1
|
Mohammad SI, Vasudevan A, Hussein Alzewmel A, Rab SO, Ballal S, Kalia R, Bethanney Janney J, Ray S, Joshi KK, Yasin HA. The mutual effects of stearoyl-CoA desaturase and cancer-associated fibroblasts: A focus on cancer biology. Exp Cell Res 2025; 447:114508. [PMID: 40122505 DOI: 10.1016/j.yexcr.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) 's primary constituents that promote cancer development are cancer-associated fibroblasts (CAFs). Metabolic remodeling has been shown to control CAF activity, particularly aberrant lipid metabolism. SCD1 can be thought of as the primary enzyme controlling the fluidity of lipid bilayers by gradually converting saturated fatty acids into monounsaturated fatty acids. Furthermore, its crucial function in the onset and spread of cancer is well acknowledged. Even with the increasing amount of research on changes in lipid metabolism, this problem remains a relatively understudied aspect of cancer research. Blocking several fatty acid synthesis-related enzymes highly expressed in cancerous cells inhibits cell division and encourages apoptosis. This is the situation with SCD1, whose overexpression has been linked to several changed tumors and cells. Both genetic and pharmacological silencing of SCD1 in cancer cells prevents glucose-mediated lipogenesis and tumor cell growth. However, its role in CAFs, hence, cancer biology, has been less studied. This study aimed to review the role of SCD1 in CAF biology, shedding light on their function in cancer cell biology.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800 Negeri Sembilan, Malaysia; Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia.
| | - Ahmad Hussein Alzewmel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Bethanney Janney
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
3
|
Kirad S, Puri S, Deepa PR, Sankaranarayanan M. An insight into advances and challenges in the development of potential stearoyl Co-A desaturase 1 inhibitors. RSC Adv 2024; 14:30487-30517. [PMID: 39318456 PMCID: PMC11421311 DOI: 10.1039/d4ra06237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is one of the key enzymes involved in lipid metabolism, plays a vital role in the synthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Due to its promising therapeutic potential in treating metabolic disorders, cancers, and skin diseases there is an increasing interest in the development of novel inhibitors against SCD1. This review comprehensively explores the evolution of potential SCD1 inhibitors, focusing on systemic and liver-targeted inhibitors and discusses their structure-activity relationship (SAR) pattern. Among the various small molecules reported, natural products like sterculic acid have emerged as significant SCD1 inhibitors, highlighting the potential of naturally derived compounds in therapeutic development. This review also addresses the challenges in optimizing pharmacokinetic properties and reducing adverse effects, providing insights into the future directions for the development of potential novel SCD1 inhibitors with maximum therapeutic effect and minimum side effects.
Collapse
Affiliation(s)
- Shivani Kirad
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Sonakshi Puri
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - P R Deepa
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| |
Collapse
|
4
|
Wang J, Ying L, Xiong H, Zhou DR, Wang YX, Che HL, Zhong ZF, Wu GS, Ge YJ. Comprehensive analysis of stearoyl-coenzyme A desaturase in prostate adenocarcinoma: insights into gene expression, immune microenvironment and tumor progression. Front Immunol 2024; 15:1460915. [PMID: 39351232 PMCID: PMC11439642 DOI: 10.3389/fimmu.2024.1460915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate adenocarcinoma (PRAD) is a prevalent global malignancy which depends more on lipid metabolism for tumor progression compared to other cancer types. Although Stearoyl-coenzyme A desaturase (SCD) is documented to regulate lipid metabolism in multiple cancers, landscape analysis of its implications