1
|
Sharma S, Kaur I, Dubey N, Goswami N, Tanwar SS. Berberine can be a Potential Therapeutic Agent in Treatment of Huntington's Disease: A Proposed Mechanistic Insight. Mol Neurobiol 2025:10.1007/s12035-025-05054-6. [PMID: 40377895 DOI: 10.1007/s12035-025-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by CAG repeat expansion in the HTT gene, producing mutant huntingtin (mHTT) protein. This leads to neuronal damage through protein aggregation, transcriptional dysregulation, excitotoxicity, and mitochondrial dysfunction. mHTT impairs protein clearance and alters gene expression, energy metabolism, and synaptic function. Therapeutic strategies include enhancing mHTT degradation, gene silencing via antisense oligonucleotides and RNAi, promoting neuroprotection through BDNF signaling, and modulating neurotransmitters like glutamate and dopamine. Berberine, a natural isoquinoline alkaloid, has emerged as a promising therapeutic option for HD due to its multifaceted neuroprotective properties. Research indicates that berberine can mitigate the progression of neurodegenerative diseases, including HD, by targeting various molecular pathways. It exhibits antioxidant, anti-inflammatory, and autophagy-enhancing effects, which are crucial in reducing neuronal damage and apoptosis associated with HD. These properties make berberine a potential candidate for therapeutic intervention in HD, as demonstrated in both cellular and animal models. Berberine activates the PI3K/Akt pathway, which is vital for cell survival and neuroprotection. It reduces oxidative stress and neuroinflammation, both of which are implicated in HD pathology. Berberine enhances autophagic processes, promoting the degradation of mutant huntingtin protein, a key pathological feature of HD. In transgenic HD mouse models, berberine administration has been shown to alleviate motor dysfunction and prolong survival. It effectively reduces the accumulation of mutant huntingtin in cultured cells, suggesting a direct impact on the disease's molecular underpinnings. Berberine's safety profile, established through its use in treating other conditions, supports its potential for clinical trials in HD patients. Its ability to modulate neurotransmitter levels and engage multiple signaling pathways further underscores its therapeutic promise. While berberine shows significant potential as a therapeutic agent for HD, further research is necessary to fully elucidate its mechanisms and optimize its clinical application. The current evidence in the review paper, primarily from preclinical studies, provides a strong foundation for future investigations into berberine's efficacy and safety in human HD patients.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
- Research Scholar, Department of Pharmacology, SAGE University, Indore, M.P, India
| | - Inderpreet Kaur
- Department of Pharmacy, Shivalik College of Pharmacy, Nangal, Punjab, India
| | - Naina Dubey
- Department of Pharmaceutical Sciences, SAGE University, Bhopal, M.P, India
| | - Neelima Goswami
- Department of Pharmaceutics, Sagar Institute of Research Technology and Science-Pharmacy, Bhopal, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
2
|
Batool S, Asim L, Qureshi FR, Masood A, Mushtaq M, Saleem RSZ. Molecular Targets of Plant-based Alkaloids and Polyphenolics in Liver and Breast Cancer- An Insight into Anticancer Drug Development. Anticancer Agents Med Chem 2025; 25:295-312. [PMID: 38963106 DOI: 10.2174/0118715206302216240628072554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-κB, Shh, MAPK/ERK, and Wnt/β-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.
Collapse
Affiliation(s)
- Salma Batool
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Laiba Asim
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Fawad Raffaq Qureshi
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science and Technology University of Central Punjab, Lahore, Pakistan
| | - Maria Mushtaq
- Department of Technical Laboratory Analytics, Abu Dhabi Vocational Education and Training Institute (ADVETI), Abu Dhabi, UAE
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| |
Collapse
|
3
|
Rao J, Wang T, Yu L, Wang K, Qiu F. Inactivation of CYP2D6 by Berberrubine and the Chemical Mechanism. Biochemistry 2024; 63:3078-3089. [PMID: 39569501 DOI: 10.1021/acs.biochem.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Berberrubine (BRB), belonging to the benzylisoquinoline alkaloid, is a main metabolite of berberine in vivo. BRB was previously proven to undergo metabolic activation mediated by P450s. In this study, the chemical interactions between BRB and CYP2D6 enzyme were investigated. First, a variety of P450s participated in the metabolism of berberine transformed to BRB, but CYP2D6 was the most involved enzyme. A time-, concentration-, and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent inhibition of CYP2D6 was caused by BRB. The inhibitory effect of BRB on CYP2D6 was irreversible. The maximum reaction rate constants of inactivation (kinact) and half-maximal inactivation (KI) of BRB on CYP2D6 were 0.0410 min-1 and 3.798 μM, respectively. Metoprolol, a classic substrate of CYP2D6, attenuated CYP2D6 from inactivation by BRB. Glutathione (GSH) and catalase/superoxide dismutase failed to protect against the inactivation of CYP2D6 caused by BRB. Three cys-based adducts derived from the reaction of electrophilic metabolites of BRB with CYP2D6 were detected by ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS. The reactive metabolites derived from BRB might be responsible for the inactivation of CYP2D6. In summary, BRB was characterized as a mechanism-based inactivator of CYP2D6.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Leran Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
4
|
Qu T, Sun Y, Zhao J, Liu N, Yang J, Lyu D, Huang W, Zhan W, Li T, Yao Z, Yan R, Zhang H, Hong H, Shi L, Meng X, Yin B. Scoulerine: A natural isoquinoline alkaloid targeting SLC6A3 to treat RCC. Biomed Pharmacother 2024; 180:117524. [PMID: 39395255 DOI: 10.1016/j.biopha.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Scoulerine, an isoquinoline alkaloid derived from the corydalis plant, exhibits diverse therapeutic properties against tumors, Alzheimer's disease, and inflammation. This research delves into the pharmacological impact and underlying mechanism of scoulerine on renal cell carcinoma (RCC). Our findings suggest that Scoulerine displays promise as a potential therapeutic agent for RCC, demonstrating notable inhibitory effects in both in vivo and in vitro models. In addition, scoulerine inhibited the viability of 769-P and 786-O cell lines in a time-dependent and dose-dependent manner, and promoted the level of apoptosis associated with B-cell lymphoma-2 associated X protein (Bax). Moreover, the administration of scoulerine resulted in a significant suppression of the mitogen activated protein kinase (MAPK) signaling pathway. Subsequently, utilizing bioinformatics and spatial transcriptomic databases, we identified solute carrier family 6 Member 3 (SLC6A3) as the most promising target of scoulerine. Through experimental validation, we confirmed the functional and therapeutic relevance of SLC6A3 in scoulerine-mediated treatment of RCC. The results of our study indicate a significant affinity between scoulerine and SLC6A3, with competitive inhibition of this interaction leading to a reduction in the inhibitory impact of scoulerine on RCC cell viability. In conclusion, our findings suggest that scoulerine may induce apoptosis in RCC by targeting SLC6A3 and inhibiting the activation of the MAPK signaling pathway, thereby positioning it as a promising natural compound for potential future RCC treatment.
