1
|
Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomed Pharmacother 2022; 153:113299. [PMID: 35750010 DOI: 10.1016/j.biopha.2022.113299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases and various other chronic ailments have gradually transformed into public-health issues. Neurodegenerative disorders are a range of progressive neural abnormalities characterized by cellular dysfunctions, neuronal structure, and function loss. Among many chronic disorders, oxidative stress, inflammation, mitochondrial dysregulation, and cellular alterations in the human body are considered the most prevalent diagnostic symptoms. They have a profound impact on patients' health and wellbeing. The disease's poor curability, high healthcare costs, and lethality are the principal reasons for approaching and exploring the conventional treatment's phytotherapeutic alternatives. Ginkgo biloba (Maidenhair tree) is a well-known and widely used herbal plant in the Ginkgoaceae family. Its phytochemical constituents, Flavonoids, and terpenes, have been identified as the primary ingredients of Ginkgo biloba leaf extracts. It has been widely used due to its therapeutic properties, including its neuroprotective, anti-dementia, antioxidant, anti-inflammatory, vasoactive, anti-psychotic, anti-neoplastic, and anti-platelet activity. In recent decades, plenty of Ginkgo-derived substances has been researched and elucidated to have significant therapeutic effects in numerous disease models. This review aims to provide a thorough understanding of the botanical basis for Ginkgo biloba, its usage as herbal medicine, and its pivotal role in functional foods. Additionally, the clinical significance of Ginkgo biloba, as observed in various research works and clinical investigations, is also emphasized, facilitating a better understanding of their molecular basis and application in many chronic diseases.
Collapse
|
2
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Al-Awthan YS, Rauf A, Rashid U, Bawazeer S, Naz S, Bahattab O, Bawazeer S, Muhammad N, Waggas DS, Batiha GES, Shariati MA, Derkho M, Suleria HAR. Sedative-hypnotic effect and in silico study of dinaphthodiospyrols isolated from Diospyros lotus Linn. Biomed Pharmacother 2021; 140:111745. [PMID: 34020246 DOI: 10.1016/j.biopha.2021.111745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Traditionally, Diospyros lotus Linn is used for insomnia and other associated disorders. Insomnia is a worldwide disorder with different etiology which is treated with different synthetic medicine associated with addiction. Natural products are generally devoid of such addition with good efficacy. Current research was conducted to evaluate the sedative and hypnotic effects of dimeric naphthoquinones such as dinaphthodiospyrol A (1), dinaphthodiospyrol B (2), dinaphthodiospyrol C (3), dinaphthodiospyrol D (4), dinaphthodiospyrol E (5) and dinaphthodiospyrol F (6) isolated from the chloroform fractions of D. lotus. The sedative and hypnotic effects at the dose of 5 and 10 mg/kg (each compound) were assessed through open field and phenobarbital induced sleep test, respectively. In the case of open field test the administration of tested compounds significantly hindered the movement of animals, while in case of hypnotic effect the tested samples significantly improved the onset and duration of sleep as compared to control. The overall effects were in a dose dependent manner. The compounds were also assessed for acute toxicity, but no toxicity was observed. In this regard, our research triumphantly announced the strong chemical base for the folkloric values of the plant with their fringe benefits and implemented a platform for further aspects of mechanistic and clinical studies. A possible mechanism of in vivo inhibition was studied by using docking simulations on GABA receptors. Binding orientations and types of interactions revealed that a possible mechanism behind these pharmacological actions might be interaction with GABA receptors.
