohn's disease, which eventually leads to an excessive mucosal inflammatory response directed against components of normal gut microbiota. Reactive oxygen species (ROS) play an important role in inflammation processes, as well as in transduction of signals from receptors for several cytokines, such as tumor necrosis factor α (TNFα). ROS activate nuclear factor-κB (NF-κB) via IκB kinase (IKK) through the PI3K/AKT/PTEN pathway. Therefore, this pathway is recognized to play a key role in Crohn's disease. Loss of function has been demonstrated to occur as an early event in a wide variety of diseases. Given this prevalent involvement in a number of diseases, the molecular development that modulates this pathway has been the subject of several studies. In addition, it has been the focus of extensive research and drug discovery activities. A better understanding of the molecular assemblies may reveal novel targets for the therapeutic development against Crohn's disease.
Collapse
Affiliation(s)
- Nana Tokuhira
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| |
Collapse
|
43
|
Jia G, Aroor AR, Martinez-Lemus LA, Sowers JR. Overnutrition, mTOR signaling, and cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1198-206. [PMID: 25253086 DOI: 10.1152/ajpregu.00262.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevalence of obesity and associated medical disorders has increased dramatically in the United States and throughout much of the world in the past decade. Obesity, induced by excess intake of carbohydrates and fats, is a major cause of Type 2 diabetes, hypertension, and the cardiorenal metabolic syndrome. There is emerging evidence that excessive nutrient intake promotes signaling through the mammalian target of rapamycin (mTOR), which, in turn, may lead to alterations of cellular metabolic signaling leading to insulin resistance and obesity-related diseases, such as diabetes, cardiovascular and kidney disease, as well as cancer. While the pivotal role of mTOR signaling in regulating metabolic stress, autophagy, and adaptive immune responses has received increasing attention, there remain many gaps in our knowledge regarding this important nutrient sensor. For example, the precise cellular signaling mechanisms linking excessive nutrient intake and enhanced mTOR signaling with increased cardiovascular and kidney disease, as well as cancer, are not well understood. In this review, we focus on the effects that the interaction between excess intake of nutrients and enhanced mTOR signaling have on the promotion of obesity-associated diseases and potential therapeutic strategies involving targeting mTOR signaling.
Collapse
Affiliation(s)
- Guanghong Jia
- Divisions of Endocrinology, Diabetes, Hypertension and Metabolism, Diabetes Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri; Harry S. Truman Memorial Veterans Hospital, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Annayya R Aroor
- Divisions of Endocrinology, Diabetes, Hypertension and Metabolism, Diabetes Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri; Harry S. Truman Memorial Veterans Hospital, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Luis A Martinez-Lemus
- Departments of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; Harry S. Truman Memorial Veterans Hospital, University of Missouri School of Medicine, Columbia, Missouri; and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - James R Sowers
- Divisions of Endocrinology, Diabetes, Hypertension and Metabolism, Diabetes Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri; Departments of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; Harry S. Truman Memorial Veterans Hospital, University of Missouri School of Medicine, Columbia, Missouri; and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
44
|
Ye Q, Zheng Y, Fan S, Qin Z, Li N, Tang A, Ai F, Zhang X, Bian Y, Dang W, Huang J, Zhou M, Zhou Y, Xiong W, Yan Q, Ma J, Li G. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PLoS One 2014; 9:e103298. [PMID: 25057912 PMCID: PMC4110006 DOI: 10.1371/journal.pone.0103298] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023] Open
Abstract
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane-dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.
Collapse
Affiliation(s)
- Qiurong Ye
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Ying Zheng
- Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zailong Qin
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Nan Li
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuemei Zhang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhui Bian
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Wei Dang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
- * E-mail: (JM) (JM); (GL) (GL)
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
- * E-mail: (JM) (JM); (GL) (GL)
| |
Collapse
|