1
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
2
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
3
|
Chen K, Xu B, Xiao X, Long L, Zhao Q, Fang Z, Tu X, Wang J, Xu J, Wang H. Involvement of CKS1B in the anti-inflammatory effects of cannabidiol in experimental stroke models. Exp Neurol 2024; 373:114654. [PMID: 38104887 DOI: 10.1016/j.expneurol.2023.114654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
We have previously demonstrated that treatment with cannabidiol (CBD) ameliorates mitochondrial dysfunction and attenuates neuronal injury in rats following cerebral ischemia. However, the role of CBD in the progression of ischemic stroke-induced inflammation and the molecules involved remain unclear. Here, we found that CBD suppressed the production of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced the activation of microglia, ameliorated mitochondrial deficits, and decreased the phosphorylation of nuclear factor κ-B (NF-κB) in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cyclin-dependent kinase regulatory subunit 1B (CKS1B) expression was decreased in BV-2 cells following OGD/R and this reduction was blocked by treatment with CBD. Knockdown of CKS1B increased the activation of microglia and enhanced the production of IL-1β and TNF-α in BV-2 cells treated with CBD. Moreover, CKS1B knockdown exacerbated mitochondrial deficits and increased NF-κB phosphorylation. CBD treatment also ameliorated brain injury, reduced neuroinflammation, and enhanced the protein levels of mitochondrial transcription factor A and CKS1B in rats following middle cerebral artery occlusion/reperfusion. These data identify CKS1B as a novel regulator of neuroinflammation; and reveals its involvement in the anti-inflammatory effects of CBD. Interventions targeting CKS1B expression are potentially promising for treating in ischemic stroke.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zicen Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingxing Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiakang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
4
|
Slayden A, Mysiewicz S, North K, Dopico A, Bukiya A. Cerebrovascular Effects of Alcohol Combined with Tetrahydrocannabinol. Cannabis Cannabinoid Res 2024; 9:252-266. [PMID: 36108317 PMCID: PMC10874832 DOI: 10.1089/can.2021.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied. Thus, we set to address the effect of simultaneous application of alcohol and (-)-trans-Δ-9-tetrahydrocannabinol (THC) on cerebral artery diameter. Materials and Methods: We used Sprague-Dawley rats because rat cerebral circulation closely mimics morphology, ultrastructure, and function of cerebral circulation of humans. We focused on the middle cerebral artery (MCA) because it supplies blood to the largest brain territory when compared to any other cerebral artery stemming from the circle of Willis. Experiments were performed on pressurized MCA ex vivo, and in cranial windows in vivo. Ethanol and THC were probed at physiologically relevant concentrations. Researchers were "blind" to experimental group identity during data analysis to avoid bias. Results: In males, ethanol mixed with THC resulted in greater constriction of ex vivo pressurized MCA when compared to the effects exerted by separate application of each drug. In females, THC, ethanol, or their mixture failed to elicit measurable effect. Vasoconstriction by ethanol/THC mixture was ablated by either endothelium removal or pharmacological block of calcium- and voltage-gated potassium channels of large conductance (BK type) and cannabinoid receptors. Block of prostaglandin production and of endothelin receptors also blunted constriction by ethanol/THC. In males, the in vivo constriction of MCA by ethanol/THC did not differ from ethanol alone. In females, the in vivo constriction of this artery by ethanol was significantly smaller than in males. However, artery constriction by ethanol/THC did not differ from the constriction in males. Conclusions: Our data point at the complex nature of the cerebrovascular effects elicited by simultaneous use of ethanol and THC. These effects include both local and systemic components.
Collapse
Affiliation(s)
- Alexandria Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kelsey North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
6
|
Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol 2023; 14:1247550. [PMID: 37841923 PMCID: PMC10568629 DOI: 10.3389/fphar.2023.1247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.
Collapse
Affiliation(s)
- Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Meyer E, Rieder P, Gobbo D, Candido G, Scheller A, de Oliveira RMW, Kirchhoff F. Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke. Int J Mol Sci 2022; 23:12886. [PMID: 36361675 PMCID: PMC9659180 DOI: 10.3390/ijms232112886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies.
