1
|
Zhang J, Li S, Qi Y, Shen J, Leng A, Qu J. Animal-derived peptides from Traditional Chinese medicines: medicinal potential, mechanisms, and prospects. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119872. [PMID: 40334760 DOI: 10.1016/j.jep.2025.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived traditional Chinese medicines have a long-standing history in Chinese medicine, which exhibit unique efficacy due to similar structure and function with human tissue. As the major types of constituents that accounted for a relatively high proportion of animal-derived TCMs, peptides with molecular weight between 100 Da and hundreds of thousands of kDa have caught wide attention due to their outstanding bioavailability and excellent specificity. AIM OF THE STUDY This review aims to comprehensively delve into the up-to-date research progress in their pharmacology, mechanism, sequence composition, and therapeutic application, laying a solid foundation for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on the peptides from animal-derived TCMs was collected from scientific literature databases including PubMed, CNKI, literature sources (Ph.D. and M.Sc. dissertations), and Web of Science by using the keywords "Peptides", "Animal", and "TCMs" for gradual screening in the past 30 years. RESULTS To date, the peptides from 27 kinds of animal-derived TCMs have been systematically combed. Their pharmacological activity and underlying mechanisms on multiple systems (nervous, circulatory, skeletal, and immune), as well as anti-tumor, antioxidative, and antimicrobial effects, have been sorted out. Besides, the potential safety issues and deficiencies (low bioavailability, imperfect quality management, and toxicity of raw materials) have also been pointed out. CONCLUSIONS Comprehensive analysis showed that low development and resource waste accompanied by the inadequate report about the pharmacological activity of most peptides from animal-derived TCMs make it have good research prospects. Although a breakthrough in the field of healthcare products has been made, the development potential for clinical products that bring surprising turnaround will be obtained if the above-mentioned confusions and current needs (improve identification technology and design reasonable dosage forms) are implemented.
Collapse
Affiliation(s)
- Jiahui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Siyi Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yueyi Qi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Jieyu Shen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Aijing Leng
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
2
|
Shi X, Ma J, Liu W, Shen J, Xu G, Zhang J, Liu L. Pharmacokinetics Integrated With Network Pharmacology to Investigate the Potential Mechanism of Lu-Jiao Fang Inhibited Endothelial-to-Mesenchymal Transition in Pressure Overload-Induced Cardiac Fibrosis. Biomed Chromatogr 2025; 39:e6075. [PMID: 39775935 DOI: 10.1002/bmc.6075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats. Loganin, morroniside, salidroside, isopsoralen, and psoralen showed higher plasma, left and right ventricular Cmax and AUC0-t values than hesperidin, specnuezhenide, and icariside II. Twenty-four potential targets related to EndMT were identified, which were mainly involved in relaxin signaling pathway. AKT1, TP53, MMP9, HIF1A, Snail1, and MMP2 were key therapeutic targets in protein-protein interaction network. LJF reversed cardiac dysfunction, left ventricular dilation, and fibrosis and significantly downregulated collagen type I and III and EndMT regulators (Snail1 and Twist1) mRNA expression. In relaxin signaling pathway, the RXFP1 protein expression increased by 22.52%, and the protein phosphorylation of Smad2 and Smad3 decreased by 33.52% and 12.79%, in response to the treatment with LJF. This study initially revealed the EndMT inhibition effects and molecular mechanisms of LJF in cardiac fibrosis, providing a reference basis for the promotion of LJF in the clinic.
