1
|
Wang Q, Zhang X, Han C, Lv Z, Zheng Y, Liu X, Du Z, Liu T, Xue D, Li T, Wang L. Immunodynamic axis of fibroblast-driven neutrophil infiltration in acute pancreatitis: NF-κB-HIF-1α-CXCL1. Cell Mol Biol Lett 2025; 30:57. [PMID: 40335899 PMCID: PMC12060353 DOI: 10.1186/s11658-025-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a sterile inflammation, and 10-20% of cases can progress to severe acute pancreatitis (SAP), which seriously threatens human life and health. Neutrophils and their extracellular traps (NETs) play an important role in the progression of AP. However, the immunodynamic factors between the excessive infiltration of neutrophils during the occurrence of AP have not been fully elucidated. METHODS Adult male C57BL/6 J mice were selected. An AP model was induced by cerulein, and a control group was set up. Single-cell sequencing technology was used to reveal the cell atlas of AP pancreatitis tissue. In vivo, the model mice were treated with anti-Ly6G antibody, DNase I, SC75741, PX-478, and SRT3109 respectively. In vitro, human pancreatic stellate cells were treated with hypoxia, H2O2, NAC, and JSH-2, and co-cultured with neutrophils in Transwell chambers. The severity of inflammation was evaluated, and the molecular mechanism by which fibroblasts exacerbate AP was revealed through techniques such as cell colony formation assay, cell migration assay, cell transfection, immunofluorescence, flow cytometry, Western blot, reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (co-IP). RESULTS The study showed that the elimination of neutrophils and NETs could significantly improve AP. Single-cell RNA sequencing (scRNA-seq) indicated that both neutrophils and fibroblasts in pancreatic tissue exhibited heterogeneity during AP. Among them, neutrophils highly expressed CXCR2, and fibroblasts highly expressed CXCL1. Further experimental results demonstrated that the infiltration of neutrophils in the early stage of AP was related to the activation of fibroblasts. The activation of fibroblasts depended on the nuclear factor kappa B (NF-κB) signaling pathway induced by hypoxia. NF-κB enhanced the activation of pancreatic stellate cells (PSCs) and the secretion of CXCL1 by directly promoting the transcription of HIF-1α and indirectly inhibiting PHD2, resulting in the accumulation of HIF-1α protein. The NF-κB-HIF-1α signal promoted the secretion of CXCL1 by fibroblasts through glycolysis and induced the infiltration of neutrophils. Finally, blocking the NF-κB-HIF-1α-CXCL1 signaling axis in vivo reduced the infiltration of neutrophils and improved AP. CONCLUSIONS This study, for the first time, demonstrated that activation of fibroblasts is one of the immunological driving factors for neutrophil infiltration and elucidated that glycolysis driven by the NF-κB-HIF-1α pathway is the intrinsic molecular mechanism by which fibroblasts secrete CXCL1 to chemotactically attract neutrophils. This finding provides a highly promising target for the treatment of AP.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chenglong Han
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiwei Du
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Liyi Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
3
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
4
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Hafezi S, Saber-Ayad M, Abdel-Rahman WM. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int J Mol Sci 2021; 22:10219. [PMID: 34638560 PMCID: PMC8508406 DOI: 10.3390/ijms221910219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
The most frequent mutated oncogene family in the history of human cancer is the RAS gene family, including NRAS, HRAS, and, most importantly, KRAS. A hallmark of pancreatic cancer, recalcitrant cancer with a very low survival rate, is the prevalence of oncogenic mutations in the KRAS gene. Due to this fact, studying the function of KRAS and the impact of its mutations on the tumor microenvironment (TME) is a priority for understanding pancreatic cancer progression and designing novel therapeutic strategies for the treatment of the dismal disease. Despite some recent enlightening studies, there is still a wide gap in our knowledge regarding the impact of KRAS mutations on different components of the pancreatic TME. In this review, we will present an updated summary of mutant KRAS role in the initiation, progression, and modulation of the TME of pancreatic ductal adenocarcinoma (PDAC). This review will highlight the intriguing link between diabetes mellitus and PDAC, as well as vitamin D as an adjuvant effective therapy via TME modulation of PDAC. We will also discuss different ongoing clinical trials that use KRAS oncogene signaling network as therapeutic targets.