Collapse
Affiliation(s)
- Erika Meyer
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Gabriella Candido
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Rúbia Maria Weffort de Oliveira
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| |
Collapse
|
9
|
Santiago-Castañeda C, Huerta de la Cruz S, Martínez-Aguirre C, Orozco-Suárez SA, Rocha L. Cannabidiol Reduces Short- and Long-Term High Glutamate Release after Severe Traumatic Brain Injury and Improves Functional Recovery. Pharmaceutics 2022; 14:pharmaceutics14081609. [PMID: 36015236 PMCID: PMC9414526 DOI: 10.3390/pharmaceutics14081609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal). Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI). These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.
Collapse
Affiliation(s)
- Cindy Santiago-Castañeda
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Saúl Huerta de la Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Christopher Martínez-Aguirre
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Sandra Adela Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI (CMN-SXXI), Mexico City 06720, Mexico;
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
- Correspondence: ; Tel.: +52-55-5483-2800
| |
Collapse
|
10
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
11
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Khaksar S, Bigdeli M, Samiee A, Shirazi-zand Z. Antioxidant and Anti-apoptotic Effects of Cannabidiol in Model of Ischemic Stroke in Rats. Brain Res Bull 2022; 180:118-130. [DOI: 10.1016/j.brainresbull.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
|
13
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
14
|
Lee TK, Kim DW, Lee JC, Park CW, Sim H, Ahn JH, Park JH, Shin MC, Cho JH, Lee CH, Won MH, Choi SY. Changes in Cyclin D1, cdk4, and Their Associated Molecules in Ischemic Pyramidal Neurons in Gerbil Hippocampus after Transient Ischemia and Neuroprotective Effects of Ischemic Preconditioning by Keeping the Molecules in the Ischemic Neurons. BIOLOGY 2021; 10:biology10080719. [PMID: 34439951 PMCID: PMC8389197 DOI: 10.3390/biology10080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Cyclin D1 and cyclin-dependent kinase 4 (cdk4) is implicated in neuronal death induced by various pathological conditions. Ischemic preconditioning (IPC) confers neuroprotective effect, but underlying mechanisms have been poorly addressed. In this study, IPC protected pyramidal neurons (cells) in gerbil hippocampus after transient ischemia. Additionally, IPC controlled expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2 promoter binding factor 1 (E2F1). In particular, the expression of p16INK4a was not different by IPC. These findings indicate that cyclin D1/cdk4-related signals may play important roles in events in neurons related to damage/death following ischemic insults. Especially, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults. Abstract Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| |
Collapse
|
15
|
The downregulation of NCXs is positively correlated with the prognosis of stage II-IV colon cancer. World J Surg Oncol 2021; 19:177. [PMID: 34127021 PMCID: PMC8204472 DOI: 10.1186/s12957-021-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Colon cancer (CC) is a very common gastrointestinal tumor that is prone to invasion and metastasis in the late stage. This study aims to observe the expression of Na+/Ca2+ exchangers (NCXs) and analyze the correlation between NCXs and the prognosis of CC. Methods Specimens of 111 stage II–IV CC patients were collected. We used western blotting, qPCR, and immunohistochemical staining to observe the distributions and expression levels of NCX isoforms (NCX1, NCX2, and NCX3) in CC and distal normal tissues. Cox proportional hazards models were used to assess prognostic factors for patients. Results The expression of NCXs in most tumor specimens was lower than that in normal tissues. The NCX expression levels in tumor tissues from the primary tumor, local lymph node metastasis sites, and distant liver metastasis sites were increasingly significantly lower than those in normal tissues. The results of the Kaplan-Meier survival curves showed that the downregulation of any NCX isoform was closely related to the worse prognosis of advanced CC. Conclusion NCXs can be used as independent prognostic factors for CC. Our research results are expected to provide new targets for the treatment of CC.
Collapse
|
16
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
17
|
Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, Singh HN. Differentially Expressed Genes and Their Clinical Significance in Ischaemic Stroke: An In-Silico Study. Malays J Med Sci 2021; 27:53-67. [PMID: 33447134 PMCID: PMC7785266 DOI: 10.21315/mjms2020.27.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS. Methods Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package ‘affy’ was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations. Results GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented. Conclusion The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.