Collapse
Affiliation(s)
- Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad 22060, Pakistan
| | - Sami Bawazeer
- Pharmacognosy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Woman University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dania Saad Waggas
- Department of Pharmacology, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El-Beheira, Egypt
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Marina Derkho
- South-Ural State Agrarian University, Troitsk, Russian Federation
| | | |
Collapse
|
4
|
Pressly B, Lee RD, Barnych B, Hammock BD, Wulff H. Identification of the Functional Binding Site for the Convulsant Tetramethylenedisulfotetramine in the Pore of the α 2 β 3 γ 2 GABA A Receptor. Mol Pharmacol 2021; 99:78-91. [PMID: 33109687 PMCID: PMC7746976 DOI: 10.1124/molpharm.120.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
Tetramethylenedisulfotetramine (TETS) is a so-called "caged" convulsant that is responsible for thousands of accidental and malicious poisonings. Similar to the widely used GABA receptor type A (GABAA) antagonist picrotoxinin, TETS has been proposed to bind to the noncompetitive antagonist (NCA) site in the pore of the receptor channel. However, the TETS binding site has never been experimentally mapped, and we here set out to gain atomistic level insights into how TETS inhibits the human α 2 β 3 γ 2 GABAA receptor. Using the Rosetta molecular modeling suite, we generated three homology models of the α 2 β 3 γ 2 receptor in the open, desensitized, and closed/resting state. Three different ligand-docking algorithms (RosettaLigand, Glide, and Swissdock) identified two possible TETS binding sites in the channel pore. Using a combination of site-directed mutagenesis, electrophysiology, and modeling to probe both sites, we demonstrate that TETS binds at the T6' ring in the closed/resting-state model, in which it shows perfect space complementarity and forms hydrogen bonds or makes hydrophobic interactions with all five pore-lining threonine residues of the pentameric receptor. Mutating T6' in either the α 2 or β 3 subunit reduces the IC50 of TETS by ∼700-fold in whole-cell patch-clamp experiments. TETS is thus interacting at the NCA site in the pore of the GABAA receptor at a location that is overlapping but not identical to the picrotoxinin binding site. SIGNIFICANCE STATEMENT: Our study identifies the binding site of the highly toxic convulsant tetramethylenedisulfotetramine (TETS), which is classified as a threat agent by the World Health Organization. Using a combination of homology protein modeling, ligand docking, site-directed mutagenesis, and electrophysiology, we show that TETS is binding in the pore of the α2β3γ2 GABA receptor type A receptor at the so-called T6' ring, wherein five threonine residues line the permeation pathway of the pentameric receptor channel.
Collapse
Affiliation(s)
- Brandon Pressly
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Ruth D Lee
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Bogdan Barnych
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Bruce D Hammock
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| | - Heike Wulff
- Departments of Pharmacology (B.P., R.D.L, H.W.) and Entomology and Nematology, and Comprehensive Cancer Center (B.B., B.D.H.), University of California, Davis, California
| |
Collapse
|
5
|
Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (-)-Bilobalide. J Am Chem Soc 2020; 142:18599-18618. [PMID: 32991152 PMCID: PMC7727090 DOI: 10.1021/jacs.0c08231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.
Collapse
Affiliation(s)
- Robert M. Demoret
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Meghan A. Baker
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Masaki Ohtawa
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ching Ching Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Stefano Forli
- DISCoBio, Scripps Research, La Jolla, California 92037, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Li X, Huang L, Liu G, Fan W, Li B, Liu R, Wang Z, Fan Q, Xiao W, Li Y, Fang W. Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112365. [PMID: 31678414 DOI: 10.1016/j.jep.2019.112365] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae) is a traditional Chinese medicine known to treating stroke and other cardio-cerebrovascular diseases for thousands of years in China. Ginkgo diterpene lactones (GDL) attracted much attention because of their neuroprotective properties. AIM OF THE STUDY To uncover the effects of GDL, which consist of ginkgolide A (GA), ginkgolide B (GB), and ginkgolide K (GK), on ischemic stroke, as well as the underlying molecular mechanisms. MATERIALS AND METHODS We used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models mimicking the process of ischemia/reperfusion in vivo and in vitro, respectively. Anticoagulant effects of GDL were investigated on platelet activating factor (PAF), arachidonic acid (AA) and adenosine diphosphate (ADP)-induced platelet aggregation both in vivo and in vitro. We also evaluated the effects of GDL on lipopolysaccharide (LPS)-induced inflammatory response in primary cultured rats' astrocytes. Infarct size, neurological deficit score, and brain edema were measured at 72 h after MCAO. Immunohistochemistry was utilized to analyze neurons necrosis and astrocytes activation. Expression of pro-inflammatory cytokines, including tumor necrotic factor-α (TNF-α) and interleukin-1β (IL-1β) were detected using enzyme-linked immunosorbent assay (ELISA) and real time PCR. The levels of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) were assessed by real time PCR or Western blot. RESULTS Compared with MCAO/R rats, GDL significantly reduced infarct size and brain edema, improved neurological deficit score. Meanwhile, GDL suppressed platelet aggregation, astrocytes activation, pro-inflammatory cytokines releasing, TLR4 mRNA expression and transfer of NF-κB from cytoplasm to nucleus. Furthermore, GDL alleviated OGD/R injury and LPS-induced inflammatory response in primary astrocytes, characterized by promoting cell viability, decreasing lactate dehydrogenase (LDH) activity, and inhibiting IL-1β and TNF-α releasing. CONCLUSIONS In summary, GDL attenuate cerebral ischemic injury, inhibit platelet aggregation and astrocytes activation. The anti-inflammatory activity might be associated with the downregulation of TLR4/NF-κB signal pathway. Our present findings provide an innovative insight into the novel treatment of GDL in ischemic stroke therapy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qiru Fan