Collapse
Affiliation(s)
- Shirin Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Zhang D, Wang T, Dong X, Sun L, Wu Q, Liu J, Sun X. Systemic Immune-Inflammation Index for Predicting the Prognosis of Critically Ill Patients with Acute Pancreatitis. Int J Gen Med 2021; 14:4491-4498. [PMID: 34413676 PMCID: PMC8370754 DOI: 10.2147/ijgm.s314393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Systemic immune-inflammation index (SII) has been identified as a prognostic biomarker in various diseases. However, its significance in acute pancreatitis (AP) has not been reported. Therefore, the main aim of this study was to determine the association of SII with clinical outcomes of AP patients, after adjusting for several confounders. Methods This retrospective cohort study was conducted using data retrieved from the Medical Information Mart for Intensive Care III database (MIMIC-III). The study only included patients diagnosed with AP. SII was calculated as the platelet counts x neutrophil counts/lymphocyte counts. Cox regression models were employed to assess the impact of SII on the 30- and 90-day mortality of AP patients. Subgroup analysis was carried out to explore the stability of the relationship between SII and AP mortality. Results A total of 513 patients were found to be eligible based on the inclusion and exclusion criteria. For 30-day all-cause mortality, in the model adjusted for multiple confounders, the HR (95% CI) for mid-SII group (SII: 75.6−104.2) and high-SII groups (SII: >104.2) were 1.29 (0.65, 2.56) and 2.57 (1.35, 4.88), respectively, compared to the low-SII group (SII: <75.5). A similar trend was observed for 90-day mortality. Subgroup analyses presented a stable relationship between SII and 30-day all-cause mortality of AP patients. Conclusion SII is a potentially useful prognostic biomarker for AP. However, prospective studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Daguan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tingting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiuli Dong
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Liang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiaolin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuecheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
8
|
Peng C, Li Z, Yu X. The Role of Pancreatic Infiltrating Innate Immune Cells in Acute Pancreatitis. Int J Med Sci 2021; 18:534-545. [PMID: 33390823 PMCID: PMC7757151 DOI: 10.7150/ijms.51618] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of gastrointestinal-related hospital admissions with significant morbidity and mortality. Although the underlying pathophysiology of AP is rather complex, which greatly limits the treatment options, more and more studies have revealed that infiltrating immune cells play a critical role in the pathogenesis of AP and determine disease severity. Thus, immunomodulatory therapy targeting immune cells and related inflammatory mediators is expected to be a novel treatment modality for AP which may improve the prognosis of patients. Cells of the innate immune system, including macrophages, neutrophils, dendritic cells, and mast cells, represent the majority of infiltrating cells during AP. In this review, an overview of different populations of innate immune cells and their role during AP will be discussed, with a special focus on neutrophils and macrophages.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
9
|
Hu J, Kang H, Chen H, Yao J, Yi X, Tang W, Wan M. Targeting neutrophil extracellular traps in severe acute pancreatitis treatment. Therap Adv Gastroenterol 2020; 13:1756284820974913. [PMID: 33281940 PMCID: PMC7692350 DOI: 10.1177/1756284820974913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a critical abdominal disease associated with high death rates. A systemic inflammatory response promotes disease progression, resulting in multiple organ dysfunction. The functions of neutrophils in the pathology of SAP have been presumed traditionally to be activation of chemokine and cytokine cascades accompanying the inflammatory process. Recently, since their discovery, a new type of antimicrobial mechanism, neutrophil extracellular traps (NETs), and their role in SAP, has attracted widespread attention from the scientific community. Significantly different from phagocytosis and degranulation, NETs kill extracellular microorganisms by releasing DNA fibers decorated with granular proteins. In addition to their strong antimicrobial functions, NETs participate in the pathophysiological process of many noninfectious diseases. In SAP, NETs injure normal tissues under inflammatory stress, which is associated with the activation of inflammatory cells, to cause an inflammatory cascade, and SAP products also trigger NET formation. Thus, due to the interaction between NET generation and SAP, a treatment targeting NETs might become a key point in SAP therapy. In this review, we summarize the mechanism of NETs in protecting the host from pathogen invasion, the stimulus that triggers NET formation, organ injury associated with SAP involving NETs, methods to interrupt the harmful effects of NETs, and different therapeutic strategies to preserve the organ function of patients with SAP by targeting NETs.
