1
|
Zhen P, Jiang Q, Yu F, Xu X, Wei Q, Liu X, Sun X, Liang G, Tong J. ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury. J Control Release 2025; 379:609-620. [PMID: 39842726 DOI: 10.1016/j.jconrel.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported. Herein, a reactive oxygen species (ROS)-responsive hydrogelator YFF-TK-FFY is designed, which co-assembles with Apelin-13 to form the peptide hydrogel Apelin-13@Gel TK. This hydrogel responds to ROS at varying levels in the surrounding environment of MI/R and releases Apelin-13 at different rates. In an MI/R injury mouse model, Apelin-13@Gel TK rapidly releases Apelin-13 in response to the high ROS in the core area of MI/R injury, efficiently reducing cardiomyocyte apoptosis within three days. In the ROS-low border zone, Apelin-13@Gel TK provides a slow and sustained release of Apelin-13, promoting angiogenesis and lymphatic remodeling, and facilitating the resolution of inflammation in the later repair stage after MI/R injury. By offering a spatiotemporally controlled drug release in response to ROS gradients in the MI/R microenvironment, this smart hydrogel presents a promising therapeutic strategy for effective treatment of MI/R injury.
Collapse
Affiliation(s)
- Penghao Zhen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Xuan Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
2
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Iliev A, Gaydarski L, Kotov G, Landzhov B, Kirkov V, Stanchev S. The vascular footprint in cardiac homeostasis and hypertensive heart disease-A link between apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase. Anat Rec (Hoboken) 2024; 307:3548-3563. [PMID: 38618880 DOI: 10.1002/ar.25453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.
Collapse
Affiliation(s)
- Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health "Prof. Dr. Tzekomir Vodenicharov", Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Robillard S, Trân K, Lachance MS, Brazeau T, Boisvert E, Lizotte F, Auger-Messier M, Boudreault PL, Marsault É, Geraldes P. Apelin prevents diabetes-induced poor collateral vessel formation and blood flow reperfusion in ischemic limb. Front Cardiovasc Med 2023; 10:1191891. [PMID: 37636297 PMCID: PMC10450936 DOI: 10.3389/fcvm.2023.1191891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Peripheral arterial disease (PAD) is a major risk factor for lower-extremity amputation in diabetic patients. Unfortunately, previous clinical studies investigating therapeutic angiogenesis using the vascular endothelial growth factor (VEGF) have shown disappointing results in diabetic patients, which evokes the necessity for novel therapeutic agents. The apelinergic system (APJ receptor/apelin) is highly upregulated under hypoxic condition and acts as an activator of angiogenesis. Apelin treatment improves revascularization in nondiabetic models of ischemia, however, its role on angiogenesis in diabetic conditions remains poorly investigated. This study explored the impact of Pyr-apelin-13 in endothelial cell function and diabetic mouse model of hindlimb ischemia. Methods Nondiabetic and diabetic mice underwent femoral artery ligation to induce limb ischemia. Diabetic mice were implanted subcutaneously with osmotic pumps delivering Pyr-apelin-13 for 28 days. Blood flow reperfusion was measured for 4 weeks post-surgery and exercise willingness was assessed with voluntary wheels. In vitro, bovine aortic endothelial cells (BAECs) were exposed to normal (NG) or high glucose (HG) levels and hypoxia. Cell migration, proliferation and tube formation assays were performed following either VEGF or Pyr-apelin-13 stimulation. Results and Discussion Following limb ischemia, blood flow reperfusion, functional recovery of the limb and vascular density were improved in diabetic mice receiving Pyr-apelin-13 compared to untreated diabetic mice. In cultured BAECs, exposure to HG concentrations and hypoxia reduced VEGF proangiogenic actions, whereas apelin proangiogenic effects remained unaltered. Pyr-apelin-13 induced its proangiogenic actions through Akt/AMPK/eNOS and RhoA/ROCK signaling pathways under both NG or HG concentrations and hypoxia exposure. Our results identified the apelinergic system as a potential therapeutic target for angiogenic therapy in diabetic patients with PAD.
Collapse
Affiliation(s)
- Stéphanie Robillard
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Kien Trân
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Sophie Lachance
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Brazeau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Elizabeth Boisvert
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Popov SV, Maslov LN, Mukhomedzyanov AV, Kurbatov BK, Gorbunov AS, Kilin M, Azev VN, Khlestkina MS, Sufianova GZ. Apelin Is a Prototype of Novel Drugs for the Treatment of Acute Myocardial Infarction and Adverse Myocardial Remodeling. Pharmaceutics 2023; 15:pharmaceutics15031029. [PMID: 36986889 PMCID: PMC10056827 DOI: 10.3390/pharmaceutics15031029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3β, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.
Collapse
Affiliation(s)
- Sergey V Popov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Leonid N Maslov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Boris K Kurbatov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr S Gorbunov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Michail Kilin
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Viacheslav N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| |
Collapse
|
7
|
Fei J, Demillard LJ, Ren J. Reactive oxygen species in cardiovascular diseases: an update. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, imposing major health threats. Reactive oxygen species (ROS) are one of the most important products from the process of redox reactions. In the onset and progression of cardiovascular diseases, ROS are believed to heavily influence homeostasis of lipids, proteins, DNA, mitochondria, and energy metabolism. As ROS production increases, the heart is damaged, leading to further production of ROS. The vicious cycle continues on as additional ROS are generated. For example, recent evidence indicated that connexin 43 (Cx43) deficiency and pyruvate kinase M2 (PKM2) activation led to a loss of protection in cardiomyocytes. In this context, a better understanding of the mechanisms behind ROS production is vital in determining effective treatment and management strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Juanjuan Fei
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
9
|
Wu H, Xia C, Li R, Tao C, Tang Q, Hu W. Correlation Between Apelin and Collateral Circulation in Patients with Middle Cerebral Artery Occlusion and Moyamoya Disease. Int J Gen Med 2022; 15:699-709. [PMID: 35082519 PMCID: PMC8784270 DOI: 10.2147/ijgm.s341015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Background and Objectives Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease with abnormal vascular hyperplasia, which causes cerebrovascular accidents like intracranial arteriosclerosis. This study aimed to explore whether plasma apelin levels are related to good collateral circulation in ischemic diseases, which may be higher in patients with MMD than middle cerebral artery (MCA) occlusion or healthy controls, and may have a connection with the MMD grades. Methods We recruited 68 MMD patients and 25 MCA occlusion patients diagnosed by angiography, including 29 patients without cerebrovascular problems as controls. We examined the plasma apelin, serum nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels of all subjects by ELISA kit. We compared the relationship between apelin, NO, and VEGF in the blood of three groups, to explore the relationship. We also investigated whether the plasma apelin-13, apelin-17, and apelin-36 levels correlate with the MMD classification. Results Univariate analyses indicated that the MMD group had the higher plasma apelin-13, apelin-17, apelin-36, and serum NO levels than the MCA occlusion and healthy control groups. Binary logistic regression analyses further showed that the apelin-13 level was substantially higher in MMD patients than in MCA occlusion patients. Patients with MMD were significantly younger than patients with MCA occlusion by their mean ages. Linear regression analyses were performed to compare apelin levels between different grades of the patients with MMD. Apelin-13, apelin-17, and apelin-36 levels increased with the gradual increase of compensation grades level independent of NO and VEGF. Apelin-13 and apelin-36 showed a positive effect on the compensation scores in MMD. Conclusion Our study demonstrated that apelin-13 was significantly increased in patients with MMD than patients with MCA occlusion independent of NO and VEGF. Moreover, plasma apelin-13, apelin-17, and apelin-36 levels increase with the grades of MMD.