Collapse
Affiliation(s)
- Xiaoli Shi
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingya Ma
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Shen
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanglin Xu
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwei Zhang
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Xu JJ, Dai J, Xie QH, Du PC, Li C, Zhou H. Effect of Luhong formula on the cardiac rehabilitation of patients with chronic heart failure. World J Clin Cases 2024; 12:3027-3034. [PMID: 38898832 PMCID: PMC11185362 DOI: 10.12998/wjcc.v12.i17.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Current treatments for chronic heart failure (CHF) are therapeutically ineffective. The optimization of treatments for this disease needs to be explored and analyzed. AIM To analyze the effect of using Luhong Formula in the cardiac rehabilitation of patients with CHF and its influence on cardiopulmonary function (CPF) and prognosis. METHODS In total, 160 patients with CHF admitted between June 2022 and June 2023 were selected, including 75 receiving perindopril (control group) and 85 receiving Luhong Formula (research group). We conducted comparative analyses on the curative effects of traditional Chinese medicine (TCM) syndromes and cardiac function, CPF [oxygen consumption at the anaerobic threshold (VO2 AT) and at peak exercise (peak VO2)], echocardiographic indexes [left atrial volume index (LAVI), left ventricular muscle mass index (LVMI), left ventricular ejection fraction (LVEF)], and prognosis [major adverse cardiovascular events (MACEs) at 6 months follow-up]. RESULTS The research group showed markedly higher curative effects of TCM syndromes and cardiac function than the control group. In addition, post-treatment VO2 AT, peak VO2, LVMI and LVEF in the research group were significantly higher, whereas LAVI was significantly lower, than those of the control group. Furthermore, fewer patients in the research group developed MACEs at the 6-month follow-up. CONCLUSION Luhong Formula is more therapeutically effective than perindopril for the cardiac rehabilitation of patients with CHF, specifically in enhancing CPF and prognosis.
Collapse
Affiliation(s)
- Ji-Jie Xu
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Jian Dai
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Qi-Hai Xie
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Pei-Chao Du
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Cha Li
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Hua Zhou
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| |
Collapse
|
4
|
Sun H, Xiao D, Liu W, Li X, Lin Z, Li Y, Ding Y. Well-known polypeptides of deer antler velvet with key actives: modern pharmacological advances. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:15-31. [PMID: 37555852 DOI: 10.1007/s00210-023-02642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Deer antler velvet, with kidney tonifying, promoting the production of essence and blood, strengthening tendons and bones, not only has a thousand-year medicinal history but also its modern pharmacology mainly focuses on its active polypeptides on motor, nerve, and immune systems. The purpose of this report is to fill the gap in the comprehensive, systematic, and detailed review of polypeptides during the recent 30 years (1992-2023). The research method was to review 53 pharmacological articles from the Public Medicine, Web of science, ACS, and Science Direct database sources by searching the keywords "pilose antler," "deer velvet," "Pilose Antler Peptide (PAP) and Velvet Antler Polypeptide (VAP)." The results showed that deer antler polypeptides (DAPs), by regulating EGF, EGFR, MAPK, P38, ERK, NF-κB, Wnt, PI3K, Akt, MMP, AMPK, Stir1, NLRP3, HO-1, Nrf, Rho, TLR, TGF-β, Smad, Ang II, etc., revealed their effects on seven system-related diseases and their mechanisms, including osteoarthritis, intervertebral disc degeneration, osteoporosis, Alzheimer's, Parkinson's, triple-negative breast cancer, liver injury, liver fibrosis, cardiovascular disease, acute lung injury, and late-onset hypogonadism. In conclusion, DAPs have good effects on motor and other system-related diseases, but the secondary and tertiary structures of DAPs (0.5-1800 KDa) need to be further elucidated, and the structure-activity relationship study is still unavailable and needs to be covered. It is expected that this review may provide the necessary literature support for further research. The activities and mechanisms of polypeptides from the past 30 years (1992-2023) are summarized covering seven systems, related diseases, and its regulatory genes and proteins.
Collapse
Affiliation(s)
- He Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xue Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
5
|
Qin L, Mei Y, An C, Ning R, Zhang H. Docosahexaenoic acid administration improves diabetes-induced cardiac fibrosis through enhancing fatty acid oxidation in cardiac fibroblast. J Nutr Biochem 2023; 113:109244. [PMID: 36470335 DOI: 10.1016/j.jnutbio.2022.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus can lead to various complications, including organ fibrosis. Metabolic remodeling often occurs during the development of organ fibrosis. Docosahexaenoic acid (DHA), an essential ω-3 polyunsaturated fatty acid, shows great benefits in improving cardiovascular disease and organ fibrosis, including regulating cellular metabolism. In this study, we investigated whether DHA can inhibit diabetes-induced cardiac fibrosis by regulating the metabolism of cardiac fibroblasts. Type I diabetic mice were induced by streptozotocin and after supplementation with DHA for 16 weeks, clinical indicators of serum and heart were evaluated. DHA administration significantly improved serum lipid levels, cardiac function and cardiac interstitial fibrosis, but not blood glucose levels. Subsequently, immunofluorescences, western blot and label-free quantitative proteomics methods were used to study the mechanism. The results showed that the anti-fibrotic function of DHA was achieved through regulating extracellular matrix homeostasis including ECM synthesis and degradation. Our research demonstrated DHA regulated the energy metabolism of cardiac fibroblasts, especially fatty acid oxidation, and then affected the balance of ECM synthesis and degradation. It suggested that DHA supplementation could be considered an effective adjuvant therapy for cardiac fibrosis caused by hyperglycemia.