Collapse
Affiliation(s)
| | | | - Huan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
10
|
Carvalho BC, Oliveira LC, Rocha CD, Fernandes HB, Oliveira IM, Leão FB, Valverde TM, Rego IMG, Ghosh S, Silva AM. Both knock-down and overexpression of Rap2a small GTPase in macrophages result in impairment of NF-κB activity and inflammatory gene expression. Mol Immunol 2019; 109:27-37. [PMID: 30851634 DOI: 10.1016/j.molimm.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/12/2019] [Accepted: 02/17/2019] [Indexed: 02/08/2023]
Abstract
Small Ras GTPases are key molecules that regulate a variety of cellular responses in different cell types. Rap1 plays important functions in the regulation of macrophage biology during inflammation triggered by toll-like receptors (TLRs). However, despite sharing a relatively high degree of similarity with Rap1, no studies concerning Rap2 in macrophages and innate immunity have been reported yet. In this work, we show that either way alterations in the levels of Rap2a hampers proper macrophages response to TLR stimulation. Rap2a is activated by LPS in macrophages, and although putative activator TLR-inducible Ras guanine exchange factor RasGEF1b was sufficient to induce, it was not fully required for Rap2a activation. Silencing of Rap2a impaired LPS-induced production of IL-6 cytokine and KC/Cxcl1 chemokine, and also NF-κB activity as measured by reporter gene studies. Surprisingly, overexpression of Rap2a did also lead to marked inhibition of NF-κB activation induced by LPS, Pam3CSK4 and downstream TLR signaling molecules. We also found that Rap2a can inhibit the LPS-induced phosphorylation of the NF-κB subunit p65 at serine 536. Collectively, our data suggest that expression levels of Rap2a in macrophages might be tightly regulated to avoid unbalanced immune response. Our results implicate Rap2a in TLR-mediated responses by contributing to balanced NF-κB activity status in macrophages.
Collapse
Affiliation(s)
- Brener C Carvalho
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo C Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carolina D Rocha
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isadora M Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Felipe B Leão
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thalita M Valverde
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Igor M G Rego
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Tariket S, Hamzeh-Cognasse H, Arthaud CA, Laradi S, Bourlet T, Berthelot P, Garraud O, Cognasse F. Inhibition of the CD40/CD40L complex protects mice against ALI-induced pancreas degradation. Transfusion 2019; 59:1090-1101. [DOI: 10.1111/trf.15206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sofiane Tariket
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Sandrine Laradi
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Olivier Garraud
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Institut National de Transfusion Sanguine (INTS); Paris France
| | - Fabrice Cognasse
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| |
Collapse
|
12
|
Suire S, Baltanas FC, Segonds-Pichon A, Davidson K, Santos E, Hawkins PT, Stephens LR. Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses. J Leukoc Biol 2019; 106:815-822. [PMID: 30720883 PMCID: PMC6977543 DOI: 10.1002/jlb.2hi0918-359rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen-killing responses. In neutrophils G protein-coupled receptor (GPCR)-driven proinflammatory responses, such as reactive oxygen species (ROS) formation and accumulation of the key intracellular messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ), are highly dependent on PI3K-γ, a Ras-GTP, and Gβγ coincidence detector. In unprimed cells, the major GPCR-triggered activator of Ras is the Ras guanine nucleotide exchange factor (GEF), Ras guanine nucleotide releasing protein 4 (RasGRP4). Although priming is known to increase GPCR-PIP3 signaling, the mechanisms underlying this augmentation remain unclear. We used genetically modified mice to address the role of the 2 RasGEFs, RasGRP4 and son of sevenless (SOS)1/2, in neutrophil priming. We found that following GM-CSF/TNFα priming, RasGRP4 had only a minor role in the enhanced responses. In contrast, SOS1/2 acquired a substantial role in ROS formation, PIP3 accumulation, and ERK activation in primed cells. These results suggest that SOS1/2 signaling plays a key role in determining the responsiveness of neutrophils in regions of inflammation.