Collapse
Affiliation(s)
- Hanlin Wu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chengyu Xia
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wei Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Correspondence: Wei Hu; Qiqiang Tang Email ;
| |
Collapse
|
10
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Zhong Z, Li HY, Zhong H, Lin W, Lin S, Zhou T. All-trans retinoic acid regulating angiopoietins-1 and alleviating extracellular matrix accumulation in interstitial fibrosis rats. Ren Fail 2021; 43:658-663. [PMID: 33820492 PMCID: PMC8032328 DOI: 10.1080/0886022x.2021.1910046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
All-trans retinoic acid (ATRA) is one of essentially active metabolite of vitamin A, and plays an important role in diverse physiological processes, such as cellular growth and function. Renal interstitial fibrosis (RIF) is a common pathological characteristic of chronic renal disease causing end-stage renal disease currently lacking effective treatment. Low level of Angiopoietins-1 (Angpt-1) is associated with extracellular matrix accumulation and fibrosis diseases. This study was performed to assess the association of ATRA with Angpt-1 in RIF disease. Rats were divided into three groups: group of sham (SHO group), group of unilateral ureteral obstruction group (UUO group), UUO mice administrated daily at the dose of ATRA (ATRA group). Masson-staining was used to detect the histologic lesion. Immunohistochemistry and Western-blot were applied to determine the targeted proteins. RIF score was significantly increased in UUO rats when compared with that of SHO group, and the fibrosis score was notably reduced in ATRA group. Transforming growth factor-β1 (TGF-β1), collagen IV (Col-IV) and fibronectin (FN) expressions in UUO group were significantly up-regulated, whereas Angpt-1 expression was significantly down-regulated compared with the SHO group. ATRA treatment reduced TGF-β1, Col-IV and FN expressions and improved Angpt-1 expression compared with the UUO group. The protein expression of Angpt-1 in kidney tissue of UUO group was negatively correlated with RIF index and protein expressions of Col-IV, FN and TGF-β1. In conclusion, low expression of Angpt-1 was associated with the RIF disease and ATRA treatment can increase the Angpt-1 and alleviate the RIF lesion in UUO rats.
Collapse
Affiliation(s)
- Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Hong-Yan Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- CONTACT Tianbiao Zhou Department of Nephrology, the Second Affiliated Hospital, Shantou University Medical College, No. 69 Dongxia Road, Shantou, 515041, China
| |
Collapse
|
12
|
Luo J, Liu W, Feng F, Chen L. Apelin/APJ system: A novel therapeutic target for locomotor system diseases. Eur J Pharmacol 2021; 906:174286. [PMID: 34174264 DOI: 10.1016/j.ejphar.2021.174286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. Apelin/APJ system is widely expressed in abundant tissues, especially bone, joint and muscle tissue. This review focus on the effects of apelin/APJ system on locomotor system. An increasing number of evidence suggests that apelin/APJ system plays a crucial role in many physiological and pathological processes of locomotor system. Physiologically, apelin/APJ system promotes bone formation, muscle metabolism and skeletal muscle production. Pathologically, apelin/APJ system exacerbates osteoarthritis pathogenesis, whereas it alleviates osteoporosis. Besides, the level of apelin expression is regulated by different training modes, including continuous aerobic exercise, high-intensity interval training and resistance exercises. More importantly, exercise-induced apelin may be a potent pharmacological agent for the treatment of diseases and the regulation of physiological processes. Considering the pleiotropic effects of apelin on locomotor system, apelin/APJ system may be an important therapeutic target for locomotor system diseases.
Collapse
Affiliation(s)
- Jingshun Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fen Feng
- School of Medicine, Shaoyang University, Shaoyang, 422000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Xing M, Jiang Y, Bi W, Gao L, Zhou YL, Rao SL, Ma LL, Zhang ZW, Yang HT, Chang J. Strontium ions protect hearts against myocardial ischemia/reperfusion injury. SCIENCE ADVANCES 2021; 7:7/3/eabe0726. [PMID: 33523909 PMCID: PMC7810382 DOI: 10.1126/sciadv.abe0726] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Timely restoration of blood supply following myocardial infarction is critical to save the infarcted myocardium, while reperfusion would cause additional damage. Strontium ions have been shown to promote angiogenesis, but it is unknown whether they can save the damaged myocardium. We report that myocardial ischemia/reperfusion (I/R)-induced functional deterioration and scar formation were notably attenuated by injection of strontium ion-containing composite hydrogels into murine infarcted myocardium at 20 minutes of reperfusion following 60 minutes of ischemia. These beneficial effects were accompanied by reduced cardiomyocyte apoptosis and increased angiogenesis. The effects of strontium ions were further confirmed by the enhanced viability of cardiomyocytes and stimulated angiogenesis in vitro. These findings are the first to reveal the cardioprotective effects of strontium ions against I/R injury, which may provide a new therapeutic approach to ischemic heart disease at a lower cost, with higher stability, and with potentially greater safety.
Collapse
Affiliation(s)
- Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yan-Ling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Ling-Ling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Zhao-Wenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China.