Collapse
Affiliation(s)
- Linhui Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengcheng An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Liu M, Long X, Xu J, Chen M, Yang H, Guo X, Kang J, Ouyang Y, Luo G, Yang S, Zhou H. Hypertensive heart disease and myocardial fibrosis: How traditional Chinese medicine can help addressing unmet therapeutical needs. Pharmacol Res 2022; 185:106515. [DOI: 10.1016/j.phrs.2022.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
|
7
|
Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022; 14:nu14194183. [PMID: 36235835 PMCID: PMC9572057 DOI: 10.3390/nu14194183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Deer antler is widely used as a nutraceutical in Asian countries. In the past decades, deer antler peptides (DAPs) have received considerable attention because of their various biological properties such as antioxidant, anti-inflammatory, anti-bone damage, anti-neurological disease, anti-tumor and immunomodulatory properties. This review describes the production methods of DAPs and the recent progress of research on DAPs, focusing on the physiological functions and their regulatory mechanisms.
Collapse
|
8
|
Mao R, Du D, Zhu X, Li W. Velvet antler polypeptide combined with calcium phosphate coating to protect peripheral nerve cells from oxidative stress. J Mol Histol 2022; 53:915-923. [PMID: 36036305 DOI: 10.1007/s10735-022-10099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Functionalizing biomaterial substrates with biological signals shows promise in regulating cell behaviors through mimicking cellular microenvironment. Calcium phosphate (CaP) coating is an excellent carrier for immobilizing biological molecules due to its non-toxicity, good biocompatibility, biodegradability, and favorable affinity to plenty of molecules. In this study, we reported the adhesion, the viability and proliferation behaviors after oxidative stress injury of Schwann cells RSC96 on CaP immobilized with the Velvet Antler Peptide (VAP) isolated from velvet antler through coprecipitation process in modified Dulbecco's phosphate-buffered saline (DPBS) containing VAP. This approach provided well retention of functional molecules up to 28 days, and supported the adhesion and proliferation of RSC96 after oxidative stress injury without cytotoxicity. The simple and reproducible method of coprecipitation suggests that CaP is an ideal carrier to functionalize materials with biological molecules for peripheral nerve repair-related applications.
Collapse
Affiliation(s)
- Renqun Mao
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China
| | - Dalian Du
- Department of Gynaecology, Shenzhen Nanshan District Maternal and Chlid Health Care Hospital, Shenzhen, 518000, People's Republic of China
| | - Xiaodi Zhu
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China
| | - Wenqing Li
- Department of Hand-Foot Microsurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People's Republic of China.
| |
Collapse
|
9
|
Xue F, Wang B, Guo DX, Jiao Y, Yin X, Cui WL, Zhou QQ, Yu FR, Lin YQ. Peptide Biomarkers Discovery for Seven Species of Deer Antler Using LC-MS/MS and Label-Free Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154756. [PMID: 35897939 PMCID: PMC9331363 DOI: 10.3390/molecules27154756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Deer antler is a globally widely used precious natural medicine and the material of deer horn gelatin. However, identification of deer antler species based on traditional approaches are problematic because of their similarity in appearance and physical-chemical properties. In this study, we performed a comprehensive antler peptidome analysis using a label-free approach: nano LC-Orbitrap MS was applied to discover peptide biomarkers in deer adult beta-globin (HBBA), and HPLC-Triple Quadrupole MS was used to verify their specificity. Nineteen peptide biomarkers were found, on which foundation a strategy for antlers and a strategy for antler mixtures such as flakes or powder are provided to identify seven species of deer antler including Eurasian elk (Alces alces), reindeer (Rangifer tarandus), white-tailed deer (Odocoileus viginianus), white-lipped deer (Przewalskium albirostris), fallow deer (Dama dama), sika deer (Cervus nippon), and red deer (Cervus elaphus) simultaneously. It is worth noting that our search found that the HBBA gene of sika deer, red deer, and North American wapiti (Cervus canadensis) in China may have undergone severe genetic drifts.