Collapse
Affiliation(s)
- Tianrui Qu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Jianli Yang
- Department of Laboratory Animals, China Medical University, Shenyang, Liaoning 110122, China
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Wenjie Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Weizhen Zhan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zichuan Yao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rongbo Yan
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Zhen F, Sun Y, Wang H, Liu W, Liang X, Wang Y, Wang Q, Hu J. Ubiquitin-Specific Protease 22 Plays a Key Role in Increasing Extracellular Vesicle Secretion and Regulating Cell Motility of Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405731. [PMID: 39101247 PMCID: PMC11481270 DOI: 10.1002/advs.202405731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are potential biomarkers for tumors, but their reliable molecular targets have not been identified. The previous study confirms that ubiquitin-specific protease 22 (USP22) promotes lung adenocarcinoma (LUAD) metastasis in vivo and in vitro. Moreover, USP22 regulates endocytosis of tumor cells and localizes to late endosomes. However, the role of USP22 in the secretion of tumor cell-derived EVs remains unknown. In this study, it demonstrates that USP22 increases the secretion of tumor cell-derived EVs and accelerates their migration and invasion, invadopodia formation, and angiogenesis via EV transfer. USP22 enhances EV secretion by upregulating myosin IB (MYO1B). This study further discovers that USP22 activated the SRC signaling pathway by upregulating the molecule KDEL endoplasmic reticulum protein retention receptor 1 (KDELR1), thereby contributing to LUAD cell progression. The study provides novel insights into the role of USP22 in EV secretion and cell motility regulation in LUAD.
Collapse
Affiliation(s)
- Fang Zhen
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Yue Sun
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Hongyi Wang
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Wei Liu
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Xiao Liang
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University)Ministry of EducationHarbinHeilongjiang150081China
| | - Yaru Wang
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal ChemistryCollege of PharmacyHarbin Medical UniversityNo. 157 Baojian RoadHarbinHeilongjiang150081China
| | - Jing Hu
- Department of Breast Medical OncologyHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping RoadHarbinHeilongjiang150040China
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University)Ministry of EducationHarbinHeilongjiang150081China
| |
Collapse
|
6
|
Rao J, Wang T, Wang K, Qiu F. Integrative analysis of metabolomics and proteomics reveals mechanism of berberrubine-induced nephrotoxicity. Toxicol Appl Pharmacol 2024; 488:116992. [PMID: 38843998 DOI: 10.1016/j.taap.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Berberrubine (BRB), a main metabolite of berberine, has stronger hypoglycemic and lipid-lowering activity than its parent form. We previously found that BRB could cause obvious nephrotoxicity, but the molecular mechanism involved remains unknown. In this study, we systematically integrated metabolomics and quantitative proteomics to reveal the potential mechanism of nephrotoxicity caused by BRB. Metabolomic analysis revealed that 103 significant- differentially metabolites were changed. Among the mentioned compounds, significantly upregulated metabolites were observed for phosphorylcholine, sn-glycerol-3-phosphoethanolamine, and phosphatidylcholine. The top three enriched KEGG pathways were the mTOR signaling pathway, central carbon metabolism in cancer, and choline metabolism in cancer. ERK1/2 plays key roles in all three metabolic pathways. To further confirm the main signaling pathways involved, a proteomic analysis was conducted to screen for key proteins (such as Mapk1, Mapk14, and Caspase), indicating the potential involvement of cellular growth and apoptosis. Moreover, combined metabolomics and proteomics analyses revealed the participation of ERK1/2 in multiple metabolic pathways. These findings indicated that ERK1/2 regulated the significant- differentially abundant metabolites determined via metabolomics analysis. Notably, through a cellular thermal shift assay (CETSA) and molecular docking, ERK1/2 were revealed to be the direct binding target involved in BRB-induced nephrotoxicity. To summarize, this study sheds light on the understanding of severe nephrotoxicity caused by BRB and provides scientific basis for its safe use and rational development.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
7
|
Yu X, Zhao W, Zou Q, Wang L. Amphiphilic hydroxyethyl starch-based nanoparticles carrying linoleic acid modified berberine inhibit the expression of kras v12 oncogene in zebrafish. Biomed Pharmacother 2024; 176:116798. [PMID: 38795642 DOI: 10.1016/j.biopha.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials. The content and substitution degree of linoleic acid groups in LHES polymers were analyzed. The LHES polymers were used for fabricating LHES-B nanoparticles carrying a linoleic acid modified berberine derivative (L-BBR). The LHES-B nanoparticles showed high drug loading efficiency (29%) and could quickly release L-BBR under acidic pH condition (pH = 4.5). Biological investigations revealed that LHES-B nanoparticles significantly inhibited the proliferation of HepG2 cells and exhibited higher cytotoxicity than L-BBR. In a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasv12) zebrafish model, LHES-B nanoparticles obviously inhibited the expression of krasv12 oncogene. These results indicated that LHES carriers could improve the anticancer activity of L-BBR, and the synthesized LHES-B nanoparticles showed great potential as anticancer drug.
Collapse
Affiliation(s)
- Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Wenbin Zhao
- Shandong Shangyuan Environmental Protection Technology Co. Ltd., Jinan 250100, China
| | - Qinglin Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
8
|
Rao J, Gao Q, Li N, Wang Y, Wang T, Wang K, Qiu F. Unraveling the enigma: Molecular mechanisms of berberrubine-induced nephrotoxicity reversed by its parent form berberine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155648. [PMID: 38669970 DOI: 10.1016/j.phymed.2024.155648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Berberine is an isoquinoline alkaloid that is extensively applied in the clinic due to its potential therapeutic effects on dysentery and infectious diarrhoea. Its main metabolite, berberrubine, a promising candidate for ameliorating hyperlipidaemia, has garnered more attention than berberine. However, our study revealed that berberrubine induces severe kidney damage, while berberine was proven to be safe. PURPOSE Herein, we explored the opposite biological effects of these two compounds on the kidney and elucidated their underlying mechanisms. METHODS First, integrated metabolomic and proteomic analyses were conducted to identify relevant signalling pathways. Second, a click chemistry method combined with a cellular thermal shiftassay, a drug affinity responsive target stability assay, and microscale thermophoresis were used to identify the direct target proteins. Moreover, a mutation experiment was performed to study the specific binding sites. RESULTS Animal studies showed that berberrubine, but not berberine, induced severe chronic, subchronic, and acute nephrotoxicity. More importantly, berberine reversed the berberrubine-reduced nephrotoxicity. The results indicated that the cPLA2 signalling pathway was highly involved in the nephrotoxicity induced by berberrubine. We further confirmed that the direct target of berberrubine is the BASP1 protein (an upstream factor of cPLA2 signalling). Moreover, berberine alleviated nephrotoxicity by binding cPLA2 and inhibiting cPLA2 activation. CONCLUSION This study is the first to revel the opposite biological effects of berberine and its metabolite berberrubine in inducing kidney injury. Berberrubine, but not berberine, shows strong nephrotoxicity. The cPLA2 signalling pathway can be activated by berberrubine through targeting of BASP1, while berberine inhibits this pathway by directly binding with cPLA2. Our study paves the way for studies on the exact molecular targets of herbal ingredients. We also demonstrated that natural small molecules and their active metabolites can have opposite regulatory roles in vivo through the same signalling pathway.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
9
|
Och A, Lemieszek MK, Cieśla M, Jedrejek D, Kozłowska A, Pawelec S, Nowak R. Berberis vulgaris L. Root Extract as a Multi-Target Chemopreventive Agent against Colon Cancer Causing Apoptosis in Human Colon Adenocarcinoma Cell Lines. Int J Mol Sci 2024; 25:4786. [PMID: 38732003 PMCID: PMC11084310 DOI: 10.3390/ijms25094786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.