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| |
Collapse
|
15
|
An S, Wang X, Shi H, Zhang X, Meng H, Li W, Chen D, Ge J. Apelin protects against ischemia-reperfusion injury in diabetic myocardium via inhibiting apoptosis and oxidative stress through PI3K and p38-MAPK signaling pathways. Aging (Albany NY) 2020; 12:25120-25137. [PMID: 33342766 PMCID: PMC7803490 DOI: 10.18632/aging.104106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Among all diabetes mellitus-associated cardiovascular diseases, morbidity of diabetic myocardium with ischemia reperfusion injury (D-IRI) is increasing year by year. We aimed to discover a therapeutic biomarker and investigate its mechanism in D-IRI. High-fat diet and streptozotocin-induced diabetes rats were operated with IRI or sham. Recombined lentiviral vector encoding Apelin was injected into D-IRI rat via tail vein. Cardiac function, infarct size, cellular death and oxidative stress were major outcome measures. Cardiomyocyte ischemia reperfusion injury was more serious in D-IRI rats than in non-diabetes ischemia reperfusion injury (ND-IRI) rats. The secretion of NTproBNP was increased in D-IRI compared with ND-IRI. Bcl-2 expression was decreased, and Bax and cleaved caspase-3 expression was increased in D-IRI rats compared with ND-IRI rats, which were reversed after treatment with Apelin. Apelin-upregulation improved cardiomyocyte ischemia reperfusion injury and decreased NT-proBNP levels in D-IRI rats. Apelin overexpression enhanced PI3K and eNOS levels while reduced those of p38-MAPK and iNOS in D-IRI rats. Apelin overexpression protected against D-IRI through inhibiting apoptosis and oxidative stress via PI3K and p38MAPK signaling pathways in D-IRI rats. These findings provide critical new insight into understanding of Apelin's cardio-protective effects, which may become a novel therapeutic target for the diabetic IRI patients.
Collapse
Affiliation(s)
- Songtao An
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xi Wang
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xueqiang Zhang
- Department of Cardiology, Hongxing Hospital, Hami 839000, Xinjiang, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Pioglitazone protects blood vessels through inhibition of the apelin signaling pathway by promoting KLF4 expression in rat models of T2DM. Biosci Rep 2020; 39:221480. [PMID: 31829402 PMCID: PMC6928522 DOI: 10.1042/bsr20190317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Apelin, identified as the endogenous ligand of APJ, exerts various cardiovascular effects. However, the molecular mechanism underlying the regulation of apelin expression in vascular cells is poorly described. Pioglitazone (PIO) and Krüppel-like factor 4 (KLF4) exhibit specific biological functions on vascular physiology and pathophysiology by regulating differentiation- and proliferation-related genes. The present study aimed to investigate the roles of PIO and KLF4 in the transcriptional regulation of apelin in a high-fat diet/streptozotocin rat model of diabetes and in PIO-stimulated vascular smooth muscle cells (VSMCs). Immunohistochemistry, qRT-PCR, and Western blotting assays revealed that the aorta of the Type 2 diabetes mellitus (T2DM) rat models had a high expression of apelin, PIO could decrease the expression of apelin in the PIO-treated rats. In vitro, Western blotting assays and immunofluorescent staining results showed that the basal expression of apelin was decreased but that of KLF4 was increased when VSMCs were stimulated by PIO treatment. Luciferase and chromatin immunoprecipitation assay results suggested that KLF4 bound to the GKLF-binding site of the apelin promoter and negatively regulated the transcription activity of apelin in VSMCs under PIO stimulation. Furthermore, qRT-PCR and Western blotting assay results showed that the overexpression of KLF4 markedly decreased the basal expression of apelin, but the knockdown of KLF4 restored the PIO-induced expression of apelin. In conclusion, PIO inhibited the expression of apelin in T2DM rat models to prevent diabetic macroangiopathy, and negatively regulated the gene transcription of apelin by promoting transcription of KLF4 in the apelin promoter.
Collapse
|
17
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
18
|
Liu L, Song S, Zhang YP, Wang D, Zhou Z, Chen Y, Jin X, Hu CF, Shen CX. Amphiregulin promotes cardiac fibrosis post myocardial infarction by inducing the endothelial-mesenchymal transition via the EGFR pathway in endothelial cells. Exp Cell Res 2020; 390:111950. [PMID: 32188578 DOI: 10.1016/j.yexcr.2020.111950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
The endothelial-mesenchymal transition (EndMT) plays a key role in the development of cardiac fibrosis (CF) after acute myocardial infarction (AMI). The results of our previous study showed that amphiregulin (AR) expression was enhanced after MI. However, the role of AR on EndMT post MI remains unknown. This study aimed to elucidate the impact of AR on EndMT post MI and the associated molecular mechanisms. AR expression was markedly enhanced in infarct border area post MI, and endothelial cells were one of the primary cell sources of AR secretion. Stimulation with AR promoted endothelial cell proliferation, invasion, migration, collagen synthesis and EndMT. In addition, EGFR and downstream gene expression was significantly enhanced. In vivo, EndMT was significantly inhibited after lentivirus-AR-shRNA was delivered to the myocardium post MI. In addition, silencing AR ameliorated cardiac function by decreasing the extent of CF. Furthermore, the levels of EGFR pathway components in endothelial cells extracted from infarct border myocardium were all significantly decreased in lentivirus-AR-shRNA-treated MI mice. Our results demonstrate that AR induces CF post MI by enhancing EndMT in endothelial cells. Thus, targeting the regulation of AR may provide a potentially novel therapeutic option for CF after MI.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuai Song
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Ya Ping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Di Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhong'e Zhou
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cui Fen Hu
- Department of Ultrasound in Medicine, Minhang Hospital, Fudan University, Shanghai, China.
| | - Cheng Xing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
19
|
Ji B, Shang L, Wang C, Wan L, Cheng B, Chen J. Roles for heterodimerization of APJ and B2R in promoting cell proliferation via ERK1/2-eNOS signaling pathway. Cell Signal 2020; 73:109671. [PMID: 32407761 DOI: 10.1016/j.cellsig.2020.109671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Apelin receptor (APJ) and bradykinin B2 receptor (B2R) play an important role in many physiological processes and share multiple similar characteristics in distribution and functions in the cardiovascular system. We first identified the endogenous expression of APJ and B2R in human umbilical vein endothelial cells (HUVECs) and their co-localization on human embryonic kidney (HEK) 293 cells membrane. A suite of bioluminescence and fluorescence resonance energy transfer (BRET and FRET), proximity ligation assay (PLA), and co-immunoprecipitation (Co-IP) was exploited to demonstrate formation of functional APJ and B2R heterodimer in HUVECs and transfected cells. Stimulation with apelin-13 and bradykinin (BK) increased the phosphorylation of the endothelial nitric oxide synthase (eNOS) in HUVECs, which could be inhibited by the silencing of APJ or B2R, indicating the APJ-B2R dimer is critical for eNOS phosphorylation in HUVECs. Furthermore, the increase of NOS and extracellular signal regulated kinases1/2 (ERK1/2) phosphorylation mediated by APJ/B2R dimer can be inhibited by U0126 and U73122, respectively, suggesting that the heterodimer might activate the PLC/ERK1/2/eNOS signaling pathway, and finally leading to a significant increase in cell proliferation. Thus, we uncovered for the first time the existence of APJ-B2R heterodimer and provided a promising new target in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Bingyuan Ji
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China.