- Faculty of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Nishimon S, Yamaguchi M, Muraki H, Sakai N, Nishino S. Intraperitoneal injection of ginkgolide B, a major active compound of Ginkgo biloba, dose-dependently increases the amount of wake and decreases non-rapid eye movement sleep in C57BL/6 mice. Neurosci Lett 2020; 722:134832. [PMID: 32050100 DOI: 10.1016/j.neulet.2020.134832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
The terpene lactones of Ginkgo biloba extract, namely ginkgolides (A, B, and C) and bilobalide, possess antioxidant, anti-inflammatory, and neuroprotective effects. They are widely prescribed for the treatment of cerebral dysfunctions and neurological impairments. In addition, they demonstrate antagonistic action at the gamma-aminobutyric acid type A and glycine receptors, which are members of the ligand-gated ion channel superfamily. In the present study, the effects of ginkgolides (A, B, and C) and bilobalide on sleep in C57BL/6 mice were investigated. Ginkgolide B was found to dose-dependently increase the amount of wake and decrease that of non-rapid eye movement sleep without changes in the electroencephalography power density of each sleep/wake stage, core body temperature and locomotor activity for the first 6 h after intraperitoneal injection. Of note, the amount of wake after injection of 5 mg/kg of ginkgolide B showed a significant increase (14.9 %) compared with that of vehicle (P = 0.005). In contrast, there were no significant differences in the amount of sleep, core body temperature, and locomotor activity in the mice injected with ginkgolide A and C. Bilobalide briefly induced a decrease in locomotor activity but did not exert significant effects on the amounts of sleep and wake. The modes of action of the wake-enhancing effects of ginkgolide B are unknown. However, it may act through the antagonism of gamma-aminobutyric acid type A and glycine receptors because it is established that these inhibitory amino acids mediate sleep and sleep-related physiology. It is of interest to further evaluate the stimulant and awaking actions of ginkgolide B on the central nervous system in clinical and basic research studies.
Collapse
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mai Yamaguchi
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hisae Muraki
- Sleep Medical Center, Osaka Kaisei Hospital, Osaka, Japan
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
9
|
Liu Q, Jin Z, Xu Z, Yang H, Li L, Li G, Li F, Gu S, Zong S, Zhou J, Cao L, Wang Z, Xiao W. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. Cell Stress Chaperones 2019; 24:441-452. [PMID: 30815818 PMCID: PMC6439064 DOI: 10.1007/s12192-019-00977-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Ginkgolide terpenoid lactones, including ginkgolides and bilobalide, are two crucial bioactive constituents of extract of Ginkgo biloba (EGb) which was used in the treatment of cardiovascular and cerebrovascular diseases. The aims of this study were to investigate the antioxidant effects and mechanism of ginkgolides (ginkgolide A (GA), ginkgolide B (GB), ginkgolide K (GK)) and bilobalide (BB) against oxidative stress induced by transient focal cerebral ischemia. In vitro, SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 4 h followed by reoxygenation with ginkgolides and BB treatments for 6 h, and then cell viability, superoxide dismutase (SOD), and ROS were respectively detected using kit. Western blot was used to confirm the protein levels of hemeoxygenase-1 (HO-1), quinone oxidoreductase l (Nqo1), Akt, phosphorylated Akt (p-Akt), nuclear factor-E2-related factor2 (Nrf2), and phosphorylated Nrf2 (p-Nrf2). GB combined with different concentrations of LY294002 (PI3K inhibitor) were administrated to SH-SY5Y cells for 1 h after OGD, and then p-Akt and p-Nrf2 levels were detected by western blot. In vivo, 2 h of middle cerebral artery occlusion (MCAO) model was established, followed with reperfusion and GB treatments for 24 and 72 h. The infarct volume ratios were confirmed by TTC staining. The protein levels of HO-1, Nqo1, SOD1, Akt, p-Akt, Nrf2, and p-Nrf2 were detected using western blot and immunohistochemistry (IHC). Experimental data in vitro confirm that GA, GB, GK, and BB resulted in significant decrease of ROS and increase of SOD activities and protein levels of HO-1 and Nqo1; however, GB group had a significant advantage in comparison with the GA and GK groups. Moreover, after ginkgolides and BB treatments, p-Akt and p-Nrf2 were significantly upregulated, which could be inhibited by LY294002 in a dose-dependent manner, meanwhile, GB exhibited more effective than GA and GK. In vivo, TTC staining indicated that the infarct volume ratios in MCAO rats were dramatically decreased by GB in a dose-dependent manner. Furthermore, GB significantly upregulated the protein levels of HO-1, Nqo1, SOD, p-Akt, p-Nrf2, and Nrf2. In conclusion, GA, GB, GK, and BB significantly inhibited oxidative stress damage caused by cerebral ischemia reperfusion. Compared with GA, GK, and BB, GB exerts the strongest antioxidant stress effects against ischemic stroke. Moreover, ginkgolides and BB upregulated the levels of antioxidant proteins through mediating the Akt/Nrf2 signaling pathway to protect neurons from oxidative stress injury.