Collapse
Affiliation(s)
- Anna Och
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| | | | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Aleksandra Kozłowska
- Department of Radiotherapy, Medical University of Lublin, 13 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
10
|
Babaeenezhad E, Rashidipour M, Jangravi Z, Moradi Sarabi M, Shahriary A. Cytotoxic and epigenetic effects of berberine-loaded chitosan/pectin nanoparticles on AGS gastric cancer cells: Role of the miR-185-5p/KLF7 axis, DNMTs, and global DNA methylation. Int J Biol Macromol 2024; 260:129618. [PMID: 38253156 DOI: 10.1016/j.ijbiomac.2024.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Poor bioavailability, solubility, and absorption of berberine (Ber) limit its widespread application. Here, we formulated novel chitosan/pectin nanoparticles (NPs) loaded with Ber to address delivery problems and promote the anticancer properties of Ber in AGS gastric cancer cells. The ionic gelification method was used to synthesize NPs-Ber. Physicochemical characterization of NPs-Ber was performed using FE-SEM, DLS, PDI, ζ potential, and FTIR. The cytotoxic effects of NPs-Ber on AGS cells were evaluated using the MTT assay. Apoptosis and cell cycle arrest were examined by flow cytometry. The gene expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs were determined using RT-qPCR. In addition, the 5-methylcytosine level in the genomic DNA was quantified using ELISA. FE-SEM images revealed a denser and more packed matrix for NPs-Ber, and FTIR analysis confirmed the formation of NPs-Ber. The size (550.39 nm), PDI (0.134), and ζ potential (-16.52 mV) confirmed the stability of the prepared NPs-Ber. NPs-Ber showed a continuous release pattern following the Korsmeyer-Peppas model such that 81.36 % of Ber was released from the formulation after 240 min. Compared to NPs and free Ber, NPs-Ber was found to possess higher anticancer activity in AGS cells. This result was indicated by the viability test and further clarified by augmented apoptosis and cell cycle arrest at the G0/G1 phase. The IC50 value of NP-Ber against AGS cells was significantly lower than those of free Ber and NPs. Interestingly, our results showed that NPs-Ber considerably changed the expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs (DNMT1, 3A, and 3B) compared with unloaded NPs and free Ber. Additionally, 5-methylated cytosine (5-mC) levels in cells treated with NPs-Ber were significantly higher than those in cells treated with unloaded NPs or free Ber. In summary, the present study demonstrated that Ber encapsulation in NPs enhances its cytotoxic and epigenetic effects on AGS cells, suggesting the promising potential of NPs-Ber in GC therapy.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Rashidipour
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Dan L, Hao Y, Li J, Wang T, Zhao W, Wang H, Qiao L, Xie P. Neuroprotective effects and possible mechanisms of berberine in animal models of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1287750. [PMID: 38259291 PMCID: PMC10800531 DOI: 10.3389/fphar.2023.1287750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Recently, multiple preclinical studies have reported the beneficial effect of berberine in the treatment of Alzheimer's disease (AD). Nevertheless, the neuroprotective effects and possible mechanisms of berberine against AD are not universally recognized. This study aimed to conduct a systematic review and meta-analysis by integrating relevant animal studies to assess the neuroprotective effects and potential mechanisms of berberine on AD. Methods: We systematically searched PubMed, Embase, Scopus and Web of Science databases that reported the effects of berberine on AD models up to 1 February 2023. The escape latency, times of crossing platform, time spent in the target quadrant and pro-oligomerized amyloid beta 42 (Aβ1-42) were included as primary outcomes. The secondary outcomes were the Tau-ps 204, Tau-ps 404, β-site of APP cleaving enzyme (BACE1), amyloid precursor protein (APP), acetylcholine esterase (AChE), tumor necrosis factor ⍺ (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO), glial fibrillary acidic protein (GFAP), malonaldehyde (MDA), glutathione S-transferase (GST), glutathione (GSH), glutathione peroxidase (GPx), Beclin-1 and neuronal apoptosis cells. This meta-analysis was conducted using RevMan 5.4 and STATA 15.1. The SYRCLE's risk of bias tool was used to assess the methodological quality. Results: Twenty-two studies and 453 animals were included in the analysis. The overall results showed that berberine significantly shortened the escape latency (p < 0.00001), increased times of crossing platform (p < 0.00001) and time spent in the target quadrant (p < 0.00001), decreased Aβ1-42 deposition (p < 0.00001), Tau-ps 202 (p < 0.00001) and Tau-ps 404 (p = 0.002), and improved BACE1, APP, AChE, Beclin-1, neuronal apoptosis cells, oxidative stress and inflammation levels. Conclusion: Berberine may be a promising drug for the treatment of AD based on preclinical evidence (especially when the dose was 5-260 mg/kg). The potential mechanisms for these protective effects may be closely related to anti-neuroinflammation, anti-oxidative stress, modulation of autophagy, inhibition of neuronal apoptosis and protection of cholinergic system. However, these results may be limited by the quality of existing research. Larger and methodologically more rigorous preclinical research are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese medicine department, 363 Hospital of Chengdu, Chengdu, China
| | - Weiwei Zhao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hui Wang
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Liyan Qiao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Peijun Xie
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
12
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
13
|
Cuan X, Yang X, Zhu W, Zhao Y, Luo R, Huang Y, Wang X, Sheng J. Antitumor effects of erlotinib in combination with berberine in A431 cells. BMC Pharmacol Toxicol 2023; 24:29. [PMID: 37170144 PMCID: PMC10173514 DOI: 10.1186/s40360-023-00661-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib, have been shown to target tumors with L858R (exon 21) and exon 19 deletions, resulting in significant clinical benefits. However, acquired resistance often occurs due to EGFR mutations. Therefore, novel therapeutic strategies for treatment of patients with EGFR-positive tumors are needed. Berberine (BBR) is an active alkaloid extracted from pharmaceutical plants such as Coptis chinensis. Berberine has been shown to significantly inhibit EGFR activity and mediate anticancer effects in multiple preclinical studies. We investigated whether combining BBR with erlotinib could augment erlotinib-induced cell growth inhibition of EGFR-positive cells in a mouse xenograft model. METHODS We examined the antitumor activities and potential mechanisms of erlotinib in combination with berberine in vitro and in vivo using the MTT assay, immunoblotting, flow cytometry, and tumor xenograft models. RESULTS In vitro studies with A431 cells showed that synergistic cell growth inhibition by the combination of BBR and erlotinib was associated with significantly greater inhibition of pEGFR and pAKT, and inhibition of cyclin D and Bcl-2 expression compared to that observed in response to BBR or erlotinib alone. The efficacy of the combination treatment was also investigated in nude mice. Consistent with the in vitro results, BBR plus erlotinib significantly reduced tumor growth. CONCLUSION Our data supported use of BBR in combination with erlotinib as a novel strategy for treatment of patients with EGFR positive tumors.
Collapse
Affiliation(s)
- Xiangdan Cuan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiwei Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
- Yunnan Research Institute of Plateau Characteristic Agricultural and Industry, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
| |
Collapse
|
14
|
Evbayekha EO, Nwachukwu EU, Nikravesh E, Rosas V, Onuegbu CA, Egwuonwu OF, Eguagie O, Chioma OE, Agho AV, Samuels KA, Willie A, Nwafor JN, Esene-Akhideno LN, Adigun AO. Berberine for Adjunct/Alternative Treatment of Dyslipidemia: A Literature Review. Cureus 2023; 15:e39261. [PMID: 37346213 PMCID: PMC10279928 DOI: 10.7759/cureus.39261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
Berberine (BBR) is an ancient plant popular in China and is used to treat dyslipidemia, among other cardiovascular and metabolic-related diseases. BBR has historically been regarded as having multiple benefits, with a few clinical trials indicating this fact. We searched PubMed, Embase, and Google Scholar with the following keywords: Berberidaceae, berberine, Berberis spp., dyslipidemia, atherosclerosis, and inflammation. We synthesized the information within the literature to provide an updated review of BBR, its potential, and its applicability in real-world medicine in the future. This review sought to evaluate the literature and advancement in BBR's efficacy regarding dyslipidemia, inflammation, and atherosclerosis.