| | - Liyan Shang
- Department of Nephrology, Zoucheng People's Hospital, Zoucheng 273500, China
| | - Chunmei Wang
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Lei Wan
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Baohua Cheng
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Jing Chen
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China; Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
20
|
Ason B, Chen Y, Guo Q, Hoagland KM, Chui RW, Fielden M, Sutherland W, Chen R, Zhang Y, Mihardja S, Ma X, Li X, Sun Y, Liu D, Nguyen K, Wang J, Li N, Rajamani S, Qu Y, Gao B, Boden A, Chintalgattu V, Turk JR, Chan J, Hu LA, Dransfield P, Houze J, Wong J, Ma J, Pattaropong V, Véniant MM, Vargas HM, Swaminath G, Khakoo AY. Cardiovascular response to small-molecule APJ activation. JCI Insight 2020; 5:132898. [PMID: 32208384 DOI: 10.1172/jci.insight.132898] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury, and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in patients with HF. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign, leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in 2 rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard-of-care therapy, but lacked additivity with coadministration. Collectively, this work demonstrates the feasibility of developing clinical, viable, potent small-molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlights potential limitations for APJ agonism for this indication.
Collapse
Affiliation(s)
- Brandon Ason
- Amgen Research, South San Francisco, California, USA
| | - Yinhong Chen
- Amgen Research, South San Francisco, California, USA
| | - Qi Guo
- Amgen Research, South San Francisco, California, USA
| | | | - Ray W Chui
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Rhonda Chen
- Amgen Research, South San Francisco, California, USA
| | - Ying Zhang
- Amgen Research, South San Francisco, California, USA
| | | | - Xiaochuan Ma
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Xun Li
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Yaping Sun
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Dongming Liu
- Amgen Research, South San Francisco, California, USA
| | - Khanh Nguyen
- Amgen Research, South San Francisco, California, USA
| | - Jinghong Wang
- Amgen Research, South San Francisco, California, USA
| | - Ning Li
- Amgen Research, South San Francisco, California, USA
| | | | - Yusheng Qu
- Amgen Research, Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Jim R Turk
- Amgen Research, Thousand Oaks, California, USA
| | - Joyce Chan
- Amgen Research, South San Francisco, California, USA
| | - Liaoyuan A Hu
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | | | | | - Jingman Wong
- Amgen Research, South San Francisco, California, USA
| | - Ji Ma
- Amgen Research, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
21
|
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci 2020; 65:202-213. [PMID: 32087570 DOI: 10.1016/j.advms.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/26/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Apelin is an endogenous peptide, which is expressed in a vast board of organs such as the brain, placenta, heart, lungs, kidneys, pancreas, testis, prostate and adipose tissues. The apelin receptor, called angiotensin-like-receptor 1 (APJ), is also expressed in the brain, spleen, placenta, heart, liver, intestine, prostate, thymus, testis, ovary, lungs, kidneys, stomach, and adipose tissue. The apelin/APJ axis is involved in a number of physiological and pathological processes. The apelin expression is increased in various kinds of cancer and the apelin/APJ axis plays a key role in the development of tumors through enhancing angiogenesis, metastasis, cell proliferation and also through the development of cancer stem cells and drug resistance. The apelin also stops the apoptosis of cancer cells. The apelin/APJ axis was considered in this review as an attractive therapeutic target for cancer treatment.
Collapse
|
22
|
Mohammadi C, Sameri S, Najafi R. Insight into adipokines to optimize therapeutic effects of stem cell for tissue regeneration. Cytokine 2020; 128:155003. [PMID: 32000014 DOI: 10.1016/j.cyto.2020.155003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Stem cell therapy is considered as a promising regenerative medicine for repairing and treating damaged tissues and/or preventing various diseases. But there are still some obstacles such as low cell migration, poor stem cell engraftment and decreased cell survival that need to be overcome before transplantation. Therefore, a large body of studies has focused on improving the efficiency of stem cell therapy. For instance, preconditioning of stem cells has emerged as an effective strategy to reinforce therapeutic efficacy. Adipokines are signaling molecules, secreted by adipose tissue, which regulate a variety of biological processes in adipose tissue and other organs including the brain, liver, and muscle. In this review article, we shed light on the biological effects of some adipokines including apelin, oncostatin M, omentin-1 and vaspin on stem cell therapy and the most recent preclinical advances in our understanding of how these functions ameliorate stem cell therapy outcome.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
23
|
Abbasloo E, Najafipour H, Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin Exp Pharmacol Physiol 2019; 47:393-402. [PMID: 31630435 DOI: 10.1111/1440-1681.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023]
Abstract
The renin-angiotensin system (RAS) has a deleterious and apelin/APJ system has protective effect on the ischaemic heart. The collaboration between these systems in the pathophysiology of myocardial infarction is not clear. We determined the effect of chronic pretreatment with apelin, losartan and their combination on ischaemia-reperfusion (IR) injury in the isolated perfused rat heart and on the expression of apelin-13 receptor (APJ) and angiotensin type 1 receptor (AT1R) in the myocardium. During 5 days before the induction of IR, saline (vehicle), apelin-13 (Apl), F13A (apelin antagonist), losartan (Los, AT1R antagonist) and the combination of Apl and Los were administered intraperitoneally in rats. Ischaemia was induced by left anterior descending (LAD) artery occlusion for 30 minutes followed by reperfusion for 55 minutes in the Langendorff isolated heart perfusion system. Pretreatment with Apl, Los and the combination of Apl + Los significantly reduced infarct size by about 30, 33 and 48 percent respectively; and significantly improved the left ventricular function indices such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP) and rate pressure product (RPP). IR increased AT1R protein level but it did not change APJ significantly. AT1R expression was reduced in groups treated with Apl, Los and Apl + Los. Findings showed that chronic pretreatment with apelin along with AT1R antagonist had more protective effects against IR injury. Combination therapy may diminish the risk of IR-induced heart damage, by reducing AT1R expression, in the heart of patients with coronary artery disease that are at the risk of MI and reperfusion injury.