Collapse
Affiliation(s)
- Sabine Suire
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| | - Fernando C Baltanas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, (CSIC- Universitad de Salamanca) and CiberONC, Salamanca, Spain
| | | | - Keith Davidson
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, (CSIC- Universitad de Salamanca) and CiberONC, Salamanca, Spain
| | | | - Len R Stephens
- Inositide Laboratory, The Babraham Institute, Cambridge, UK
| |
Collapse
|
13
|
Wu JJ, Yuan XM, Huang C, An GY, Liao ZL, Liu GA, Chen RX. Farnesyl thiosalicylic acid prevents iNOS induction triggered by lipopolysaccharide via suppression of iNOS mRNA transcription in murine macrophages. Int Immunopharmacol 2019; 68:218-225. [PMID: 30658315 DOI: 10.1016/j.intimp.2018.12.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is a molecule critical for the development of inflammation-associated disorders. Its induction should be tightly controlled in order to maintain cellular homeostasis. Upon lipopolysaccharide (LPS) stimulation, iNOS, in most settings, is induced by the activation of inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) signaling. Farnesyl thiosalicylic acid (FTS), a synthetic small molecule that is considered to detach Ras from the inner cell membrane, has been shown to exhibit numerous anti-inflammatory functions. However, it remains unclear whether and how it affects iNOS induction in macrophages. The present study addressed this issue in cultured macrophages and endotoxemic mice. Results showed that FTS pretreatment significantly prevented LPS-induced increases in iNOS protein and mRNA expression levels in murine cultured macrophages, which were confirmed in organs in vivo from endotoxemic mice, such as the liver and lung. Mechanistic studies revealed that FTS pretreatment did not affect IκB-α degradation and NF-κB activation in LPS-treated macrophages. The nuclear transport of the active NF-κB was also not affected by FTS. But FTS pretreatment reduced the binding of NF-κB to its DNA elements, and reduced NF-κB bindings to iNOS promoter inside LPS-treated macrophages. Finally, our results showed that FST pretreatment increased mouse survival rate compared to LPS alone treatment. Taken together, these results indicate that FTS attenuates iNOS induction in macrophages likely through inhibition of iNOS mRNA transcription, providing further insight into the molecular mechanism of action of FTS in inflammatory disorder therapy.
Collapse
Affiliation(s)
- Jing-Jing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Xiao-Mei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guo-Yin An
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Zhan-Ling Liao
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Guang-An Liu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Run-Xiang Chen
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China.
| |
Collapse
|
14
|
Qu J, Yang JZ. Value of neutrophil to lymphocyte ratio combined with red blood cell distribution width for predicting severity of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2018; 26:1119-1124. [DOI: 10.11569/wcjd.v26.i18.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the value of neutrophil to lymphocyte ratio (NLR) combined with red blood cell distribution width (RDW) for predicting the severity of acute pancreatitis (AP).