Collapse
Affiliation(s)
| | | | - Elham Nikravesh
- Family Medicine, Guilan University of Medical Sciences, Rasht, IRN
| | - Valene Rosas
- Psychiatry, MCR Behavioral Health Services, Temecula, USA
| | | | - Obinna F Egwuonwu
- Family Medicine, University of Nigeria Teaching Hospital, Enugu, NGA
| | | | | | | | - Kemar A Samuels
- Internal Medicine, Escuela Latinoamericana de Medicina, Havana, CUB
| | - Anthony Willie
- Emergency Medicine, Igbinedion University Okada, Benin, NGA
| | - Jane N Nwafor
- Internal Medicine, University of the District of Columbia, Silver Spring, USA
| | | | - Aisha O Adigun
- Infectious Diseases, University of Louisville, Louisville, USA
| |
Collapse
|
15
|
Tarawneh N, Hamadneh L, Abu-Irmaileh B, Shraideh Z, Bustanji Y, Abdalla S. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules 2023; 28:molecules28093823. [PMID: 37175233 PMCID: PMC10180100 DOI: 10.3390/molecules28093823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Berberine is a natural isoquinoline alkaloid with anti-cancer properties. Nevertheless, the underlying mechanism of its action in human colorectal cancer (CRC) has not been thoroughly elucidated. We investigated the anti-cancer effect of berberine on HT-29, SW-480 and HCT-116 human CRC cell lines. Methods: Cell proliferation, migration and invasion were studied by MTT assay, wound healing, transwell chambers and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunostaining were used to evaluate the expression of aquaporins (AQPs) 1, 3 and 5 in colon cancer cell lines before and after treatment with berberine (10, 30 and 100 µM). RT-qPCR and Western blotting were used to further explore the PI3K/AKT signaling pathway and the molecular mechanisms underlying berberine-induced inhibition of cell proliferation. Results: We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis. HT-29, SW-480 and HCT-116 stained positively for AQP 1, 3 and 5, and berberine treatment down-regulated the expression of all three types of AQPs. Berberine also modulated PI3K/AKT pathway activity through up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level. Discussion/Conclusions: These findings indicate that berberine inhibited growth, migration and invasion of these colon cancer cell lines via down-regulation of AQP 1, 3 and 5 expressions, up-regulating PTEN which inhibited the PI3K/AKT pathway at the gene and protein levels, and that AQP 1, 3 and 5 expression level can be used as prognostic biomarkers for colon cancer metastasis.
Collapse
Affiliation(s)
- Noor Tarawneh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University, Amman 11733, Jordan
- Department of Basic Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
16
|
Liao Y, Luo Z, Liu Y, Xue W, He S, Chen X, Ren H, Yang X, Zhu D, Su Z, Huang Q, Guo H. Total flavonoids of Litchi seed attenuate stem cell-like properties in breast cancer by regulating Notch3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116133. [PMID: 36603788 DOI: 10.1016/j.jep.2023.116133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breast cancer has been the most commonly-diagnosed cancer worldwide, and the treatment and prognosis of which are often limited by breast cancer stem cells (BCSCs). Litchi seeds have shown good anti-cancer activity in various cancers including prostate cancer, lung cancer and breast cancer. However, the activity and underlying mechanism of Litchi seeds against BCSCs remain unknown. AIM OF THE STUDY To investigate the activity and mechanism of total flavonoids of litchi seed (TFLS) against BCSCs in vitro and in vivo. MATERIALS AND METHODS Two orthotopic xenograft mouse models were established using HCC1806 cells pretreated or untreated with TFLS to determine whether TFLS could target BCSCs in vivo. Mammosphere formation and flow cytometry assays were employed to evaluate the effect of TFLS on BCSCs in vitro. The underlying mechanism was investigated using RT-qPCR, Western blot, immunohistochemistry and immunofluorescence experiments. RESULTS TFLS could significantly inhibit the viability of HCC1806, MCF-7 and HCC1937 cells in vitro and suppress the growth of HCC1806 cells in vivo. TFLS attenuated stem cell-like properties of breast cancer through reducing the percentage of CD44+CD24-/low cells, inhibiting the mammospheres formation and down-regulating the mRNA and protein levels of cancer stem cells related markers (Oct4, Nanog, Sox2) in MCF-7 and HCC1806 cells. Meanwhile, TFLS suppressed the tumor-initiating ability of BCSCs via reducing the percentage of CD44+CD24-/low cells in tumor and lowering tumor incidence rate in orthotopic xenograft mice. In addition, TFLS treatments restricted the expression and nuclear translocation of Notch3, subsequently down-regulated Hes1 and Runx2 expressions. CONCLUSIONS TFLS could suppress the growth of breast cancer and eliminate breast cancer stem cells by inhibiting the Notch3 signaling pathway.
Collapse
Affiliation(s)
- Yunnuo Liao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Pharmaceutical College, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Wei Xue
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Hong Ren
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
17
|
Pan X, Song Z, Cui Y, Qi M, Wu G, Wang M. Enhancement of Sensitivity to Tamoxifen by Berberine in Breast Cancer Cells by Inhibiting ER-α36 Expression. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e126919. [PMID: 36060924 PMCID: PMC9420211 DOI: 10.5812/ijpr-126919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/30/2020] [Accepted: 11/08/2020] [Indexed: 05/31/2023]
Abstract
Berberine, an isoquinoline alkaloid purified from Chinese herbs, was verified to have antitumor effects. It has also been reported that berberine can enhance the anticancer effect of tamoxifen (TAM) in estrogen receptor (ER)-positive breast cancer cells; however, the involved underlying mechanism is still unclear. In the present study, the role of one variant of ER-α, ER-α36, in the TAM sensitizing effect of berberine was explored in TAM-resistant breast cancer cells. This study demonstrated that berberine potently sensitized TAM-resistant breast cancer cells, including TAM-resistant MCF7 and BT-474 cells, to TAM treatment. Additionally, this study showed that berberine could simultaneously suppress ER-α36 expression in TAM-resistant cells. However, when ER-α36 was knocked down in TAM-resistant cells, there was no significant TAM-sensitizing effect by berberine. Therefore, this study indicated that ER-α36 is involved in berberine's TAM-sensitizing effect on ER-positive breast cancer cells, which provided supporting data for the application of berberine in cancer therapy as an adjuvant agent for TAM treatment.