Collapse
Affiliation(s)
- Elham Abbasloo
- Physiology, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Physiology, Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
24
|
Xi Y, Yu D, Yang R, Zhao Q, Wang J, Zhang H, Qian K, Shi Z, Wang W, Brown R, Li Y, Tian Z, Gong DW. Recombinant Fc-Elabela fusion protein has extended plasma half-life andmitigates post-infarct heart dysfunction in rats. Int J Cardiol 2019; 292:180-187. [DOI: 10.1016/j.ijcard.2019.04.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|
25
|
Systemic Outcomes of (Pyr 1)-Apelin-13 Infusion at Mid-Late Pregnancy in a Rat Model with Preeclamptic Features. Sci Rep 2019; 9:8579. [PMID: 31189936 PMCID: PMC6561917 DOI: 10.1038/s41598-019-44971-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia is a syndrome with diverse clinical presentation that currently has no cure. The apelin receptor system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. We established the systemic outcomes of (Pyr1)-apelin-13 administration in rats with preeclamptic features (TGA-PE, female transgenic for human angiotensinogen mated to male transgenic for human renin). (Pyr1)-apelin-13 (2 mg/kg/day) or saline was infused in TGA-PE rats via osmotic minipumps starting at day 13 of gestation (GD). At GD20, TGA-PE rats had higher blood pressure, proteinuria, lower maternal and pup weights, lower pup number, renal injury, and a larger heart compared to a control group (pregnant Sprague-Dawley rats administered vehicle). (Pyr1)-apelin-13 did not affect maternal or fetal weights in TGA-PE. The administration of (Pyr1)-apelin-13 reduced blood pressure, and normalized heart rate variability and baroreflex sensitivity in TGA-PE rats compared to controls. (Pyr1)-apelin-13 increased ejection fraction in TGA-PE rats. (Pyr1)-apelin-13 normalized proteinuria in association with lower renal cortical collagen deposition, improved renal pathology and lower immunostaining of oxidative stress markers (4-HNE and NOX-4) in TGA-PE. This study demonstrates improved hemodynamic responses and renal injury without fetal toxicity following apelin administration suggesting a role for apelin in the regulation of maternal outcomes in preeclampsia.
Collapse
|
26
|
Wang S, He F, Li Z, Hu Y, Huangfu N, Chen X. YB1 protects cardiac myocytes against H2O2‑induced injury via suppression of PIAS3 mRNA and phosphorylation of STAT3. Mol Med Rep 2019; 19:4579-4588. [PMID: 30942400 PMCID: PMC6522804 DOI: 10.3892/mmr.2019.10119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress serves important roles in cardiac injury during the process of ischemia/reperfusion (I/R). Y-box protein 1 (YB1), a member of the highly conserved Y-box protein family, is closely associated with inflammation and stress responses by regulating gene transcription, RNA splicing and mRNA translation. However, the roles of YB1 in oxidative stress-induced myocardial-I/R (M-I/R) injury are unknown. The aim of the present study was to examine the effects of YB1 on H2O2-induced cardiomyocyte injury and its underlying mechanism. The results demonstrated that YB1 expression was upregulated during H2O2-induced myocardial injury. YB1 knockdown through transfection of small interfering RNA significantly aggravated cardiac cell apoptosis. Furthermore, YB1 knockdown significantly reversed the H2O2-mediated increase in phosphorylated signal transducer and activator of transcription (STAT)3, but did not affect the phosphorylation of P38, extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, P65, Janus kinase 1 and 2 or STAT1. Moreover, protein co-immunoprecipitation and RNA-binding protein immunoprecipitation assays revealed that YB1 interacted with protein inhibitor of activated STAT 3 (PIAS3) mRNA but not its translated protein. YB1 overexpression may have promoted PIAS3 mRNA decay, decreasing PIAS3 protein levels, and therefore increased the levels of phosphorylated STAT3. Finally, YB1 knockdown, mediated by a lentivirus carrying YB1 targeted short hairpin RNA, significantly decreased left ventricle percentage fractional shortening and ejection fraction values, while increasing the infarct sizes in a rat model of M-I/R injury. These results demonstrated for the first time (to the best of our knowledge) that YB1 may protect cardiac myocytes against H2O2 or M-I/R-induced injury by binding to PIAS3 mRNA and resulting in the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| | - Fuwei He
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| | - Zhenwei Li
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| | - Yewen Hu
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| | - Ning Huangfu
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaomin Chen
- Department of Cardiology, The Affiliated Hospital Ningbo No. 1 Hospital, Zhejiang University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
27
|
Rajani SF, Imani A, Faghihi M, Izad M, Kardar GA, Salehi Z. Post-infarct morphine treatment mitigates left ventricular remodeling and dysfunction in a rat model of ischemia-reperfusion. Eur J Pharmacol 2019; 847:61-71. [PMID: 30684466 DOI: 10.1016/j.ejphar.2019.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Following myocardial infarction, the heart undergoes a series of dramatic compensations which may later form a maladaptive picture characterized by ventricular dilation and pump failure. Among several opioid agents, morphine has been shown to confer protection against reperfusion injury and infarct size. Here, we sought to study the cardioprotective effect of post-infarct morphine treatment against left ventricular adverse remodeling. We induced myocardial infarction in male Sprague - Dawley rats by ligating left anterior descending artery and then, treated these animals with three different doses of morphine -0.3, 3 and 10 mg/kg (i.p.). The echocardiographic evaluation depicted improved cardiac performance and lesser chamber dilation in the animals that had received 3 mg/kg of morphine. Next, we studied the effect of 3 mg/kg morphine administration on left ventricular hemodynamics, infarct size, tissue architecture, changes in lung and heart weight, circulating TNF-α level and post-MI mRNA expression of collagen-1, collagen-3, TGF-β, TNF-α, MMP-2 and MMP-9. Five-day morphine administration markedly improved LV function, and also reduced infarct size, myocyte hypertrophy, fibrosis, index of infarct expansion, heart weight and serum TNF-α level. Moreover, morphine alleviated MI-induced increase in wet and dry lung weight. Morphine also altered the mRNA expression of fibrosis-related genes, TNF-α, MMP-2 and MMP-9. In conclusion, post-infarct morphine treatment can mitigate adverse remodeling and cardiac dysfunction after MI. Beside analgesic effect, we may be able to harvest benefits from the antifibrotic and anti-remodeling action of morphine in patients with the acute coronary syndrome.
Collapse
Affiliation(s)
- Sulail Fatima Rajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Immunology, Asthma & Allergy Research Institute (IAARI), Tehran, Iran.