Collapse
|
10
|
Zhang G, Wang D, Ren J, Sun H, Li J, Wang S, Shi L, Wang Z, Yao M, Zhao H, Li C. Velvet Antler Peptides Reduce Scarring via Inhibiting the TGF-β Signaling Pathway During Wound Healing. Front Med (Lausanne) 2022; 8:799789. [PMID: 35127757 PMCID: PMC8814364 DOI: 10.3389/fmed.2021.799789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
AIM Scar formation generally occurs in cutaneous wound healing in mammals, mainly caused by myofibroblast aggregations, and currently with few effective treatment options. However, the pedicle wound (about 10 cm in diameter) of the deer can initiate regenerative healing, which has been found to be achieved via paracrine factors from the internal tissues of antlers. METHODS Enzymatically digested velvet antler peptides (EVAP) were prepared along with other types of antler extracts as the controls. The effects of EVAP on healing of full-thickness skin wounds were evaluated using rats in vivo, and on myofibroblast transdifferentiation tested using transforming growth factor-β1 (TGF-β1)-induced human dermal fibroblasts in vitro. RESULTS EVAP significantly accelerated the wound healing rate, reduced scar formation, and improved the healing quality, including promoted angiogenesis, increased number of skin appendages (hair follicles and sebaceous glands) and improved the distribution pattern of collagen fibers (basket-wave like) in the healed tissue. Moreover, EVAP significantly down-regulated the expression levels of genes pro- scar formation (Col1a2 and TGF-β1), and up-regulated the expression levels of genes anti-scar formation (Col3a1 and TGF-β3), and suppressed the excessive transdifferentiation of myofibroblasts and the formation of collagen I in vivo and in vitro. Furthermore, we found these effects were highly likely achieved by inhibiting the TGF-β signaling pathway, evidenced by decreased expression levels of the related genes, including TGF-β1, Smad2, p-Smad2, α-SMA, and collagen I. CONCLUSIONS EVAP may be a promising candidate to be developed as a clinic drug for regenerative wound healing.
Collapse
Affiliation(s)
- Guokun Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Jilin Academy of Sika Deer Industry, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Dongxu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Hongmei Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Shengnan Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Liyan Shi
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| | - Mengjie Yao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Haiping Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Jilin Academy of Sika Deer Industry, Changchun, China
- Key Laboratory of Antler Biology of Jilin, Changchun, China
| |
Collapse
|
11
|
Jiang W, Zhang J, Zhang X, Fan C, Huang J. VAP-PLGA microspheres (VAP-PLGA) promote adipose-derived stem cells (ADSCs)-induced wound healing in chronic skin ulcers in mice via PI3K/Akt/HIF-1α pathway. Bioengineered 2021; 12:10264-10284. [PMID: 34720043 PMCID: PMC8810082 DOI: 10.1080/21655979.2021.1990193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic skin ulcers are a primary global health problem. Velvet antler polypeptide (VAP) regulates endothelial cell migration and angiogenic sprout. Adipose-derived stem cells (ADSCs) are reported to make pivotal impacts upon wound healing. This study aimed to explore the role of VAP combined with ADSCs in wound healing of chronic skin ulcers. The effect of VAP on phenotypes of ADSCs, and VAP (PLGA microspheres) combining with ADSCs on wound healing of chronic skin ulcers in vivo was evaluated. VAP generally promoted the proliferation, migration and invasion of ADSCs, and ADSC-induced angiogenesis in human umbilical vein endothelial cells (HUVECs) through PI3K/Akt/HIF-1α pathway. VAP-PLGA (PLGA microspheres) enhanced the promoting effect of ADSCs on wound healing, pathological changes, and angiogenesis in chronic skin ulcers in vivo. VAP-PLGA intensified the effect of ADSCs on up-regulating the levels of p-PI3K/PI3K, p-Akt/Akt, HIF-1α, vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1), C-X-C motif chemokine receptor 4 (CXCR4), angiopoietin-4 (Ang-4), VEGF receptor (VEGFR), and transforming growth factor-β1 (TGF-β1), and down-regulating the levels of interleukin-1 β (IL-1β), IL-18 and IL-6 in wound tissues in chronic skin ulcers in vivo. Collectively, VAP promoted the growth, migration, invasion, and angiogenesis of ADSCs through activating PI3K/Akt/HIF-1α pathway, and VAP-PLGA enhanced the function of ADSCs in promoting wound healing in vivo, which was associated with angiogenesis, inflammation inhibition, and dermal collagen synthesis.