Collapse
Affiliation(s)
- Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhen Song
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
| | - Yue Cui
- University of Jinan, Jinan, 250022, Shandong, China
| | - Ming Qi
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guojun Wu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Molin Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
18
|
Colletti A, Fratter A, Pellizzato M, Cravotto G. Nutraceutical Approaches to Dyslipidaemia: The Main Formulative Issues Preventing Efficacy. Nutrients 2022; 14:nu14224769. [PMID: 36432457 PMCID: PMC9696395 DOI: 10.3390/nu14224769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, the nutraceutical approach to treat dyslipidaemia is increasing in use, and in many cases is used by physicians as the first choice in the treatment of patients with borderline values. Nutraceuticals represent an excellent opportunity to treat the preliminary conditions not yet showing the pathological signs of dyslipidaemia. Their general safety, the patient's confidence, the convincing proof of efficacy and the reasonable costs prompted the market of new preparations. Despite this premise, many nutraceutical products are poorly formulated and do not meet the minimum requirements to ensure efficacy in normalizing blood lipid profiles, promoting cardiovascular protection, and normalizing disorders of glycemic metabolism. In this context, bioaccessibility and bioavailability of the active compounds is a crucial issue. Little attention is paid to the proper formulations needed to improve the overall bioavailability of the active molecules. According to these data, many products prove to be insufficient to ensure full enteric absorption. The present review analysed the literature in the field of nutraceuticals for the treatment of dyslipidemia, focusing on resveratrol, red yeast rice, berberine, and plant sterols, which are among the nutraceuticals with the greatest formulation problems, highlighting bioavailability and the most suitable formulations.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Andrea Fratter
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35122 Padua, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Giancarlo Cravotto
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
- Correspondence: ; Tel.: +39-011-670-7103
| |
Collapse
|
19
|
Salek A, Selmi M, Barboura M, Martinez MC, Chekir-Ghedira L, Andriantsitohaina R. Enhancement of the In Vitro Antitumor Effects of Berberine Chloride When Encapsulated within Small Extracellular Vesicles. Pharmaceutics 2022; 14:pharmaceutics14091913. [PMID: 36145661 PMCID: PMC9500604 DOI: 10.3390/pharmaceutics14091913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Berberine hydrochloride (BRB) is an isoquinoline alkaloid with promising anticancer efficacies. However, application of BRB had been hampered by its poor aqueous solubility, low gastrointestinal absorption, and rapid metabolism. The present study takes advantage of small extracellular vesicles (sEVs) to increase both stability and efficacy of BRB. sEVs from immature dendritic cells were produced and loaded with BRB. Proliferation, migration and Matrigel assay were performed, cycle arrest and nitric oxide (NO) production were evaluated in human breast cancer cell line (MDA-MB-231) and human umbilical vein endothelial cells (HUVECs). sEVs loaded with BRB formed a stable and homogenous population with a drug entrapment efficiency near to 42%. BRB loaded into sEVs was more potent than free BRB for MDA-MB-231 and endothelial proliferation, migration, and capillary-like formation in HUVECs. The mechanisms involved a blockade of cell cycle in G0/G1 phase, increased S phase and decreased of G2/M in MDA-MB-231 and HUVECs, and inhibition of NO production in HUVECs. Altogether, sEV-loaded BRB displayed higher effects than free BRB on different steps leading to its antitumor activity and anti-angiogenic properties in vitro. Thus, sEV formulation may be considered as an innovative approach and promising delivery of BRB to prevent tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Abir Salek
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mouna Selmi
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mahassen Barboura
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - M. Carmen Martinez
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | | |
Collapse
|
20
|
Zhong XD, Chen LJ, Xu XY, Liu YJ, Tao F, Zhu MH, Li CY, Zhao D, Yang GJ, Chen J. Berberine as a potential agent for breast cancer therapy. Front Oncol 2022; 12:993775. [PMID: 36119505 PMCID: PMC9480097 DOI: 10.3389/fonc.2022.993775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/02/2023] Open
Abstract
Breast cancer (BC) is a common malignancy that mainly occurred in women and it has become the most diagnosed cancer annually since 2020. Berberine (BBR), an alkaloid extracted from the Berberidacea family, has been found with broad pharmacological bioactivities including anti-inflammatory, anti-diabetic, anti-hypertensive, anti-obesity, antidepressant, and anticancer effects. Mounting evidence shows that BBR is a safe and effective agent with good anticancer activity against BC. However, its detailed underlying mechanism in BC treatment remains unclear. Here, we will provide the evidence for BBR in BC therapy and summarize its potential mechanisms. This review briefly introduces the source, metabolism, and biological function of BBR and emphasizes the therapeutic effects of BBR against BC via directly interacting with effector proteins, transcriptional regulatory elements, miRNA, and several BBR-mediated signaling pathways. Moreover, the novel BBR-based therapeutic strategies against BC improve biocompatibility and water solubility, and the efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC treatment and future research directions is also prospected.
Collapse
Affiliation(s)
- Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li-Juan Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Yang Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Dan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
21
|
Hamedi A, Bayat M, Asemani Y, Amirghofran Z. A review of potential anti-cancer properties of some selected medicinal plants grown in Iran. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Naeem M, Iqbal MO, Khan H, Ahmed MM, Farooq M, Aadil MM, Jamaludin MI, Hazafa A, Tsai WC. A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. Molecules 2022; 27:3412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Humaira Khan
- Department of Chemistry, University of Management and Technology, Lahore 54770, Pakistan;
| | - Muhammad Masood Ahmed
- Faculty of Pharmaceutical Sciences, Times Institute, Multan 60000, Pakistan;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Muhammad Farooq
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Muhammad Moeen Aadil
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Huang Y, Yan J, Sun X, Niu Y, Yuan W, Kong L, Qin X, Zi C, Wang X, Sheng J. Anticancer effects of dendrocandin (DDCD) against AKT in HepG2 cells using molecular modeling, DFT, and in vitro study. Struct Chem 2022. [DOI: 10.1007/s11224-022-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
25
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Malkani N, Sohail MI, Ijaz F, Naeem A, Mumtaz S, Saeed Z. Berberis aristata reduces vancomycin-induced nephrotoxicity by down-regulation of cell proliferation markers. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Lu C, Tang R, Su M, Zou J, Lu L. Induction of Reactive Oxygen Species Is Necessary for Efficient Onset of Cyprinid Herpesvirus 2 Replication: Implications for Novel Antiviral Strategy With Antioxidants. Front Microbiol 2022. [DOI: 10.3389/fmicb.2021.792655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) has caused great economic loss to the crucian carp breeding industry. Upon viral stimulation, eukaryotic cells generally activate the expression of anti-oxidative genes to maintain the intracellular oxidative balance and resist viral infection. Here, intracellular reactive oxygen species (ROS) levels in CyHV-2-infected cells were monitored to show that CyHV-2 induced the increase of intracellular ROS during early infection, and intracellular excessive accumulation of ROS was ameliorated during late infection, which was accompanied by activated expression of genes related to Nrf2 signaling pathway. In order to explore the interaction between CyHV-2 infection and ROS production, RyuF-2 cells were treated with either antioxidant epigallocatechin-3-gallate (EGCG) or berberine hydrochloride (BBH) and then infected with CyHV-2. Both BBH and EGCG could effectively inhibit the amplification of CyHV-2 while inhibiting the accumulation of intracellular ROS. Consistent with this, the oxidant stress-related genes were up-regulated by CyHV-2 infection and down-regulated in cells treated with either BBH or EGCG, through which the production of intracellular ROS was modulated. These results collectively demonstrated that early ROS accumulation favored the replication of CyHV-2, while antioxidants (BBH and EGCG) could inhibit the amplification of CyHV-2 by inhibiting ROS induction.