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Cheng J, Luo X, Huang Z, Chen L. Apelin/APJ system: A potential therapeutic target for endothelial dysfunction‐related diseases. J Cell Physiol 2018; 234:12149-12160. [DOI: 10.1002/jcp.27942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Cheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
- Department of Pharmacy The First Affiliated Hospital, University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| |
Collapse
|
29
|
Mihanfar A, Nejabati HR, Fattahi A, latifi Z, Faridvand Y, Pezeshkian M, Jodati AR, Safaie N, Afrasiabi A, Nouri M. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother 2018; 108:367-373. [DOI: 10.1016/j.biopha.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
|
30
|
Rowan SC, Piouceau L, Cornwell J, Li L, McLoughlin P. EXPRESS: Gremlin1 blocks vascular endothelial growth factor signalling in the pulmonary microvascular endothelium. Pulm Circ 2018; 10:2045894018807205. [PMID: 30284507 PMCID: PMC7066471 DOI: 10.1177/2045894018807205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Abstract
The bone morphogenetic protein (BMP) antagonist gremlin 1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension (HPH). Recently, non-canonical functions of gremlin 1 have been identified, including specific binding to the vascular endothelial growth factor receptor-2 (VEGFR2). We tested the hypothesis that gremlin 1 modulates VEGFR2 signaling in the pulmonary microvascular endothelium. We examined the effect of gremlin 1 haploinsufficiency on the expression of VEGF responsive genes and proteins in the hypoxic (10% O2) murine lung in vivo. Using human microvascular endothelial cells in vitro we examined the effect of gremlin 1 on VEGF signaling. Gremlin 1 haploinsufficiency (Grem1+/–) attenuated the hypoxia-induced increase in gremlin 1 observed in the wild-type mouse lung. Reduced gremlin 1 expression in hypoxic Grem1+/– mice restored VEGFR2 expression and endothelial nitric oxide synthase (eNOS) expression and activity to normoxic values. Recombinant monomeric gremlin 1 inhibited VEGFA-induced VEGFR2 activation, downstream signaling, and VEGF-induced increases in Bcl-2, cell number, and the anti-apoptotic effect of VEGFA in vitro. These results show that the monomeric form of gremlin 1 acts as an antagonist of VEGFR2 activation in the pulmonary microvascular endothelium. Given the previous demonstration that inhibition of VEGFR2 causes marked worsening of HPH, our results suggest that increased gremlin 1 in the hypoxic lung, in addition to blocking BMP receptor type-2 (BMPR2) signaling, contributes importantly to the development of PH by a non-canonical VEGFR2 blocking activity.
Collapse
Affiliation(s)
- Simon C. Rowan
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Lucie Piouceau
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Joanna Cornwell
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Lili Li
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Nazari A, Zahabi K, Azizi Y, Moghimian M. EFFECTS OF EXERCISE COMBINED WITH APELIN-13 ON CARDIAC FUNCTION IN THE ISOLATED RAT HEART. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182404175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Exercise and apelin have been shown to increase cardiac function and elicit tolerance to ischemia/reperfusion (IR) injuries. This study aimed at determining whether the combination of exercise training and apelin pretreatment could integrate the protective effects of each of them in the heart against IR injury. Male rats were divided into four experimental groups: 1: Rats with ischemia/reperfusion (IR), 2: subjected to exercise training for 8 weeks (EX+IR), 3: apelin-13 (10 nmol/kg/day) for 7 days (Apel+IR) in the last week of training, and 4: exercise training plus apelin-13 (EX+Apel+IR). Isolated hearts were perfused using the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. Treadmill exercise training was conducted for 8 weeks. Hemodynamic parameters were recorded throughout the experiment. Ischemia-induced arrhythmias, myocardial infarct size (IS), creatine kinase-MB (CK-MB) isoenzyme and plasma lactate dehydrogenase (LDH) activity was measured in all animals. Administration of apelin-13 plus exercise increased left ventricular developed pressure (LVDP) at the end of ischemia and reperfusion compared with other groups. After 30 min of ischemia, dP/dtmax was higher in EX+Apel+IR than in Apel+IR and EX+IR groups. During 30 min ischemia, exercise training, apelin-13 and combined treatment produced a significant reduction in the numbers of premature ventricular complexes. A combination of exercise and apelin-13 also reduced infarct size, CK-MB, LDH and severity of arrhythmia. These results suggest that combined therapies with apelin-13 and exercise training may integrate the beneficial effects of each of them alone on cardiac contractility, arrhythmia and limiting of infarct size. Level of evidence I; Therapeutic Studies - Investigating the Results of Treatment.
Collapse
Affiliation(s)
- Afshin Nazari
- Lorestan University of Medical Sciences, Iran; Lorestan University of Medical, Iran
| | | | | | | |
Collapse
|
32
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Parsa H, Imani A, Faghihi M, Riahi E, Badavi M, Shakoori A, Rastegar T, Aghajani M, Rajani SF. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1232-1241. [PMID: 29299201 PMCID: PMC5749358 DOI: 10.22038/ijbms.2017.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/10/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. MATERIALS AND METHODS The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. RESULTS Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. CONCLUSION Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production.