Collapse
Affiliation(s)
- Wen Jiang
- First Clinical School Medicine, Nanjing University of Chinese Medicine, Nanjing City, China
| | - Jun Zhang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, China
| | - Xudong Zhang
- Department of Aesthetic and Plastic Surgery, 903RD Hospital of Pla, Hangzhou City, China
| | - Chenghong Fan
- Aesthetic Surgery Department, Lishui Fan Chenghong Medical Aesthetic Clinic, Lishui City, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, China
| |
Collapse
|
12
|
Xu Y, Qu X, Zhou J, Lv G, Han D, Liu J, Liu Y, Chen Y, Qu P, Huang X. Pilose Antler Peptide-3.2KD Ameliorates Adriamycin-Induced Myocardial Injury Through TGF-β/SMAD Signaling Pathway. Front Cardiovasc Med 2021; 8:659643. [PMID: 34124197 PMCID: PMC8194399 DOI: 10.3389/fcvm.2021.659643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adriamycin (ADR)-based combination chemotherapy is the standard treatment for some patients with tumors in clinical, however, long-term application can cause dose-dependent cardiotoxicity. Pilose Antler, as a traditional Chinese medicine, first appeared in the Han Dynasty and has been used to treat heart disease for nearly a thousand years. Previous data revealed pilose antler polypeptide (PAP, 3.2KD) was one of its main active components with multiple biological activities for cardiomyopathy. PAP-3.2KD exerts protective effects againt myocardial fibrosis. The present study demonstrated the protective mechanism of PAP-3.2KD against Adriamycin (ADR)-induced myocardial injury through using animal model with ADR-induced myocardial injury. PAP-3.2KD markedly improved the weight increase and decreased the HW/BW index, heart rate, and ST height in ADR-induced groups. Additionally, PAP-3.2KD reversed histopathological changes (such as disordered muscle bundles, myocardial fibrosis and diffuse myocardial cellular edema) and scores of the heart tissue, ameliorated the myocardial fibrosis and collagen volume fraction through pathological examination, significantly increased the protein level of Bcl-2, and decreased the expression levels of Bax and caspase-3 in myocardial tissue by ELISA, compared to those in ADR-induced group. Furthermore, ADR stimulation induced the increased protein levels of TGF-β1 and SMAD2/3/4, the increased phosphorylation levels of SMAD2/3 and the reduced protein levels of SMAD7. The expression levels of protein above in ADR-induced group were remarkably reversed in PAP-3.2KD-treated groups. PAP-3.2KD ameliorated ADR-induced myocardial injury by regulating the TGF-β/SMAD signaling pathway. Thus, these results provide a strong rationale for the protective effects of PAP against ADR-induced myocardial injury, when ADR is used to treat cancer.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaobo Qu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Zhou
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jinlong Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Yuexin Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaowei Huang
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Qin L, Zang M, Xu Y, Zhao R, Wang Y, Mi Y, Mei Y. Chlorogenic Acid Alleviates Hyperglycemia-Induced Cardiac Fibrosis through Activation of the NO/cGMP/PKG Pathway in Cardiac Fibroblasts. Mol Nutr Food Res 2021; 65:e2000810. [PMID: 33200558 DOI: 10.1002/mnfr.202000810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Indexed: 12/12/2022]
Abstract
SCOPE Hyperglycemia-induced cardiac fibrosis is one of the main causes of diabetic cardiomyopathy (DM). Chlorogenic acid (CGA) found in many foods has excellent hypoglycemic effectiveness, but it is not known whether CGA can improve DM by inhibiting cardiac fibrosis caused by hyperglycemia. METHODS AND RESULTS Type I diabetic mice are induced by streptozotocin, and after treatment with CGA for 12 weeks, cardiac functions and fibrosis are determined. CGA significantly attenuates hyperglycemia-induced cardiac fibrosis and improves cardiac functions. The mechanism of CGA on fibrotic inhibition is further studied by immunofluorescence, western blot and RNA interference technology in vivo and in