1
|
Kiełbowski K, Szwedkowicz A, Plewa P, Bakinowska E, Becht R, Pawlik A. Anticancer properties of histone deacetylase inhibitors - what is their potential? Expert Rev Anticancer Ther 2025; 25:105-120. [PMID: 39791841 DOI: 10.1080/14737140.2025.2452338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors. AREAS COVERED A comprehensive literature review was conducted using the PubMed database to identify studies evaluating the anticancer efficacy of approved and novel HDAC inhibitors. EXPERT OPINION Accumulating evidence highlights the promising benefits of combining HDAC inhibitors with other anticancer agents. Additionally, HDAC-targeting therapeutics could enhance the sensitivity of cancer cells to chemotherapeutics or targeted tyrosine kinase inhibitors, thereby improving overall treatment outcomes. Future clinical studies must focus on optimizing combination therapies to ensure efficacy while maintaining manageable safety profiles.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Li W, Zhang Y, Zhuang Y, Chen R, Xiong Z, Li K, Liu F, Xu H, Li D, Peng J. Effects of Simvastatin on Inflammatory Response and Biological Behaviour of Adamantinomatous Craniopharyngioma. Neuroendocrinology 2024; 114:934-949. [PMID: 38964285 DOI: 10.1159/000539821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the autoinflammatory effect and biological behaviour of simvastatin (SIM) on adamantinomatous craniopharyngioma (ACP) cells. METHODS Craniopharyngiomas imaging, intraoperative observations, and tumour histopathology were employed to investigate the correlation between esters and craniopharyngiomas. Filipin III fluorescent probe verified the validity of SIM on the alternations of synthesized cholesterol in craniopharyngioma cells. The cell counting kit-8 (CCK8) assay detected the impacts of SIM on cell proliferation and determined the IC50 value of tumour cells. Reverse transcription polymerase chain reaction (RT-PCR) measured the expression of inflammatory factors. Flow cytometry technique detected the cell cycle and apoptosis, and cell scratch assay judged the cell migration. Meanwhile, Western blot was adopted to determine the expression of proteins related to inflammation, proliferation, and apoptosis signalling pathways. RESULTS In the ACP tumour parenchyma, many cholesterol crystalline clefts were observed, and the deposition of esters was closely associated with craniopharyngioma inflammation. After SIM intervention, a reduction in cholesterol synthesis within ACP was noted. RT-PCR analysis revealed SIM inhibited the transcription of inflammatory factors in ACP cells. Western blot analysis demonstrated SIM inhibited nuclear factor-kappa B p65 activation expression while promoted the expressions of Cl-caspase-3 and P38 MAPK. CCK8 assay indicated a decrease in ACP cell activity upon SIM treatment. Scratch assay signified that SIM hindered ACP cell migration. Flow cytometry results suggested that the drug promoted ACP cell apoptosis. CONCLUSION SIM suppressed the inflammatory response to craniopharyngiomas by inhibiting craniopharyngioma cholesterol synthesis, inhibited proliferation of ACP cells, and promoted their apoptosis.
Collapse
Affiliation(s)
- Weizhao Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Yunxiao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yishan Zhuang
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Rongjun Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danling Li
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxiang Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Kobayashi K, Baba K, Kambayashi S, Okuda M. Blockade of isoprenoids biosynthesis by simvastatin induces autophagy-mediated cell death via downstream c-Jun N-terminal kinase activation and cell cycle dysregulation in canine T-cell lymphoma cells. Res Vet Sci 2024; 169:105174. [PMID: 38340381 DOI: 10.1016/j.rvsc.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Statins are inhibitors of the mevalonic acid pathway that mediates cellular metabolism by producing cholesterol and isoprenoids and are widely used in treating hypercholesterolaemia in humans. Lipophilic statins, including simvastatin, induce death in various tumour cells. However, the cytotoxic mechanisms of statins in tumour cells remain largely unexplored. This study aimed to elucidate the cytotoxic mechanisms of simvastatin in canine lymphoma cells. Simvastatin induced cell death via c-Jun N-terminal kinase (JNK) activation and autophagy in canine T-cell lymphoma cell lines Ema and UL-1, but not in B-cell lines. Cell death was mediated by induction of caspase-dependent apoptosis in UL-1 cells, but not in Ema cells. Blockade of autophagy by lysosomal inhibitors attenuated simvastatin-induced JNK activation and cell death. Isoprenoids, including farnesyl pyrophosphate and geranylgeranyl pyrophosphate, attenuated simvastatin-induced autophagy, JNK activation, and cell death. In UL-1 cells, simvastatin treatment resulted in the cell cycle arrest at the G2/M phase, which was altered to G0/1 phase cell cycle arrest by treatment with lysosomal inhibitors. These findings demonstrate that depletion of isoprenoids by simvastatin induces autophagy-mediated cell death via downstream JNK activation and cell cycle dysregulation in canine T-cell lymphoma cells.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan.