METHODS The clinical data of 120 patients with AP were retrospectively analyzed in this study. The patients were assigned to three groups: mild AP (MAP) group, moderately severe AP (MSAP) group, and severe AP (SAP) group. The clinical indexes (NLR and RDW) of the three groups of patients were measured at 24 h after hospitalization. All of these data were compared among the groups, and between dead patients and surviving cases. The receiver operator characteristic curves (ROCs) of NLR, RDW, and NLR plus RDW were plotted to assess their value in predicting the prognosis of AP.
RESULTS With the increase of the severity of AP, the value of NLR increased significantly (P < 0.05). There was no significant difference in RDW between the MAP and MSAP groups (P > 0.05). The RDW value of the SAP group was significantly different from those of the MAP and MSAP groups (P < 0.05). The values of NLR and RDW in the death group were significantly higher than those in the survival group (P < 0.05). The area under the curve of NLR in predicting AP severity was 0.794, which was significantly higher than that of RDW (0.745; P < 0.05). The area under the NLR + RDW curve was 0.876 (sensitivity, 0.795; specificity, 0.852), which was significantly higher than that of NLR and RDW alone (P < 0.05).
CONCLUSION NLR and RDW are both related to the severity of AP, and the combination of the two indexes can improve the sensitivity and specificity of predicting the severity of AP.
Collapse
Affiliation(s)
- Juan Qu
- Department of Gastroenterology, Nankai Hospital, Tianjin 300100, China
| | - Ji-Zhi Yang
- Department of Traditional Chinese Medicine, Chentangzhuang Hospital of Hexi District, Tianjin 300222, China
| |
Collapse
|
15
|
Nakagawa R, Muroyama R, Saeki C, Goto K, Kaise Y, Koike K, Nakano M, Matsubara Y, Takano K, Ito S, Saruta M, Kato N, Zeniya M. miR-425 regulates inflammatory cytokine production in CD4 + T cells via N-Ras upregulation in primary biliary cholangitis. J Hepatol 2017; 66:1223-1230. [PMID: 28192189 DOI: 10.1016/j.jhep.2017.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/06/2017] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is an autoimmune liver disease of unknown pathogenesis. Consequently, therapeutic targets for PBC have yet to be identified. CD4+ T cells play a pivotal role in immunological dysfunction observed in PBC, and therefore, microRNA (miRNA) and mRNA expression were analysed in CD4+ T cells, to investigate PBC pathogenesis and identify novel therapeutic targets. METHODS Integral miRNA and mRNA analysis of 14 PBC patients and ten healthy controls was carried out using microarray and quantitative real-time polymerase chain reaction (qRT-PCR), with gene set enrichment analysis. The functional analyses of miRNA were then assessed using reporter and miRNA-overexpression assays. RESULTS The integral analysis of miRNA and mRNA identified four significantly downregulated miRNAs (miR-181a, -181b, -374b, and -425) related to the T cell receptor (TCR) signalling pathway in CD4+ T cells of PBC. N-Ras, a regulator of the TCR signalling pathway, was found to be targeted by all four identified miRNAs. In addition, in vitro assays confirmed that decreased miR-425 strongly induced inflammatory cytokines (interleukin [IL]-2 and interferon [IFN]-γ) via N-Ras upregulation in the TCR signalling pathway. CONCLUSION The decreased expression of four miRNAs that dysregulate TCR signalling in PBC CD4+ T cells was identified. miR-425 was demonstrated as an inflammatory regulator of PBC via N-Ras upregulation. Therefore, the restoration of decreased miR-425 or the suppression of N-Ras may be a promising immunotherapeutic strategy against PBC. LAY SUMMARY Primary biliary cholangitis (PBC) is an autoimmune liver disease, but the causes are unknown. MicroRNAs are molecules known to regulate biological signals. In this study, four microRNAs were identified as being decreased in PBC patients, leading to activation of T cell receptor signalling pathways, involved in inflammation. One particular target, N-Ras, could be an attractive and novel immunotherapeutic option for PBC. TRANSCRIPT PROFILING Microarray data are deposited in GEO (GEO accession: GSE93172).