Collapse
Affiliation(s)
| | | | | | - Hina Sharma
- National Network of Depression Centers India Foundation, New Delhi, India
| | | | - Vishnu Swarup
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
18
|
Ramdan M, Bigdeli MR, Khaksar S, Aliaghaei A. Evaluating the effect of transplanting umbilical cord matrix stem cells on ischemic tolerance in an animal model of stroke. Neurol Res 2020; 43:225-238. [PMID: 33167823 DOI: 10.1080/01616412.2020.1839698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Stroke, a cerebrovascular disease, has been introduced as the second cause of death and physical disability in the world. Recently, cell-based therapy has been considered by the scientific community as a promising strategy for reducing ischemic damages. The stem cells of the umbilical cord release growth and neurotrophic factors. The remarkable properties of these cells are the reason why they were selected as a potential candidate in the present research. METHODS In this study, the impact of transplanting umbilical cord stem cells on injuries resulting from ischemia was investigated. The male rats were categorized into three major. Using stereotaxic surgery, stem cells were injected to the right striatum of the brain. One week after transplantation, cerebral ischemic induction surgery was performed. The rats in the transplantation + ischemia group were separately divided into distinct sub-groups to explore the score of the neurological deficits, infarction volume, integrity of the blood-brain barrier, and brain edema. RESULTS In this study, a significant decrease was observed in the neurological deficits of the transplantation + ischemia group compared with those of the control group. Similarly, the volume of infarction, the permeability of the blood-brain barrier, and edema were significantly reduced in the transplantation + ischemia group in comparison with those of the control group. CONCLUSION The pretreatment of the transplanted umbilical cord stem cells in the striatum of ischemic rats possibly leads to restorative events, exerting a decreasing effect on cell death. Subsequently, these events may improve the motor ability and reduce ischemic injuries.
Collapse
Affiliation(s)
- Mahmoud Ramdan
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran, Iran.,Inistitute for Cognitive and Brain Science, Shahid Beheshti University , Tehran, Iran
| | - Sepideh Khaksar
- Department of Plant Sciences, Biological Sciences, Alzahra University , Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy Department, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
19
|
Chovancova B, Liskova V, Babula P, Krizanova O. Role of Sodium/Calcium Exchangers in Tumors. Biomolecules 2020; 10:biom10091257. [PMID: 32878087 PMCID: PMC7563772 DOI: 10.3390/biom10091257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
The sodium/calcium exchanger (NCX) is a unique calcium transport system, generally transporting calcium ions out of the cell in exchange for sodium ions. Nevertheless, under special conditions this transporter can also work in a reverse mode, in which direction of the ion transport is inverted—calcium ions are transported inside the cell and sodium ions are transported out of the cell. To date, three isoforms of the NCX have been identified and characterized in humans. Majority of information about the NCX function comes from isoform 1 (NCX1). Although knowledge about NCX function has evolved rapidly in recent years, little is known about these transport systems in cancer cells. This review aims to summarize current knowledge about NCX functions in individual types of cancer cells.
Collapse
Affiliation(s)
- Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
| | - Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia; (B.C.); (V.L.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +4212-3229-5312
| |
Collapse
|
20
|
Mohammadzadeh L, Latifi H, Khaksar S, Feiz MS, Motamedi F, Asadollahi A, Ezzatpour M. Measuring the Frequency-Specific Functional Connectivity Using Wavelet Coherence Analysis in Stroke Rats Based on Intrinsic Signals. Sci Rep 2020; 10:9429. [PMID: 32523058 PMCID: PMC7286921 DOI: 10.1038/s41598-020-66246-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/17/2020] [Indexed: 12/28/2022] Open
Abstract
Optical intrinsic signal imaging (OISi) method is an optical technique to evaluate the functional connectivity (FC) of the cortex in animals. Already, using OISi, the FC of the cortex has been measured in time or frequency domain separately, and at frequencies below 0.08 Hz, which is not in the frequency range of hemodynamic oscillations which are able to track fast cortical events, including neurogenic, myogenic, cardiac and respiratory activities. In the current work, we calculated the wavelet coherence (WC) transform of the OISi time series to evaluate the cerebral response changes in the stroke rats. Utilizing WC, we measured FC at frequencies up to 4.5 Hz, and could monitor the time and frequency dependency of the FC simultaneously. The results showed that the WC of the brain diminished significantly in ischemic motor and somatosensory cortices. According to the statistical results, the signal amplitude, responsive area size, correlation, and wavelet coherence of the motor and the somatosensory cortices for stroke hemisphere were found to be significantly lower compared to the healthy hemisphere. The obtained results confirm that the OISi-based WC analysis is an efficient method to diagnose the relative severity of infarction and the size of the infarcted region after ischemic stroke.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran. .,Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, 1993893973, Iran