vitro. The results show CGA exerted its anti-fibrotic effects through activating the cyclic GMP/protein kinase G pathway (cGMP/PKG) to block hyperglycemia-induced nuclear translocation of p-Smad2/3, and then inhibiting pro-fibrotic gene expression in cardiac fibroblasts without depending on its hypoglycemic function. Moreover, the data also revealed that CGA increased cGMP level and activated PKG in cardiac fibroblasts by enhancing endothelial nitric oxide synthase (eNOS) activity and NO production. CONCLUSION Besides lowering blood glucose, CGA also has an independent ability to inhibit cardiac fibrosis. Therefore, long-term consumption of foods rich in CGA for diabetic patients will have great benefits to improve diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Linhui Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Mingxi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Rongrong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yating Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yang Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
14
|
Babapoor-Farrokhran S, Tarighati Rasekhi R, Gill D, Alzubi J, Mainigi SK. How transforming growth factor contributes to atrial fibrillation? Life Sci 2020; 266:118823. [PMID: 33309721 DOI: 10.1016/j.lfs.2020.118823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most common clinically significant arrhythmia. There are four fundamental pathophysiological mechanisms of AF including: electrical remodeling, structural remodeling, autonomic nervous system changes, and Ca2+ handling abnormalities. The transforming growth factor-β (TGF-β) superfamily are cytokines that have the ability to regulate numerous cell functions including proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and production of extracellular matrix. During the last decade numerous studies have demonstrated that TGF-β affects the architecture of the heart. TGF-β1 has been shown to be involved in the development and propagation of atrial fibrillation (AF). Investigators have studied TGF-β signaling in AF with the aim of discovering potential therapeutic agents. In this review we discuss the role of TGF-β in atrial fibrillation and specifically its role in atrial structural and electrical remodeling.
Collapse
Affiliation(s)
| | - Roozbeh Tarighati Rasekhi
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Deanna Gill
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jafar Alzubi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Sumeet K Mainigi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Jang DW, Ameer K, Oh JH, Park MK. Optimization and Pretreatment for Hot Water Extraction of Korean Deer ( Cervus canadensis Erxleben) Velvet Antlers. J Microbiol Biotechnol 2020; 30:1116-1123. [PMID: 32423187 PMCID: PMC9728161 DOI: 10.4014/jmb.2004.04009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Velvet antler (VA) is a historically traditional medicinal supplement and is well known in Asian countries for its pharmaceutical and health benefits. The objectives for this study were to optimize the hot water extraction (HWE) of VA for the Korean VA industry, and to determine the most effective pretreatment method among microwave (MW), ultrasonication (US), and enzymatic (EZ) techniques. Using response surface methodology, optimum extraction temperatures and times were determined by central composite design configuration based on extraction yield and sialic acid content. Various quality parameters of VA extract including yield, soluble solid, protein, and sialic acid contents were also compared with the conjunction of HWE and pretreatment. The yield and sialic acid content of VA extract were determined to be 40% and 0.73 mg/g, respectively, under an optimum temperature of 100°C at 24 h of extraction time. The yields from VA extracts pretreated with MW, US, and EZ were 17.42%, 19.73%, and 29.15%, respectively. Among the tested commercial enzymes, pepsin was the most effective proteolytic enzyme and led to the highest yield (47.65%), soluble solids (4.03 °brix), protein (1.12 mg/ml), and sialic acid (3.04 mg/ml) contents from VA extract.