Collapse
Affiliation(s)
- Hoda Parsa
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahwaz University of Medical Sciences, Ahwaz, Iran
| | - Abbas Shakoori
- Department of Genetic, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Aghajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima Rajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| |
Collapse
|
34
|
Neto-Neves EM, Frump AL, Vayl A, Kline JA, Lahm T. Isolated heart model demonstrates evidence of contractile and diastolic dysfunction in right ventricles from rats with sugen/hypoxia-induced pulmonary hypertension. Physiol Rep 2017; 5:5/19/e13438. [PMID: 29038355 PMCID: PMC5641930 DOI: 10.14814/phy2.13438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/29/2023] Open
Abstract
Although extensively used for the study of left ventricular function, limited experience exists with the isolated heart model in the evaluation of right ventricular (RV) function. In particular, no published experience exists with this tool in sugen/hypoxia‐induced pulmonary hypertension (SuHx‐PH), a frequently used model of severe and progressive PH. We sought to characterize markers of RV contractile and diastolic function in SuHx‐PH and to establish their relationship with markers of maladaptive RV remodeling. Hearts were excised from anesthetized Sprague Dawley rats with or without SuHx‐PH and perfused via the aorta using a Langendorff preparation. We explored the Frank–Starling relationship of RV function (RV developed pressure, dP/dtmax, and dP/dtmin; all normalized to RV mass) by increasing RV end‐diastolic pressure (RVEDP) from 0 to 40 mmHg. Functional studies were complemented by quantification of RV pro‐apoptotic signaling (bcl2/bax), procontractile signaling (apelin), and stress response signaling (p38MAPK activation). Pearson's correlation analysis was performed for functional and biochemical parameters. SuHx‐RVs exhibited severe RV dysfunction with marked hypertrophy and decreased echocardiographic cardiac output. For any given RVEDP, SuHx‐RVs demonstrated less developed pressure and lower dP/dtmax, as well as less pronounced dP/dtmin, suggestive of decreased contractile and diastolic function. SuHx‐RVs exhibited decreased bcl2/bax ratios, apelin expression, and p38MAPK activation. Bcl2/bax and apelin RNA abundance correlated positively with RV developed pressure and dP/dtmax and negatively with dP/dtmin. p38MAPK activation correlated positively with RV developed pressure. We conclude that SuHx‐RVs exhibit severe contractile and diastolic dysfunction. Increased pro‐apoptotic signaling and attenuated procontractile and stress response signaling may contribute to these functional alterations.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey A Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
35
|
Hu W, Jiang W, Ye L, Tian Y, Shen B, Wang K. Prospective evaluation of the diagnostic value of plasma apelin 12 levels for differentiating patients with moyamoya and intracranial atherosclerotic diseases. Sci Rep 2017; 7:5452. [PMID: 28710384 PMCID: PMC5511181 DOI: 10.1038/s41598-017-05664-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/01/2017] [Indexed: 01/15/2023] Open
Abstract
Patients with moyamoya disease (MMD) or intracranial atherosclerotic disease (ICAD) experience similar cerebral ischaemic events. However, MMD patients show greater angiogenesis and arteriogenesis, which play crucial roles in collateral circulation development to enhance clinical prognosis and outcome. Apelins have been associated with angiogenesis and arteriogenesis. Therefore, the aim of the present study was to determine whether apelin levels were higher in patients with MMD than in patients with ICAD or in healthy controls. We compared plasma apelin levels in 29 patients with MMD, 82 patients with ICAD, and 25 healthy participants. Twelve-hour fasting blood samples were collected and analysed using commercially available kits. Univariate analyses indicated that compared with the ICAD and healthy control groups, the MMD group had higher apelin-12, apelin-13, apelin-36, and nitric oxide levels. Binary logistic regression analyses further showed that the plasma apelin-12 level was substantially higher in MMD patients than in ICAD patients. Patients with MMD were also differentiated from patients with ICAD by their mean ages, with the former being younger. Therefore, the plasma apelin-12 level is a potential diagnostic marker for differentiating MMD and ICAD and may provide a treatment strategy for enhancing collateral circulation development and clinical prognosis and outcome.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wan Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li Ye
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
36
|
Son JS, Kim HJ, Son Y, Lee H, Chae SA, Seong JK, Song W. Effects of exercise-induced apelin levels on skeletal muscle and their capillarization in type 2 diabetic rats. Muscle Nerve 2017; 56:1155-1163. [PMID: 28164323 DOI: 10.1002/mus.25596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exercise-induced apelin as a myokine is believed to play a role in the improvement of type 2 diabetes mellitus (T2DM) and capillarization. In this study, we evaluated the association between exercise-induced apelin and muscle capillarization. METHODS Zucker rats underwent a treadmill exercise program. Body composition, muscle strength, muscle size, muscle capillarization, and insulin resistance (homeostatic model assessment [HOMA-IR]) were measured. Apelin levels of skeletal muscle and plasma were then analyzed. RESULTS Exercise improved body composition (P < 0.05), HOMA-IR (P < 0.05), and grip strength (P < 0.001). In the soleus, the fiber size of T2DM was decreased (P < 0.001), but it increased in fiber size and capillarization after exercise (P < 0.001) occurred. We identified an increase in plasma apelin (P < 0.05) and a decrease in soleus apelin (P < 0.01), as well as an association between soleus apelin and angiogenesis (P < 0.01). DISCUSSION A role for exercise-induced apelin in improving metabolism indicates the possibility of a new drug target for the treatment of metabolic diseases and repairing skeletal muscle damage. Muscle Nerve 56: 1155-1163, 2017.
Collapse
Affiliation(s)
- Jun Seok Son
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jae Kim
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Physical Activity & Performance Institute, Konkuk University, Seoul, Republic of Korea
| | - Yeri Son
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Development Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hojun Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Development Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Song Ah Chae
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Development Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin Chim Acta 2016; 466:78-84. [PMID: 28025030 DOI: 10.1016/j.cca.2016.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. Both Apelin and APJ receptor are widely distributed in various tissues such as heart, brain, limbs, retina and liver. Recent research indicates that the Apelin/APJ system plays an important role in pathological angiogenesis which is a progress of new blood branches developing from preexisting vessels via sprouting. In this paper, we review the important role of the Apelin/APJ system in pathological angiogenesis. The Apelin/APJ system promotes angiogenesis in myocardial infarction, ischemic stroke, critical limb ischemia, tumor, retinal angiogenesis diseases, cirrhosis, obesity, diabetes and other related diseases. Furthermore, we illustrate the detailed mechanism of pathological angiogenesis induced by the Apelin/APJ system. In conclusion, the Apelin/APJ system would be a promising therapeutic target for angiogenesis-related diseases.
Collapse
|
38
|
Chen Z, Wu D, Li L, Chen L. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol 2016; 35:766-775. [DOI: 10.1089/dna.2016.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| |
Collapse
|
39
|
Xu R, Zhang ZZ, Chen LJ, Yu HM, Guo SJ, Xu YL, Oudit GY, Zhang Y, Chang Q, Song B, Chen DR, Zhu DL, Zhong JC. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides 2016; 86:85-94. [PMID: 27773659 DOI: 10.1016/j.peptides.2016.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Apelin has been proved to be a critical mediator of vascular function and homeostasis. Here, we investigated roles of Apelin in aortic remodeling and fibrosis in rats with transverse aortic constriction (TAC). Male Sprague-Dawley rats were subjected to TAC and then randomized to daily deliver Apelin-13 (50μg/kg) or angiotensin type 1 receptor (AT1) blocker Irbesartan (50mg/kg) for 4 weeks. Pressure overload resulted in myocardial hypertrophy, systolic dysfunction, aortic remodeling and adventitial fibrosis with reduced levels of Apelin in ascending aortas of rat after TAC compared with sham-operated group. These changes were associated with marked increases in levels of miRNA-122, TGFβ1, CTGF, NFAT5, LGR4, and β-catenin. More importantly, Apelin and Irbesartan treatment strikingly prevented TAC-mediated aortic remodeling and adventitial fibrosis in pressure overloaded rats by blocking AT1 receptor and miRNA-122 levels and repressing activation of the CTGF-NFAT5 and LGR4-β-catenin signaling. In cultured primary rat adventitial fibroblasts, exposure to angiotensin II (100nmolL-1) led to significant increases in cellular migration and levels of TGFβ1, CTGF, NFAT5, LGR4 and β-catenin, which were effectively reversed by pre-treatment with Apelin (100nmolL-1) and miRNA-122 inhibitor (50nmolL-1). In conclusion, Apelin counterregulated against TAC-mediated ascending aortic remodeling and angiotensin II-induced promotion of cellular migration by blocking AT1 receptor and miRNA-122 levels and preventing activation of the TGFβ1-CTGF-NFAT5 and LGR4-β-catenin signaling, ultimately contributing to attenuation of aortic adventitial fibrosis. Our data point to Apelin as an important regulator of aortic remodeling and adventitial fibrosis and a promising target for vasoprotective therapies.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Zhen-Zhou Zhang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Lai-Jiang Chen
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Hui-Min Yu
- Department of Cardiology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shu-Jie Guo
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Ying-Le Xu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton T6G 2S2, Canada
| | - Yan Zhang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Qing Chang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Bei Song
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Ding-Liang Zhu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jiu-Chang Zhong
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China.