Collapse
|
28
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
29
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
30
|
Zhou R, Hu Z, Pan J, Wang J, Pei Y. Current research status of alkaloids against breast cancer. CHINESE J PHYSIOL 2022; 65:12-20. [DOI: 10.4103/cjp.cjp_89_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
31
|
Gao X, Liu J, Fan D, Li X, Fang Z, Yan K, Fan Y. Berberine enhances gemcitabine‑induced cytotoxicity in bladder cancer by downregulating Rad51 expression through inactivating the PI3K/Akt pathway. Oncol Rep 2021; 47:33. [PMID: 34935059 DOI: 10.3892/or.2021.8244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xinghua Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jikai Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Daming Fan
- Department of Pathology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021; 26:7368. [PMID: 34885950 PMCID: PMC8658774 DOI: 10.3390/molecules26237368] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/27/2023] Open
Abstract
Berberine (BBR), a potential bioactive agent, has remarkable health benefits. A substantial amount of research has been conducted to date to establish the anticancer potential of BBR. The present review consolidates salient information concerning the promising anticancer activity of this compound. The therapeutic efficacy of BBR has been reported in several studies regarding colon, breast, pancreatic, liver, oral, bone, cutaneous, prostate, intestine, and thyroid cancers. BBR prevents cancer cell proliferation by inducing apoptosis and controlling the cell cycle as well as autophagy. BBR also hinders tumor cell invasion and metastasis by down-regulating metastasis-related proteins. Moreover, BBR is also beneficial in the early stages of cancer development by lowering epithelial-mesenchymal transition protein expression. Despite its significance as a potentially promising drug candidate, there are currently no pure berberine preparations approved to treat specific ailments. Hence, this review highlights our current comprehensive knowledge of sources, extraction methods, pharmacokinetic, and pharmacodynamic profiles of berberine, as well as the proposed mechanisms of action associated with its anticancer potential. The information presented here will help provide a baseline for researchers, scientists, and drug developers regarding the use of berberine as a promising candidate in treating different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (M.I.)
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (M.I.)
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Burwood, VIC 3125, Australia;
| |
Collapse
|
33
|
Han S, Yan RB, Guan S, Fan WJ, Chu HC, Liang YX. Current research progress in identifying the mechanism of berberine in pain regulation. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2021; 1:100019. [DOI: 10.1016/j.prmcm.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Inhibitory Role of Berberine, an Isoquinoline Alkaloid, on NLRP3 Inflammasome Activation for the Treatment of Inflammatory Diseases. Molecules 2021; 26:molecules26206238. [PMID: 34684819 PMCID: PMC8537060 DOI: 10.3390/molecules26206238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.
Collapse
|
35
|
Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021; 226:113839. [PMID: 34536668 DOI: 10.1016/j.ejmech.2021.113839] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Alkaloids are one of the most important classes of plant bioactives. Among these isoquinoline alkaloids possess varied structures and exhibit numerous biological activities. Basically these are biosynthetically produced via phenylpropanoid pathway. However, occasionally some mixed pathways may also occur to provide structural divergence. Among the various biological activities anticancer, antidiabetic, antiinflammatory, and antimicrobial are important. A few notable bioactive isoquinoline alkaloids are antidiabetic berberine, anti-tussive codeine, analgesic morphine, and muscle relaxant papaverine etc. Berberine is one of the most discussed bioactives from this class possessing broad-spectrum pharmacological activities. Present review aims at recent updates of isoquinoline alkaloids with major emphasis on berberine, its detailed chemistry, important biological activities, structure activity relationship and implementation in future research.
Collapse
|
36
|
Maleki Dana P, Jahanshahi M, Badehnoosh B, Shafabakhsh R, Asemi Z, Hallajzadeh J. Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Alhadrami HA, Sayed AM, Melebari SA, Khogeer AA, Abdulaal WH, Al-Fageeh MB, Algahtani M, Rateb ME. Targeting allosteric sites of human aromatase: a comprehensive in-silico and in-vitro workflow to find potential plant-based anti-breast cancer therapeutics. J Enzyme Inhib Med Chem 2021; 36:1334-1345. [PMID: 34139914 PMCID: PMC8759730 DOI: 10.1080/14756366.2021.1937145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme’s substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme’s haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Molecular Diagnostic Unit, The Regional Laboratory in Makkah, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Sami A Melebari
- Molecular Diagnostic Unit, The Regional Laboratory in Makkah, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Asem A Khogeer
- Plan and Research Department, General Directorate of Health Affairs, Makkah region, Ministry of Health, Makkah, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed B Al-Fageeh
- General Directorate for Funds and Grants (GDFG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory and Blood Bank, Security Forces Hospital Program, Mecca, Saudi Arabia
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
38
|
Chuang TC, Wu K, Lin YY, Kuo HP, Kao MC, Wang V, Hsu SC, Lee SL. Dual down-regulation of EGFR and ErbB2 by berberine contributes to suppression of migration and invasion of human ovarian cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:737-747. [PMID: 33325633 DOI: 10.1002/tox.23076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The overexpression of EGFR and/or ErbB2 occurs frequently in ovarian cancers and is associated with poor prognosis. The purpose of this study was to examine the anticancer effects and molecular mechanisms of berberine on human ovarian cancer cells with different levels of EGFR and/or ErbB2. We found that berberine reduced the motility and invasiveness of ovarian cancer cells. Berberine depleted both EGFR and ErbB2 in ovarian cancer cells. Furthermore, berberine suppressed the activation of the EGFR and ErbB2 downstream targets cyclin D1, MMPs, and VEGF by down-regulating the EGFR-ErbB2/PI3K/Akt signaling pathway. The berberine-mediated inhibition of MMP-2 and MMP-9 activity could be rescued by co-treatment with EGF. Finally, we demonstrated that berberine induced ErbB2 depletion through ubiquitin-mediated proteasome degradation. In conclusion, the suppressive effects of berberine on the ovarian cancer cells that differ in the expression of EGFR and ErbB2 may be mediated by the dual depletion of EGFR and/or ErbB2.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Kuohui Wu
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Ying-Yu Lin
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Han-Peng Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Gao X, Zhang C, Wang Y, Zhang P, Zhang J, Hong T. Berberine and Cisplatin Exhibit Synergistic Anticancer Effects on Osteosarcoma MG-63 Cells by Inhibiting the MAPK Pathway. Molecules 2021; 26:molecules26061666. [PMID: 33802664 PMCID: PMC8002572 DOI: 10.3390/molecules26061666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022] Open
Abstract
Berberine (BBR) has been reported to have potent anticancer activity and can increase the anticancer effects of chemotherapy drugs. The present study aims to investigate whether BBR and cisplatin (DDP) exert synergistic effects on the osteosarcoma (OS) MG-63 cell line. In the present study, MG-63 cells were treated with BBR and DDP alone or in combination. The effects of these therapeutics on cell viability, colony formation, migration, invasion, nuclear morphology, apoptosis, and the cell cycle, as well as their role in regulating the expression of proteins related to apoptosis, the cell cycle, and the mitogen-activated protein kinase (MAPK) pathway, were determined. The results demonstrated that BBR or DDP significantly inhibited the proliferation of MG-63 cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP exerted a prominent inhibitory effect on proliferation and colony formation. Furthermore, the results showed that the combination treatment of BBR and DDP enhanced the inhibition of cell migration and invasion and reversed the changes in nuclear morphology. The results showed that the combination treatment of BBR and DDP induced apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, the combination treatment of BBR and DDP inhibited the expression of MMP-2/9, Bcl-2, CyclinD1, and CDK4, enhanced the expression of Bax and regulated the activity of the MAPK pathway. Collectively, our data suggest that the combination therapy of BBR and DDP markedly enhanced OS cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Tie Hong
- Correspondence: ; Tel.: +86-431-8561-9705
| |
Collapse
|
40
|
Microfluidic fabrication of berberine-loaded nanoparticles for cancer treatment applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Andoh T, Yoshihisa Y, Rehman MU, Tabuchi Y, Shimizu T. Berberine induces anti-atopic dermatitis effects through the downregulation of cutaneous EIF3F and MALT1 in NC/Nga mice with atopy-like dermatitis. Biochem Pharmacol 2021; 185:114439. [PMID: 33539814 DOI: 10.1016/j.bcp.2021.114439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with severe pruritus. Berberine, a naturally occurring isoquinoline alkaloid, has anti-inflammatory effects. This study investigated the effects and molecular mechanisms of berberine on AD-like symptoms in mice. In this study, NC/Nga mice with atopy-like dermatitis (dermatitis mice), fibroblast and mast cells were used. In dermatitis mice, intermittent oral administrations of berberine 3 times a week for 12 days inhibited skin symptom, itching, cutaneous infiltration of eosinophils and mast cells, and the expression of cutaneous eotaxin, macrophage migration inhibitory factor (MIF) and IL-4. Berberine also attenuated IL-4/MIF-induced eotaxin in fibroblasts and allergen-induced MIF and IL-4 in mast cells. In mast cells, the GeneChip® microarray showed that antigen increased the expression of EIF3F and MALT1, inhibited by berberine. The siRNAs for them inhibited the expression of MIF and IL-4 in antigen-stimulated mast cells. These results suggest that berberine improves AD-like symptoms through the inhibition of the eotaxin and pro-inflammatory cytokine expression and the related inflammatory cell recruitment. It is also suggested that the downregulation of EIF3F and MALT1 by berberine is involved in suppressing the cytokine expression. Taken together, berberine or berberine-containing crude drugs are expected to contribute to the improvement of AD symptoms.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan.