| | - Mohammad-Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Amir Asadollahi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Marzieh Ezzatpour
- Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|
21
|
San Luis CV, O'Hana S Nobleza C, Shekhar S, Sugg R, Villareal DJ, Mehta T, Gangadhara S. Association between recent cannabinoid use and acute ischemic stroke. Neurol Clin Pract 2020; 10:333-339. [PMID: 32983613 DOI: 10.1212/cpj.0000000000000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Background Studies that have analyzed the association between cannabis use and acute ischemic stroke (AIS) have provided conflicting results. In this study, we aim to determine the association of recent cannabis use detected through urine drug screen (UDS) among patients admitted with AIS. Methods A retrospective observational study was performed using the medical records database. All patients aged 18 years and older admitted from January 1, 2015, to December 31, 2017, who underwent urine toxicology testing on admission were included in the analysis. Multivariate logistic regression analysis was performed to analyze independent association between recent cannabis use and AIS. Results A total of 9,350 patients were determined to have undergone UDS during admission, and 18% (1,643) of this had a positive urine cannabis test. Unadjusted risk ratio showed a 50% decrease in risk of AIS among cannabis users (risk ratio = 0.505, 95% confidence interval [CI] 0.425-0.600). The effect was lost after adjusting for age, race, ethnicity, sickle cell disease, dyslipidemia, hypertension, obesity, diabetes mellitus, cigarette smoking, atrial fibrillation, and other cardiac conditions (odds ratio 1.038, 95% CI 0.773-1.394). Conclusion This is one of the few studies analyzing the association of recent cannabis use and AIS using admission urine toxicology test independent of polysubstance use. Although our study has limitations, we did not find an independent association between recent cannabis use and the incidence of AIS. Further studies using urine toxicology tests with larger sample size and including dosage of cannabis exposure should be conducted.
Collapse
Affiliation(s)
- Carmela V San Luis
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Christa O'Hana S Nobleza
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Shashank Shekhar
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Rebecca Sugg
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Darren J Villareal
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Tapan Mehta
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| | - Shreyas Gangadhara
- Department of Neurology (CVSL), University of Mississippi Medical Center; Division of Neurosciences Critical Care (COHSN), Department of Neurology, University of Mississippi Medical Center, Jackson; Division of Cerebrovascular Diseases (SS, RS, SG), Department of Neurology, University of Mississippi Medical Center, Jackson; Information Technology (DJV), CAP College Foundation, Inc., The Digitalized Distance Education, Makati City, Philippines; and Department of Neurology (TM), Neurosurgery and Radiology, University of Minnesota, Minneapolis
| |
Collapse
|
22
|
Lin B, Gao Y, Li Z, Zhang Z, Lin X, Gao J. Cannabidiol alleviates hemorrhagic shock-induced neural apoptosis in rats by inducing autophagy through activation of the PI3K/AKT pathway. Fundam Clin Pharmacol 2020; 34:640-649. [PMID: 32215966 DOI: 10.1111/fcp.12557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Recently, several studies have reported that the pharmacological effects exerted by cannabidiol (CBD) are partially related to the regulation of autophagy. Increasing evidence indicates that autophagy provides protection against ischemia-induced brain injury. However, the protective effect of CBD against mitochondrial-dependent apoptosis in hemorrhagic shock (HS)-induced brain injury has not been studied. In the present study, we observed the protective effects of CBD against neural mitochondrial-dependent apoptosis in a rat model of HS. In addition, CBD increased Beclin-1 and LC3II expression and reduced P62 expression, which were indicative of autophagy. CBD treatment attenuated the neural apoptosis induced by HS, as reflected by restoring mitochondrial dysfunction, downregulation of BAX, neuro-apoptosis ratio and NF-κB signaling activation, and upregulation of BCL2 in the cerebral cortex. Such protective effects were reversed by 3-Methyladenine, a specific autophagy inhibitor, indicating that the protective effects of CBD treatment involved autophagy. LY294002, a PI3K inhibitor, significantly inhibited CBD-induced autophagy, demonstrating that PI3K/AKT signaling is involved in the CBD's regulation of autophagy. Furthermore, we found that CBD treatment upregulated PI3K/AKT signaling via cannabinoid receptor 1. Therefore, these findings suggested that CBD treatment protects against cerebral injury induced by HS-mediated mitochondrial-dependent apoptosis by activating the PI3K/AKT signaling pathway to reinforce autophagy.