Collapse
Affiliation(s)
- Dong Wook Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kashif Ameer
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwangju 61186, Republic of Korea,Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Jun-Hyun Oh
- Department of Plant and Food Sciences, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-960-5776 Fax: +82-53-950-6772 E-mail:
| |
Collapse
|
16
|
Zhao R, Wang J, Qin L, Zhang X, Mei Y. Stevioside improved hyperglycemia-induced cardiac dysfunction by attenuating the development of fibrosis and promoting the degradation of established fibrosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
17
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
18
|
Qin L, Wang J, Zhao R, Zhang X, Mei Y. Ginsenoside-Rb1 Improved Diabetic Cardiomyopathy through Regulating Calcium Signaling by Alleviating Protein O-GlcNAcylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14074-14085. [PMID: 31793297 DOI: 10.1021/acs.jafc.9b05706] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ginsenoside-Rb1 (Rb1), a major active component of ginseng, has many benefits for cardiovascular disease and diabetes mellitus (DM), but the effect and mechanism on diabetic cardiomyopathy are not clear. In the present study, we found that Rb1-feeding significantly improved cardiac dysfunction and abnormal cardiomyocytes calcium signaling caused by diabetes. This improved calcium signaling was because Rb1 reduced Ca2+ leakage caused by overactivated ryanodine receptor 2 (RyR2) and increased Ca2+ uptake by sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA 2a). Furthermore, we found that Rb1 not only enhanced energy metabolism like metformin and eliminated O-GlcNAcylation of calcium handling proteins to regulate calcium signaling but also directly inhibited RyR2 activity to regulate calcium signaling. The present study indicated that as a health supplement or drug, Rb1 was a relatively effective auxiliary therapeutic substance for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Linhui Qin
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , China
| | - Jianping Wang
- Chengdu Slan Biotechnology Co., Ltd. , Chengdu 610041 , Sichuan , China
| | - RongRong Zhao
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , China
| | - Xiao Zhang
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , China
| | - Yingwu Mei
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , China
| |
Collapse
|
19
|
Zhang S, Yin Z, Dai F, Wang H, Zhou M, Yang M, Zhang S, Fu Z, Mei Y, Zang M, Xue L. miR‐29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J Cell Physiol 2018; 234:13252-13262. [PMID: 30580435 DOI: 10.1002/jcp.27997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Si Zhang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
- Department of Clinical Laboratory The Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
| | - Fei‐Fei Dai
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Hao Wang
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| | - Meng‐Jiao Zhou
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Hui Yang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Shu‐Feng Zhang
- Department of Pediatrics, The People's Hospital of Henan Province Zhengzhou Henan Peoples's Republic of China
| | - Zhi‐Feng Fu
- Statistics and Actuarial Science Department, Faculty of Science The University of Hong Kong Pok Fu Lam Hong Kong SAR Peoples's Republic of China
| | - Ying‐Wu Mei
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Xi Zang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Lixiang Xue
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| |
Collapse
|
20
|
Wang W, Wang C, Li L, Sun P. Inhibition of TGF-β1 might be a novel therapeutic target in the treatment of cardiac fibrosis. Int J Cardiol 2018; 256:19. [PMID: 29454401 DOI: 10.1016/j.ijcard.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Chunsong Wang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng 252000, PR China.
| | - Lin Li
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Peng Sun
- Department of VIP, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| |
Collapse
|
21
|
Xie J, Tu T, Zhou S, Liu Q. Transforming growth factor (TGF)-β1 signal pathway: A promising therapeutic target for attenuating cardiac fibrosis. Int J Cardiol 2018; 239:9. [PMID: 28560990 DOI: 10.1016/j.ijcard.2017.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jin Xie
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province 410011, China
| | - Tao Tu
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province 410011, China
| | - Shenghua Zhou
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province 410011, China
| | - Qiming Liu
- Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province 410011, China.
| |
Collapse
|
22
|
Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res Int 2016; 89:63-73. [PMID: 28460959 DOI: 10.1016/j.foodres.2016.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 11/15/2022]
Abstract
There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| |
Collapse
|