| | - Yoko Yoshihisa
- Department of Dermatology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mati Ur Rehman
- Department of Radiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
42
|
Su M, Tang R, Wang H, Lu L. Suppression effect of plant-derived berberine on cyprinid herpesvirus 2 proliferation and its pharmacokinetics in Crucian carp (Carassius auratus gibelio). Antiviral Res 2020; 186:105000. [PMID: 33359191 DOI: 10.1016/j.antiviral.2020.105000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2), which infects silver crucian carp including goldfish (Carassius auratus auratus) and Crucian carp (Carassius auratus gibelio) with high mortality, is an emerging viral pathogen worldwide. Previous studies showed that berberine (BBR), a bioactive plant-derived alkaloid, demonstrated potential antiviral actions against many different viruses. Here, we assessed the effect of berberine hydrochloride (BBH) on the replication of CyHV-2 in vitro and in vivo. Cytotoxicity assay indicated that 5-25 μg/mL BBH was non-toxic to the RyuF-2 cells. In viral inhibition assays, real time PCR was employed to titrate the genomic copy number of progeny virus, real time RT-PCR was applied to monitor the transcriptional levels of viral genes, and Western blot analysis was performed to detect the synthetic levels of viral proteins. The results demonstrated that BBH systematically impedes the viral gene transcription and suppressed the replication of CyHV-2 in RyuF-2 cells. In animal challenge test, BBH was confirmed to protect Crucian carps from CyHV-2 infection in a dose-dependent manner, which was supported by suppressed viral replication levels, reduced viral pathogenesis and higher survival rates. Furthermore, pharmacokinetics data of BBH in Crucian carp revealed its rapid absorption (Tmax of 1.5 h), suitable plasma half-life (t1/2z/h of 7-12 h depending on oral dosage), and dose-dependent drug exposure properties following oral administration (revealed by AUC0-t values). These findings shed light on repurposing BBH to treat CyHV-2 infections in silver crucian carp.
Collapse
Affiliation(s)
- Meizhen Su
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Ruizhe Tang
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Hao Wang
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China.
| |
Collapse
|
43
|
Liu Z, Chen Y, Gao H, Xu W, Zhang C, Lai J, Liu X, Sun Y, Huang H. Berberine Inhibits Cell Proliferation by Interfering with Wild-Type and Mutant P53 in Human Glioma Cells. Onco Targets Ther 2020; 13:12151-12162. [PMID: 33262612 PMCID: PMC7699991 DOI: 10.2147/ott.s279002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Glioma is the most common malignant brain tumor. TP53 is the most common mutant gene in human cancer. Wild-type p53 (wtp53) is a tumor suppressor protein whereas mutant p53 (mutp53) is an oncoprotein that promotes tumor cell proliferation. Our aim was to examine the inhibitory effects of berberine on the proliferation of human glioma cells via regulation of wtp53, mutp53, and their downstream molecules. Methods We selected wtp53 cells (U87 cells) and mutp53 cells (U251 cells termed p53 R273H) to examine the inhibitory effects of berberine on human glioma cells. We used the CCK-8 kit to detect the toxic effect of berberine. Flow cytometry was used to detect the effect of berberine. Clone formation test was used to test the inhibitory effect of berberine on the proliferation of glioma cells. Western blot was used to detect the changes of related proteins such as p53, p-p53, p21 and cyclin D1. Lentivirus transduction was used to transduce wild-type p53 into U251 cells to further examine the effect of berberine. The nude mouse subcutaneous tumor model was used to detect the effect of berberine on inhibiting the proliferation of glioma cells in vivo. Results Berberine promoted the phosphorylation of wtp53, increased the expression of p21 protein, reduced cyclin D1 content, and caused G1 phase arrest in U87 cells. Berberine also reduced mutp53 content and caused G2 phase arrest in U251 cells with a concurrent decrease in p21, cyclin D1, and cyclin B1 content. Transduction with wtp53 enhanced the effects on cell cycle arrest. Further, berberine significantly inhibited glioma growth in vivo mouse tumor model. Discussion Glioma is a group of heterogeneous brain tumors with unique biological and clinical characteristics. Berberine can inhibit glioma cells through a variety of ways. Our research indicated that berberine inhibited the proliferation of glioma cells by interfering with wtp53 and mutp53. This indicates that berberine could be used as a potential drug to treat wild-type and mutant p53 glioma.
Collapse
Affiliation(s)
- Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haijun Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Weidong Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chaochao Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiacheng Lai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xingxing Liu
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuxue Sun
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
44
|
Damjanović A, Kolundžija B, Matić IZ, Krivokuća A, Zdunić G, Šavikin K, Janković R, Stanković JA, Stanojković TP. Mahonia aquifolium Extracts Promote Doxorubicin Effects against Lung Adenocarcinoma Cells In Vitro. Molecules 2020; 25:E5233. [PMID: 33182665 PMCID: PMC7697947 DOI: 10.3390/molecules25225233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Mahonia aquifolium and its secondary metabolites have been shown to have anticancer potential. We performed MTT, scratch, and colony formation assays; analyzed cell cycle phase distribution and doxorubicin uptake and retention with flow cytometry; and detected alterations in the expression of genes involved in the formation of cell-cell interactions and migration using quantitative real-time PCR following treatment of lung adenocarcinoma cells with doxorubicin, M. aquifolium extracts, or their combination. MTT assay results suggested strong synergistic effects of the combined treatments, and their application led to an increase in cell numbers in the subG1 phase of the cell cycle. Both extracts were shown to prolong doxorubicin retention time in cancer cells, while the application of doxorubicin/extract combination led to a decrease in MMP9 expression. Furthermore, cells treated with doxorubicin/extract combinations were shown to have lower migratory and colony formation potentials than untreated cells or cells treated with doxorubicin alone. The obtained results suggest that nontoxic M. aquifolium extracts can enhance the activity of doxorubicin, thus potentially allowing the application of lower doxorubicin doses in vivo, which may decrease its toxic effects in normal tissues.