Collapse
Affiliation(s)
- Qiu Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhiquan Jin
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhiliang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Hao Yang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Liang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Guiping Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Fang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Shaoli Gu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Shaobo Zong
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Jun Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China.
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China.
| |
Collapse
|
10
|
Effects of bilobalide, ginkgolide B and picrotoxinin on GABA A receptor modulation by structurally diverse positive modulators. Eur J Pharmacol 2017; 806:83-90. [PMID: 28416372 DOI: 10.1016/j.ejphar.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Anxiolytics and anticonvulsants generally positively modulate the action of GABA, whereas many convulsants (including the chloride channel blocker picrotoxinin) negatively modulate the action of GABA on GABAA receptors. Like picrotoxinin, bilobalide and ginkgolide B, active constituents of Ginkgo biloba, have been shown to negatively modulate the action of GABA at α1β2γ2L GABAA receptors. However, unlike picrotoxinin, bilobalide and ginkgolide B are not known to cause convulsions. We have assessed the action of bilobalide, ginkgolide B and picrotoxinin on a range of GABAA modulators (etomidate, loreclezole, propofol, thiopentone sodium, diazepam, and allopregnanolone), using two-electrode voltage clamp electrophysiology at recombinant α1β2γ2L GABAA receptors expressed in Xenopus oocytes. The results indicate that bilobalide and ginkgolide B differ from picrotoxinin in their ability to inhibit the actions of a range of these structurally diverse GABAA positive modulators consistent with these modulators acting on a multiplicity of active sites associated with GABAA receptors. In the presence GABA, ginkgolide B was more potent than bilobalide in inhibiting the GABA-potentiating effect of propofol, equipotent against loreclezole and allopregnanolone, and less potent against etomidate, diazepam, and thiopentone sodium. This indicates that in comparison to picrotoxinin, bilobalide and ginkgolide B differ in their effects on the different modulators.
Collapse
|
11
|
Li Y, Wu Y, Yao X, Hao F, Yu C, Bao Y, Wu Y, Song Z, Sun Y, Zheng L, Wang G, Huang Y, Sun L, Li Y. Ginkgolide A Ameliorates LPS-Induced Inflammatory Responses In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18040794. [PMID: 28394269 PMCID: PMC5412378 DOI: 10.3390/ijms18040794] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Ginkgolide A (GA) is a natural compound isolated from Ginkgo biloba and has been used to treat cardiovascular diseases and diabetic vascular complications. However, only a few studies have been conducted on the anti-inflammatory effects of GA. In particular, no related reports have been published in a common inflammation model of lipopolysaccharide (LPS)-stimulated macrophages, and the anti-inflammatory mechanisms of GA have not been fully elucidated. In the present study, we extensively investigated the anti-inflammatory potential of GA in vitro and in vivo. We showed that GA could suppress the expression of pro-inflammatory mediators (cyclooxygenase-2 (COX-2) and nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β) in LPS-treated mouse peritoneal macrophages, mouse macrophage RAW264.7 cells, and differentiated human monocytes (dTHP-1) in vitro. These effects were partially carried out via downregulating Nuclear factor kappa-B (NF-κB), Mitogen-activated protein kinases (MAPKs) (p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinase (JNK), and activating the AMP-activated protein kinase (AMPK) signaling pathway also seems to be important. Consistently, GA was also shown to inhibit the LPS-stimulated release of TNF-α and IL-6 in mice. Taken together, these findings suggest that GA can serve as an effective inflammatory inhibitor in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Yannan Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Xinlei Yao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Fang Hao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Chunlei Yu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Yin Wu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Lihua Zheng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Guannan Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Yuxin Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
12
|
GABA Australis, some reflections on the history of GABA receptor research in Australia. Pharmacol Res 2016; 116:32-38. [PMID: 28017666 DOI: 10.1016/j.phrs.2016.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Research on GABA receptors has a long history in Australia dating from 1958 with David Curtis and his colleagues in Canberra. This review traces many of the advances made in Australia guided by highly cited publications and some obscure ones. It covers the discovery of key chemicals with which to investigate GABA receptor function including bicuculline, muscimol, phaclofen, THIP and (+)-CAMP. Also described are findings relevant to the involvement of mutant GABA receptors in inherited epilepsy. The modulation of GABA receptors by a bewildering range of chemicals, especially by flavonoids and terpenoids, is discussed.
Collapse
|