Collapse
Affiliation(s)
- Ryo Nakagawa
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryosuke Muroyama
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Saeki
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaku Goto
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Kaise
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuo Matsubara
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keiko Takano
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sayaka Ito
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Saruta
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan; Sanno Medical Center, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
16
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
17
|
Quantification of Trypsin Activity by a New Biosensing System Based on the Enzymatic Degradation and the Destructive Nature of Trypsin. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Agra RM, Al-Daghri NM, Badimon L, Bodi V, Carbone F, Chen M, Cubedo J, Dullaart RPF, Eiras S, García-Monzón C, Gary T, Gnoni A, González-Rodríguez Á, Gremmel T, Hafner F, Hakala T, Huang B, Ickmans K, Irace C, Kholová I, Kimer N, Kytö V, März W, Miazgowski T, Møller S, Montecucco F, Niccoli G, Nijs J, Ozben S, Ozben T, Papassotiriou I, Papastamataki M, Reina-Couto M, Rios-Navarro C, Ritsch A, Sabico S, Seetho IW, Severino A, Sipilä J, Sousa T, Taszarek A, Taurino F, Tietge UJF, Tripolino C, Verloop W, Voskuil M, Wilding JPH. Research update for articles published in EJCI in 2014. Eur J Clin Invest 2016; 46:880-894. [PMID: 27571922 DOI: 10.1111/eci.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Rosa María Agra
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Vicente Bodi
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Federico Carbone
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sonia Eiras
- Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Águeda González-Rodríguez
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Franz Hafner
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tommi Hakala
- Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Baotao Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kelly Ickmans
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Concetta Irace
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Nina Kimer
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ville Kytö
- Heart Center, Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Augsburg, Germany
| | - Tomasz Miazgowski
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Jo Nijs
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Serkan Ozben
- Department of Neurology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Papastamataki
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Marta Reina-Couto
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
- Departamento de Medicina Intensiva, Centro Hospitalar São João, Porto, Portugal
| | - Cesar Rios-Navarro
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Andreas Ritsch
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian W Seetho
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| | | | - Jussi Sipilä
- North Karelia Central Hospital, Joensuu, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Department of Neurology, University of Turku, Turku, Finland
| | - Teresa Sousa
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Aleksandra Taszarek
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Federica Taurino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cesare Tripolino
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Willemien Verloop
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - John P H Wilding
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Shamoon M, Deng Y, Chen YQ, Bhatia M, Sun J. Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 2015; 20:73-87. [PMID: 26565751 DOI: 10.1517/14728222.2015.1077227] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) is an inflammatory disorder of the pancreas encompassing a cascade of cellular and molecular events. It starts from premature activation of zymogens with the involvement of innate immune system to a potential systemic inflammatory response and multiple organ failure. Leukocytes are the major cell population that participate in the propagation of the disease. Current understanding of the course of AP is still far from complete, limiting treatment options mostly to conservative supportive care. Emerging evidence has pointed to modulation of the immune system for strategic therapeutic development, by mitigating the inflammatory response and severity of AP. In the current review, we have focused on the role of innate immunity in the condition and highlighted therapeutics targeting it for treatment of this challenging disease. AREAS COVERED The current review has aimed to elaborate in-depth understanding of specific roles of innate immune cells, derived mediators and inflammatory pathways that are involved in AP. Summarizing the recent therapeutics and approaches applied experimentally that target immune responses to attenuate AP. EXPERT OPINION The current state of knowledge on AP, limitations of presently available therapeutic approaches and the promise of therapeutic implications of innate immune system in AP are discussed.
Collapse
Affiliation(s)
- Muhammad Shamoon
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yuanyuan Deng
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yong Q Chen
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Madhav Bhatia
- b 2 University of Otago, Inflammation Research Group, Department of Pathology , Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| |
Collapse
|