Collapse
Affiliation(s)
- Bo Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiwang Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jinpeng Gao
- Department of Neurosurgery, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| |
Collapse
|
23
|
Fitzpatrick JM, Minogue E, Curham L, Tyrrell H, Gavigan P, Hind W, Downer EJ. MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by Δ 9-tetrahydrocannabinol and cannabidiol in human macrophages. J Neuroimmunol 2020; 343:577217. [PMID: 32244040 DOI: 10.1016/j.jneuroim.2020.577217] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are sensors of pathogen-associated molecules that trigger inflammatory signalling in innate immune cells including macrophages. All TLRs, with the exception of TLR3, promote intracellular signalling via recruitment of the myeloid differentiation factor 88 (MyD88) adaptor, while TLR3 signals via Toll-Interleukin-1 Receptor (TIR)-domain-containing adaptor-inducing interferon (IFN)-β (TRIF) adaptor to induce MyD88-independent signalling. Furthermore, TLR4 can activate both MyD88-dependent and -independent signalling (via TRIF). The study aim was to decipher the impact of the highly purified plant-derived (phyto) cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), when delivered in isolation and in combination (1:1), on MyD88-dependent and -independent signalling in macrophages. We employed the use of the viral dsRNA mimetic poly(I:C) and endotoxin lipopolysaccharide (LPS), to induce viral TLR3 and bacterial TLR4 signalling in human Tamm-Horsfall protein-1 (THP-1)-derived macrophages, respectively. TLR3/TLR4 stimulation promoted the activation of interferon (IFN) regulatory factor 3 (IRF3) and TLR4 promoted the activation of nuclear factor (NF)-κB signalling, with downstream production of the type I IFN-β, the chemokines CXCL10 and CXCL8, and cytokine TNF-α. THC and CBD (both at 10 μM) attenuated TLR3/4-induced IRF3 activation and induction of CXCL10/IFN-β, while both phytocannabinoids failed to impact TLR4-induced IκB-α degradation and TNF-α/CXCL8 expression. The role of CB1, CB2 and PPARγ receptors in mediating the effect of THC and CBD on MyD88-independent signalling was investigated. TLRs are attractive therapeutic targets given their role in inflammation and initiation of adaptive immunity, and data herein indicate that both CBD and THC preferentially modulate TLR3 and TLR4 signalling via MyD88-independent mechanisms in macrophages. This offers mechanistic insight into the role of phytocannabinoids in modulating cellular inflammation.
Collapse
Affiliation(s)
- John-Mark Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Eleanor Minogue
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lucy Curham
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Harry Tyrrell
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Philip Gavigan
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - William Hind
- GW Research Ltd, Sovereign House, Vision Park, Histon, CB24 9BZ, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Pannaccione A, Piccialli I, Secondo A, Ciccone R, Molinaro P, Boscia F, Annunziato L. The Na +/Ca 2+exchanger in Alzheimer's disease. Cell Calcium 2020; 87:102190. [PMID: 32199208 DOI: 10.1016/j.ceca.2020.102190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer's disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
25
|
SafialHosseini Z, Bigdeli M, Khaksar S, Aliaghaei A. Allograft of Sertoli Cell Transplantation in Combination with Memantine Alleviates Ischemia-Induced Tissue Damages in An Animal Model of Rat. CELL JOURNAL 2019; 22:334-343. [PMID: 31863659 PMCID: PMC6947000 DOI: 10.22074/cellj.2020.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/08/2019] [Indexed: 11/04/2022]
Abstract
Objective Brain ischemia is the most common disease in the world caused by the disruption of the blood supply of
brain tissue. Cell therapy is one of the new and effective strategies used for the prevention of brain damages. Sertoli
cells (SCs) can hide from the host immune system and secrete trophic factors. So, these cells have attracted the
attention of researchers as a therapeutic option for the treatment of neurodegenerative diseases. Also, memantine,
as a reducer of glutamate and intracellular calcium, is a suitable candidate for the treatment of cerebral ischemia. The
principal target of this research was to examine the effect of SC transplantation along with memantine on ischemic
injuries.
Materials and Methods In this experimental research, male rats were classified into five groups: sham, control, SC
transplant recipient, memantine-treated, and SCs- and memantine-treated groups. SCs were taken from another rat
tissue and injected into the right striatum region. A week after stereotaxic surgery and SCs transplantation, memantine
was injected. Administered doses were 1 mg/kg and 20 mg/kg at a 12-hour interval. One hour after the final injection,
the surgical procedures for the induction of cerebral ischemia were performed. After 24 hours, some regions of the brain
including the cortex, striatum, and Piriform cortex-amygdala (Pir-Amy) were isolated for the evaluation of neurological
deficits, infarction volume, blood-brain barrier (BBB) permeability, and cerebral edema.