in PRAD are still missing at present. Here, we conducted an analysis of diverse cancer datasets revealing elevated SCD expression in the PRAD cohort at both mRNA and protein levels. Interestingly, the elevated expression was associated with SCD promoter hypermethylation and genetic alterations, notably the L134V mutation. Integration of comprehensive tumor immunological and genomic data revealed a robust positive correlation between SCD expression levels and the abundance of CD8+ T cells and macrophages. Further analyses identified significant associations between SCD expression and various immune markers in tumor microenvironment. Single-cell transcriptomic profiling unveiled differential SCD expression patterns across distinct cell types within the prostate tumor microenvironment. The Gene Ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that SCD enriched pathways were primarily related to lipid biosynthesis, cholesterol biosynthesis, endoplasmic reticulum membrane functions, and various metabolic pathways. Gene Set Enrichment Analysis highlighted the involvement of elevated SCD expression in crucial cellular processes, including the cell cycle and biosynthesis of cofactors pathways. In functional studies, SCD overexpression promoted the proliferation, metastasis and invasion of prostate cancer cells, whereas downregulation inhibits these processes. This study provides comprehensive insights into the multifaceted roles of SCD in PRAD pathogenesis, underscoring its potential as both a therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Ying
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - He Xiong
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Duan-Rui Zhou
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Xuan Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Lian Che
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Guo-Sheng Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yun-Jun Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
6
|
Miskelly MG, Lindqvist A, Piccinin E, Hamilton A, Cowan E, Nergård BJ, Del Giudice R, Ngara M, Cataldo LR, Kryvokhyzha D, Volkov P, Engelking L, Artner I, Lagerstedt JO, Eliasson L, Ahlqvist E, Moschetta A, Hedenbro J, Wierup N. RNA sequencing unravels novel L cell constituents and mechanisms of GLP-1 secretion in human gastric bypass-operated intestine. Diabetologia 2024; 67:356-370. [PMID: 38032369 PMCID: PMC10789678 DOI: 10.1007/s00125-023-06046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
AIMS/HYPOTHESIS Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Alexander Hamilton
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elaine Cowan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luis R Cataldo
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Kryvokhyzha
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Petr Volkov
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luke Engelking
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabella Artner
- Endocrine Cell Differentiation and Function, Stem Cell Centre, Lund University, Malmö, Sweden
| | - Jens O Lagerstedt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
- INBB National Institute for Biostructure and Biosystems, Rome, Italy
| | - Jan Hedenbro
- Department of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| |
Collapse
|
7
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
8
|
Gao X, Zhang H, Zhang C, Li M, Yu X, Sun Y, Shi Y, Zhang H, He X. The emerging role of long non-coding RNAs in renal cell carcinoma progression and clinical therapy via targeting metabolic regulation. Front Pharmacol 2023; 14:1122065. [PMID: 36969848 PMCID: PMC10034124 DOI: 10.3389/fphar.2023.1122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractThis review mainly describes that lncRNAs interact with miRNA-mRNA axis, or directly binds to mRNAs and proteins, to influence RCC progression via metabolic regulation, mainly including glucose metabolism, lipid metabolism, amino acid metabolism and mitochondrial dynamics (Created with biorender.com).