| |
Collapse
|
40
|
Huang C, Dai C, Gong K, Zuo H, Chu H. Apelin-13 protects neurovascular unit against ischemic injuries through the effects of vascular endothelial growth factor. Neuropeptides 2016; 60:67-74. [PMID: 27592408 DOI: 10.1016/j.npep.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 01/28/2023]
Abstract
Apelin-13 has protective effects on many neurological diseases, including cerebral ischemia. Here, we aimed to test Apelin-13's effects on ischemic neurovascular unit (NVU) injuries and investigate whether the effects were dependent on vascular endothelial growth factor (VEGF). We detected the expression of VEGF and its receptors (VEGFRs) induced by Apelin-13 injection at 1d, 3d, 7d and 14d after middle cerebral artery occlusion (MCAO). Meanwhile, we examined the effects of Apelin-13 on NVU in both in vivo and in vitro experiments as well as whether the effects were VEGF dependent by using VEGF antibody. We also assessed the related signal transduction pathways via multiple inhibitors. We demonstrated Apelin-13 highly increased VEGF and VEGFR-2 expression, not VEGFR-1. Importantly, Apelin-13 led to neurological functions improvement by associating with promotion of angiogenesis as well as reduction of neuronal death and astrocyte activation, which was markedly blocked by VEGF antibody. In cell cultures, Apelin-13 protected neurons, astrocytes and endothelial cells against oxygen-glucose deprivation (OGD) injuries. Moreover, the effect of Apelin-13 to up-regulate VEGF was suppressed by extracellular signal-regulated kinase (ERK) inhibitor U0126 and phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002. Our data suggest protective effects of Apelin-13 on ischemic NVU injuries are highly associated with the increase of VEGF binding to VEGFR-2, possibly acting through activation of ERK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200030, China
| | - Chuanfu Dai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Kai Gong
- School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Huancong Zuo
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, No. 5 Shijingshan Road, Shijingshan District, Beijing 100049, China.
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
41
|
|
42
|
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222:581-589. [PMID: 27513655 DOI: 10.1016/j.ijcard.2016.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
Obesity is a risk factor of cardiovascular diseases. However, in the case of heart failure, obese and overweight patients have a more favourable prognosis compared to patients who have a normal body weight. This phenomenon is referred to as the "obesity paradox," and it is explained by, among others, a positive effect of adipokines produced by adipose tissue, particularly by the tissue located in the direct vicinity of the heart and blood vessels. The favourable effect on the cardiovascular system is mostly associated with adiponectin and omentin, but the levels of these substances are reduced in obese patients. Among the adipokines which levels are positively correlated with the adipose tissue content, favourable activity is demonstrated by apelin, progranulin, chemerin, TNF-α (tumour necrosis factor-)α, CTRP-3 (C1q/tumour necrosis factor (TNF) related protein), leptin, visfatin and vaspin. This activity is associated with the promotion of regeneration processes in the damaged myocardium, formation of new blood vessels, reduction of the afterload, improvement of metabolic processes in cardiomyocytes and myocardial contractile function, inhibition of apoptosis and fibrosis of the myocardium, as well as anti-inflammatory and anti-atheromatous effects. The potential use of these properties in the treatment of heart failure and ischaemic heart disease, as well as in pulmonary hypertension, arterial hypertension and the limitation of the loss of cardiomyocytes during cardioplegia-requiring cardiosurgical procedures, is studied. The most advanced studies focus on analogues of apelin and progranulin.
Collapse
Affiliation(s)
- Magdalena Sawicka
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, 9 Maria Skłodowska- Curie Street, 41-800 Zabrze, Poland; Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland.
| | - Joanna Janowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| | - Jerzy Chudek
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| |
Collapse
|
43
|
Han L, Luo H, Huang F, Tian S, Qin X. Apelin-13 Impaires Acquisition but Not Consolidation or Expression of Contextual Fear in Rats. Neurochem Res 2016; 41:2345-51. [PMID: 27216619 DOI: 10.1007/s11064-016-1948-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Apelin-13, as an endogenous neuropeptide, is the ligand for the G-protein-coupled receptor, APJ, which has recently been demonstrated to be involved in the process that contributes to learning and memory. Previous studies showed that apelin may be required for certain forms of learning and memory. Up to date, the role of apelin in fear memory has not been explored. In the present study, we tested the effects of apelin-13 (1.0, 2.0 and 4.0 µg/rat) on contextual fear conditioning (experiment 1), consolidation (experiment 2) and expression (experiment 3) in rats. A well established fear conditioning protocol was used, which contained three training phases: habituation, fear conditioning and test. Apelin-13 was i.c.v injected 10 min before conditioning (experiment 1), immediately after conditioning (experiment 2) or 10 min before testing (experiment 3). The values of percent freezing were used to measure fear. We found that only 2.0 µg apelin-13 administrations produced a decrease freezing in experiment 1. The most effective dose of apelin-13 (2.0 µg) was selected, but it had no effect on freezing in experiment 2 and 3. Furthermore, the decreased freezing in experiment 1 was not attributed to the deficits of locomotor activity and foot-shock sensitivity. These results, for the first time, indicated that apelin-13 impaired fear acquisition but not fear consolidation or expression.
Collapse
Affiliation(s)
- Li Han
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410007, Hunan, People's Republic of China
| | - Huaiqing Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410007, Hunan, People's Republic of China.,Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, 410219, Hunan, People's Republic of China
| | - Fulian Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Shaowen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
44
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|