Collapse
Affiliation(s)
- Ana Damjanović
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Branka Kolundžija
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ivana Z. Matić
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ana Krivokuća
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Gordana Zdunić
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Katarina Šavikin
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Radmila Janković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Jelena Antić Stanković
- Department for Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11 221 Belgrade, Serbia
| | - Tatjana P. Stanojković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| |
Collapse
|
45
|
Yao S, Yuan Y, Zhang H, Meng X, Jin L, Yang J, Wang W, Ning G, Zhang Y, Zhang Z. Berberine attenuates the abnormal ectopic lipid deposition in skeletal muscle. Free Radic Biol Med 2020; 159:66-75. [PMID: 32745766 DOI: 10.1016/j.freeradbiomed.2020.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lipid deposition in non-adipose tissue is associated with a propensity to obesity. Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation may contribute to ectopic lipid deposition during high fat diet-induced obesity. Berberine (BBR) has been proved to possess the properties of improving metabolic disorders in patients with obesity or type 2 diabetes mellitus. However, the precise mechanism remains obscure. METHODS Mice were treated with berberine and metabolic profile were analyzed. Mitochondrial number and function were detected after berberine treatment in vitro and in vivo. The role of Adenosine 5'-monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) was verified after RNA interference or adenovirus infection. RESULTS In the current study, we investigated the influence of berberine on the lipid deposition of skeletal muscle and found that berberine could increase the mitochondrial number and function both in vivo and in vitro. Furthermore, berberine promoted the expression of PGC-1α, the crucial transcriptional coactivator related to mitochondrial biogenesis and function, through AMPK pathway. Berberine reduced the basal oxygen consumption rates (OCR) but increased the maximal OCR in C2C12 myocytes, which indicated that berberine could increase the potential function of mitochondria. CONCLUSION Our results proved that berberine can protect the lean body mass from excessive lipid accumulation, by promoting the mitochondrial biogenesis and improving fatty acid oxidation in an AMPK/PGC-1α dependent manner.
Collapse
Affiliation(s)
- Shuangshuang Yao
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yini Yuan
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Huizhi Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiangjian Meng
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Yijishan Hospital of Wannan Medical College, China
| | - Lina Jin
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jian Yang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yifei Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhiguo Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
46
|
Wang K, Rao J, Zhang T, Gao Q, Zhang J, Guang C, Ding L, Qiu F. Metabolic Activation and Covalent Protein Binding of Berberrubine: Insight into the Underlying Mechanism Related to Its Hepatotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4423-4438. [PMID: 33122887 PMCID: PMC7588839 DOI: 10.2147/dddt.s274627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/26/2020] [Indexed: 01/02/2023]
Abstract
Introduction Berberrubine (BRB), an isoquinoline alkaloid, is a major constituent of medicinal plants Coptis chinensis Franch or Phellodendron chinense Schneid. BRB exhibits various pharmacological activities, whereas exposure to BRB may cause toxicity in experimental animals. Methods In this study, we thoroughly investigated the liver injury induced by BRB in mice and rats. To explore the underlying mechanism, a study of the metabolic activation of BRB was conducted. Furthermore, covalent modifications of cysteine residues of proteins were observed in liver homogenate samples of animals after exposure to BRB, by application of an exhaustive proteolytic digestion method. Results It was demonstrated that BRB-induced hepatotoxicities in a time- and dose-dependent manner, based on the biochemical parameters ALT and AST. H&E stained histopathological examination showed the occurrence of obvious edema in liver of mice after intraperitoneal (i.p.) administration of BRB at a single dose of 100 mg/kg. Slight hepatotoxicity was also observed in rats given the same doses of BRB after six weeks of gavage. As a result, four GSH adducts derived from reactive metabolites of BRB were detected in microsomal incubations with BRB fortified with GSH as a trapping agent. Moreover, four cys-based adducts derived from reaction of electrophilic metabolites of BBR with proteins were found in livers. Conclusion These results suggested that the formation of protein adducts originating from metabolic activation of BRB could be a crucial factor of the mechanism of BRB-induced toxicities.
Collapse
Affiliation(s)
- Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jichao Zhang
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Chenxi Guang
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
47
|
Dong ZY, Zeng QH, Wei L, Guo X, Sun Y, Meng FC, Wang GW, Lan XZ, Liao ZH, Chen M. Berberisides A-D: three novel prenylated benzoic acid derivatives and a clerodane glycoside from Berberis tsarica aherndt. Nat Prod Res 2020; 36:1996-2001. [PMID: 33118393 DOI: 10.1080/14786419.2020.1839460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three undescribed prenylated benzoic acid derivatives berberisides A-C (1-3) and a new clerodane glycoside berberiside D (4) were isolated from Berberis tsarica Aherndt. Their structures were elucidated on the basis of extensive NMR and HR-ESI-MS analysis. The in vitro cytotoxic activities of all isolates were studied against lung carcinoma A549, hepatocellular carcinoma HepG2 and breast carcinoma MDA-MB-231 cell lines. Among them, compounds 1 and 4 exhibited anti-proliferative effects against three tumor cell lines with IC50 ranging from 28.97 ± 2.18 to 35.83 ± 0.72 μM.
Collapse
Affiliation(s)
- Zhao-Yue Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Qing-Hong Zeng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Lin Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Xin Guo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Yan Sun
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Fan-Cheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Guo-Wei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| | - Xiao-Zhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, XiZang Agriculture and Animal Husbandry College, Nyingchi, Tibet, P.R. China
| | - Zhi-Hua Liao
- School of Life Sciences, Southwest University, Chongqing, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P.R. China
| |
Collapse
|
48
|
Synthetic and antitumor comparison of 9-O-alkylated and carbohydrate-modified berberine derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Survivin as a Target for Anti-cancer Phytochemicals According to the Molecular Docking Analysis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Sakaguchi M, Kitaguchi D, Morinami S, Kurashiki Y, Hashida H, Miyata S, Yamaguchi M, Sakai M, Murata N, Tanaka S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem Biophys Res Commun 2020; 528:227-233. [PMID: 32475643 DOI: 10.1016/j.bbrc.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
We investigated the novel molecular mechanisms of the antitumor effect of berberine. In this study, two different human cell lines (breast cancer MCF7 cells and non-tumorigenic epithelial MCF12A cells) were treated with various concentrations of berberine. Treatment with 1 and 10 μM berberine inhibited proliferation with G0/G1 cell cycle arrest in both cell lines, and treatment with 100 μM berberine triggered a marked level of cell death in MCF7 cells but not in MCF12A cells. Berberine increased the level of p53 protein and of its target p21 both time- and dose-dependently in MCF7 cells. At any concentration of berberine, immediate uptake (within 15 min) followed by predominantly mitochondrial accumulation were observed by confocal microscopy in both cell lines. At high concentrations (10 or 100 μM), accumulation in the nucleolus became prominent after the transition to the nucleoplasm, especially remarkable in MCF7 cells. Therefore, we evaluated the possibility of berberine-induced nucleolar stress and observed the disappearance of ribosomal protein (RP)L5 from the nucleolus and accumulation of p53 protein in the nucleus after treatment with 10 or 100 μM berberine in MCF7 cells. We also detected the accumulation of RPL5 and RPL11 in the nucleoplasm fraction where they bind to Mdm2. Moreover, downregulation of RPL5 inhibited berberine-driven induction of p53 and p21 and cell death in MCF7 cells. Whereas, in MCF12A cells, down-regulation of RPL5 had little effect on the growth inhibitory effect of high concentration of berberine. These results indicated that cell growth inhibition and cell death induced by higher doses (>10 μM) of berberine in MCF7 cells were due to the upregulation of p53 under the nucleolar stress response caused by a significant accumulation of berberine in the nucleoli.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Daiki Kitaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiho Morinami
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuki Kurashiki
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Haruna Hashida
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Saki Miyata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Maki Yamaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyu Sakai
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Natsuko Murata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|