Collapse
Affiliation(s)
- Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Minghe Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Reproductive Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongxia Zhang
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| |
Collapse
|
9
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
10
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Piccinin E, Cariello M, Moschetta A. Lipid metabolism in colon cancer: Role of Liver X Receptor (LXR) and Stearoyl-CoA Desaturase 1 (SCD1). Mol Aspects Med 2020; 78:100933. [PMID: 33218679 DOI: 10.1016/j.mam.2020.100933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly occurring cancers worldwide. Although several genetic alterations have been associated with CRC onset and progression, nowadays the reprogramming of cellular metabolism has been recognized as a fundamental step of the carcinogenic process. Intestinal tumor cells frequently display an aberrant activation of lipid metabolism. Indeed, to satisfy the growing needs of a continuous proliferation, cancer cells can either increase the uptake of exogenous lipids or upregulate the endogenous lipogenesis and cholesterol synthesis. Therefore, strategies aimed at limiting lipid accumulation are now under development in order to counteract malignancies. Two major players of lipids metabolism have been so far identified for their contribution to CRC development: the nuclear receptor Liver X Receptor (LXRs) and the enzyme Stearoyl-CoA Desaturase 1 (SCD1). Whereas LXR is mainly recognized for its role as a cholesterol sensor, finally promoting the loss of cellular cholesterol and whole-body homeostasis, SCD1 acts as the major regulator of new fatty acids, finely tuning the monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA) ratio. Intriguingly, SCD1 is directly regulated by LXRs. Despite LXRs agonists have elicited great interest as a promising therapeutic target for cancer, LXR's ability to induce SCD1 and new fatty acids synthesis represent a major obstacle in the development of new effective treatments. Thus, further investigations are required to fully dissect the concomitant modulation of both players, to develop specific therapies aimed at blocking intestinal cancer cells proliferation, eventually counteracting CRC progression.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy; National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
12
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
14
|
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers (Basel) 2019; 11:cancers11070948. [PMID: 31284458 PMCID: PMC6678606 DOI: 10.3390/cancers11070948] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
15
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
16
|
Ducheix S, Peres C, Härdfeldt J, Frau C, Mocciaro G, Piccinin E, Lobaccaro JM, De Santis S, Chieppa M, Bertrand-Michel J, Plateroti M, Griffin JL, Sabbà C, Ntambi JM, Moschetta A. Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate. Gastroenterology 2018; 155:1524-1538.e9. [PMID: 30063922 DOI: 10.1053/j.gastro.2018.07.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The enzyme stearoyl-coenzyme A desaturase 1 (SCD or SCD1) produces monounsaturated fatty acids by introducing double bonds into saturated bonds between carbons 9 and 10, with oleic acid as the main product. SCD1 is present in the intestinal epithelium, and fatty acids regulate cell proliferation, so we investigated the effects of SCD1-induced production of oleic acid in enterocytes in mice. METHODS We generated mice with disruption of Scd1 selectively in the intestinal epithelium (iScd1-/- mice) on a C57BL/6 background; iScd1+/+ mice were used as controls. We also generated iScd1-/-ApcMin/+ mice and studied cancer susceptibility. Mice were fed a chow, oleic acid-deficient, or oleic acid-rich diet. Intestinal tissues were collected and analyzed by histology, reverse transcription quantitative polymerase chain reaction, immunohistochemistry, and mass spectrometry, and tumors were quantified and measured. RESULTS Compared with control mice, the ileal mucosa of iScd1-/- mice had a lower proportion of palmitoleic (C16:1 n-7) and oleic acids (C18:1 n-9), with accumulation of stearic acid (C18:0); this resulted a reduction of the Δ9 desaturation ratio between monounsaturated (C16:1 n-7 and C18:1 n-9) and saturated (C16:0 and C18:0) fatty acids. Ileal tissues from iScd1-/- mice had increased expression of markers of inflammation activation and crypt proliferative genes compared with control mice. The iScd1-/-ApcMin/+ mice developed more and larger tumors than iScd1+/+ApcMin/+ mice. iScd1-/-ApcMin/+ mice fed the oleic acid-rich diet had reduced intestinal inflammation and significantly lower tumor burden compared with mice fed a chow diet. CONCLUSIONS In studies of mice, we found intestinal SCD1 to be required for synthesis of oleate in the enterocytes and maintenance of fatty acid homeostasis. Dietary supplementation with oleic acid reduces intestinal inflammation and tumor development in mice.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Claudia Peres
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jennifer Härdfeldt
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jean-Marc Lobaccaro
- INSERM U 1103, CNRS, UMR 6293, Université Clermont Auvergne, GReD, F-6300 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Stefania De Santis
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Marcello Chieppa
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Justine Bertrand-Michel
- Lipidomic Facility, MetaboHUB, INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - James M Ntambi
- University of Wisconsin Madison, Departments of Biochemistry and of Nutritional Sciences, Madison, Wisconsin
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia; IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italia.