Results This study shows that a combination of SCs and memantine caused a significant decrease in neurological
defects, infarction volume, the permeability of the blood-brain barrier, and edema in comparison with the control group.
Conclusion Probably, memantine and SCs transplantation reduce the damage of cerebral ischemia, through the
secretion of growth factors, anti-inflammatory cytokines, and antioxidant factors.
Collapse
Affiliation(s)
- Zeinab SafialHosseini
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran. Electronic Address: .,Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Khaksar
- Department of Herbal Science, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
26
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 567] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
27
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
28
|
Wang C, Wang X, Li Y, Xia Z, Liu Y, Yu H, Xu G, Wu X, Zhao R, Zhang G. Chronic ethanol exposure reduces the expression of NCX3 in the hippocampus of male C57BL/6 mice. Neuroreport 2019; 30:397-403. [PMID: 30829960 DOI: 10.1097/wnr.0000000000001214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic ethanol (EtOH) exposure can cause intracellular Ca overload by stimulating calcium channel receptors and trigger apoptosis of neurons. NCX3 may play a cytoprotective role in intracellular Ca excretion. In this study, the effect of EtOH on NCX3 was analyzed by observing NCX3 expression in the hippocampus of chronic EtOH-exposed male C57BL/6 mice. Mice were divided into a control group, a 10% EtOH group, and a 20% EtOH group for 30, 60, and 90 days. Behavioral changes were observed using the Morris water maze. The protein and mRNA expressions of NCX3 and their distribution in the hippocampus were observed by western blotting, quantitative PCR, and immunohistochemistry staining. The results showed that EtOH exposure exerted a significant adverse effect on the spatial memory capacity of mice. Increased expression of calpain-1 and cleaved caspase-3 proteins indicated increased apoptosis. The expression of NCX3 in the hippocampus was downregulated after exposure to EtOH (except 10% EtOH for 30 days) and this inhibition was time and dose dependent with EtOH exposure. The level of p-Akt, which is an upstream regulation factor of NCX3, showed a trend similar to that of NCX3 protein. Chronic EtOH exposure reduced the expression of NCX3 in the hippocampus of male C57BL/6 mice, increasing intracellular calcium and apoptosis, resulting in spatial memory impairment in mice.
Collapse
Affiliation(s)
- Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine
- The People's Procuratorate of Liaoning Province Judicial Authentication Center
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, People's Republic of China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences
| | - Zhixiu Xia
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University
| | - Yang Liu
- The People's Procuratorate of Liaoning Province Judicial Authentication Center
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine
| |
Collapse
|
29
|
Kolb B, Saber H, Fadel H, Rajah G. The endocannabinoid system and stroke: A focused review. Brain Circ 2019; 5:1-7. [PMID: 31001593 PMCID: PMC6458776 DOI: 10.4103/bc.bc_29_18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/25/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Stroke is an important cause of morbidity and mortality worldwide. Development of novel neuroprotectants is of paramount importance. This review seeks to summarize the recent evidence for the role of the endocannabinoid signaling system in stroke pathophysiology, as well as the evidence from preclinical studies regarding the efficacy of cannabinoids as neuroprotective therapies in the treatment of stroke. Recent evidence from rodent models implicating cannabinoid 1 receptor (CB1R), cannabinoid 2 receptor (CB2R), and CB1R and CB2R co-antagonism as neuroprotective strategies in stroke are reviewed. Rodent evidence for the therapeutic role of the endocannabinoid system in treating poststroke depression is reviewed. Finally, evidence for the role of cannabidiol, a publicly available cannabinoid that does not bind directly to known endocannabinoid receptors, as a stroke neuroprotectant is also reviewed. The review closes with a consideration of the role of human cannabinoid abuse in stroke and considers future directions for research on endocannabinoid-based stroke therapeutics.
Collapse
Affiliation(s)
- Bradley Kolb
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| | - Hamidreza Saber
- Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
| | - Hassan Fadel
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
30
|
Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochem Pharmacol 2018; 157:85-96. [DOI: 10.1016/j.bcp.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
31
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
32
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|