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| |
Collapse
|
4
|
Marwaha D, Gautam S, Singh N, Rai N, Sharma M, Tiwari P, Shukla RP, Urandur S, Banala VT, Mugale MN, Kumar A, Mishra PR. Synergistic delivery of Imatinib through multifunctional nano-crystalline capsules, in response to redox environment for improved breast cancer therapy. Colloids Surf B Biointerfaces 2023; 226:113316. [PMID: 37086687 DOI: 10.1016/j.colsurfb.2023.113316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Chondroitin anchored crystalline nano-capsules bearing Imatinib (IMT), and simvastatin (SMV) was developed using Poly (L-lactic acid) (PLLA) by two-step method, i.e., firstly, by synthesizing chondroitin (CSA) anchored simvastatin (SMV) using cystamine as a spacer (SMV-SS-CSA) for disulfide triggered glutathione (GSH) sensitive release and secondly, by developing phenyl boronic ester grafted Pluronic F68 (PEPF) for H2O2 responsive release. By combining these conjugates, we have prepared crystalline nano-capsules (CNs) for preferential targeting of CD44 receptors. The developed CNs were spherical when characterized through SEM, TEM, and AFM for surface morphology, while changes in particle size and crystalline structure were confirmed through Quasi-Elastic light scattering (QELS) and Wide Angle X-ray Scattering (WAXS). The enhanced cellular uptake was noted in chondroitin-modified nano-capsules IMT/SMV-SS-CSA@CNs compared to unmodified nano-capsules IMT+SMV@CNs. IMT/SMV-SS-CSA@CNs displayed significantly higher G2/M phase arrest (76.9%) than unmodified nano-capsules. The prototype formulation (IMT/SMV-SS-CSA@CNs) showed an overall improved pharmacokinetic profile in terms of both half-life and AUC0-α. When tested in the 4T1 subcutaneously injected tumor-bearing Balb/c mice model, the tumor growth inhibition rate of IMT/SMV-SS-CSA@CNs was significantly higher (91%) than the IMT+SMV combination. Overall, the findings suggest that the proposed dual responsive chondroitin-modified drug delivery could have a step forward in achieving spatial and temporal targeting at the tumor site.
Collapse
Affiliation(s)
- Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | | | - Akhilesh Kumar
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
5
|
Lian B, Chen X, Shen K. Inhibition of histone deacetylases attenuates tumor progression and improves immunotherapy in breast cancer. Front Immunol 2023; 14:1164514. [PMID: 36969235 PMCID: PMC10034161 DOI: 10.3389/fimmu.2023.1164514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Breast cancer is one of the common malignancies with poor prognosis worldwide. The treatment of breast cancer patients includes surgery, radiation, hormone therapy, chemotherapy, targeted drug therapy and immunotherapy. In recent years, immunotherapy has potentiated the survival of certain breast cancer patients; however, primary resistance or acquired resistance attenuate the therapeutic outcomes. Histone acetyltransferases induce histone acetylation on lysine residues, which can be reversed by histone deacetylases (HDACs). Dysregulation of HDACs via mutation and abnormal expression contributes to tumorigenesis and tumor progression. Numerous HDAC inhibitors have been developed and exhibited the potent anti-tumor activity in a variety of cancers, including breast cancer. HDAC inhibitors ameliorated immunotherapeutic efficacy in cancer patients. In this review, we discuss the anti-tumor activity of HDAC inhibitors in breast cancer, including dacinostat, belinostat, abexinostat, mocetinotat, panobinostat, romidepsin, entinostat, vorinostat, pracinostat, tubastatin A, trichostatin A, and tucidinostat. Moreover, we uncover the mechanisms of HDAC inhibitors in improving immunotherapy in breast cancer. Furthermore, we highlight that HDAC inhibitors might be potent agents to potentiate immunotherapy in breast cancer.