| |
Collapse
|
17
|
Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, Zhou Y, Zeng Z, Peng S, Li X, Xiong W, Li G, Xiang B. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37:118. [PMID: 29907133 PMCID: PMC6003041 DOI: 10.1186/s13046-018-0784-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. MAIN BODY Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. CONCLUSION Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Department of Dermatology, Xiangya hospital of Central South University, Changsha, 410008 China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shuping Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| |
Collapse
|
18
|
Poolsri WA, Phokrai P, Suwankulanan S, Phakdeeto N, Phunsomboon P, Pekthong D, Richert L, Pongcharoen S, Srisawang P. Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3683026. [PMID: 29546056 PMCID: PMC5818947 DOI: 10.1155/2018/3683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022]
Abstract
Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy.
Collapse
Affiliation(s)
- Wan-angkan Poolsri
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Phornpun Phokrai
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Somrudee Suwankulanan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Narinthorn Phakdeeto
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France
- Laboratoire de Toxicologie Cellulaire, Université de Bourgogne Franche-Comté, EA 4267, Besançon, France
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Petroleum, Petrochemicals and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
19
|
Ono A, Sano O, Kazetani KI, Muraki T, Imamura K, Sumi H, Matsui J, Iwata H. Feedback activation of AMPK-mediated autophagy acceleration is a key resistance mechanism against SCD1 inhibitor-induced cell growth inhibition. PLoS One 2017; 12:e0181243. [PMID: 28704514 PMCID: PMC5509324 DOI: 10.1371/journal.pone.0181243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
Elucidating the bioactive compound modes of action is crucial for increasing success rates in drug development. For anticancer drugs, defining effective drug combinations that overcome resistance improves therapeutic efficacy. Herein, by using a biologically annotated compound library, we performed a large-scale combination screening with Stearoyl-CoA desaturase-1 (SCD1) inhibitor, T-3764518, which partially inhibits colorectal cancer cell proliferation. T-3764518 induced phosphorylation and activation of AMPK in HCT-116 cells, which led to blockade of downstream fatty acid synthesis and acceleration of autophagy. Attenuation of fatty acid synthesis by small molecules suppressed the growth inhibitory effect of T-3764518. In contrast, combination of T-3764518 with autophagy flux inhibitors synergistically inhibited cellular proliferation. Experiments using SCD1 knock-out cells validated the results obtained with T-3764518. The results of our study indicated that activation of autophagy serves as a survival signal when SCD1 is inhibited in HCT-116 cells. Furthermore, these findings suggest that combining SCD1 inhibitor with autophagy inhibitors is a promising anticancer therapy.
Collapse
Affiliation(s)
- Akito Ono
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Osamu Sano
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Ken-ichi Kazetani
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Takamichi Muraki
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Keisuke Imamura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Hiroyuki Sumi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Junji Matsui
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Hidehisa Iwata
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Imamura K, Tomita N, Kawakita Y, Ito Y, Ono K, Nii N, Miyazaki T, Yonemori K, Tawada M, Sumi H, Satoh Y, Yamamoto Y, Miyahisa I, Sasaki M, Satomi Y, Hirayama M, Nishigaki R, Maezaki H. Discovery of Novel and Potent Stearoyl Coenzyme A Desaturase 1 (SCD1) Inhibitors as Anticancer Agents. Bioorg Med Chem 2017; 25:3768-3779. [PMID: 28571972 DOI: 10.1016/j.bmc.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies.
Collapse
Affiliation(s)
- Keisuke Imamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Naoki Tomita
- Corporate Finance Department, Takeda Pharmaceutical Company Ltd., 12-10, Nihonbashi 2-chome, Chuo-ku, Tokyo 103-8668, Japan
| | - Youichi Kawakita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiteru Ito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouji Ono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Noriyuki Nii
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tohru Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuko Yonemori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michiko Tawada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyuki Sumi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiko Satoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuo Miyahisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Megumi Hirayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryuichi Nishigaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Maezaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|