Collapse
Affiliation(s)
| | | | - Kunwei Shen
- *Correspondence: Xiaosong Chen, ; Kunwei Shen,
| |
Collapse
|
6
|
Andersson CR, Ye J, Blom K, Fryknäs M, Larsson R, Nygren P. Assessment in vitro of interactions between anti-cancer drugs and noncancer drugs commonly used by cancer patients. Anticancer Drugs 2023; 34:92-102. [PMID: 36066384 PMCID: PMC9760465 DOI: 10.1097/cad.0000000000001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
Cancer patients often suffer from cancer symptoms, treatment complications and concomitant diseases and are, therefore, often treated with several drugs in addition to anticancer drugs. Whether such drugs, here denoted as 'concomitant drugs', have anticancer effects or interact at the tumor cell level with the anticancer drugs is not very well known. The cytotoxic effects of nine concomitant drugs and their interactions with five anti-cancer drugs commonly used for the treatment of colorectal cancer were screened over broad ranges of drug concentrations in vitro in the human colon cancer cell line HCT116wt. Seven additional tyrosine kinase inhibitors were included to further evaluate key findings as were primary cultures of tumor cells from patients with colorectal cancer. Cytotoxic effects were evaluated using the fluorometric microculture cytotoxicity assay (FMCA) and interaction analysis was based on Bliss independent interaction analysis. Simvastatin and loperamide, included here as an opioid agonists, were found to have cytotoxic effects on their own at reasonably low concentrations whereas betamethasone, enalapril, ibuprofen, metformin, metoclopramide, metoprolol and paracetamol were inactive also at very high concentrations. Drug interactions ranged from antagonistic to synergistic over the concentrations tested with a more homogenous pattern of synergy between simvastatin and protein kinase inhibitors in HCT116wt cells. Commonly used concomitant drugs are mostly neither expected to have anticancer effects nor to interact significantly with anticancer drugs frequently used for the treatment of colorectal cancer.
Collapse
Affiliation(s)
| | - Jiawei Ye
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Laboratory Sciences, School of Medicine, Southeast University, Nanjing, China
| | - Kristin Blom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Taurelli Salimbeni B, Corvaja C, Valenza C, Zagami P, Curigliano G. The triple negative breast cancer drugs graveyard: a review of failed clinical trials 2017-2022. Expert Opin Investig Drugs 2022; 31:1203-1226. [PMID: 36413823 DOI: 10.1080/13543784.2022.2151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancers (BC) and has the worst prognosis. It is characterized by the absence of both hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2). TNBC has more limited therapeutic options compared to other subtypes, meaning that there is still a long way to go to discover target treatments. AREAS COVERED Our review aims to summarize phase II/III clinical trials enrolling patients with TNBC that have been published between 2017 and 2022 but failed to reach their primary endpoint. We here try to emphasize the limitations and weaknesses noted in negative studies and to point out unexpected results which might be useful to enhance the therapeutic approach to TNBC disease. EXPERT OPINION A deeper understanding of the mechanisms behind TNBC heterogeneity allowed to enhance the knowledge of new prognostic and predictive biomarkers of response. However, it is also through several failed clinical trials that we were able to define new therapeutic approaches which improved TNBC patients' clinical outcomes. Nowadays, we still need to overcome several difficulties to fully recognize different intracellular and extracellular pathways that crosstalk in TNBC and the mechanisms of resistance to identify novel tailored-patients' therapies.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Clinical and Molecular Medicine, Oncology Unit, "la Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Watson R, Tulk A, Erdrich J. The Link Between Statins and Breast Cancer in Mouse Models: A Systematic Review. Cureus 2022; 14:e31893. [PMID: 36579200 PMCID: PMC9790759 DOI: 10.7759/cureus.31893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, have consistently demonstrated pleiotropic effects in both preclinical and clinical studies. Outside of inhibiting the production of cholesterol in cells, statins have shown antineoplastic properties most commonly in breast cancer. Clinical and epidemiological studies, however, are less definitive than preclinical studies regarding statins as potential adjuvant oncologic therapy. Our objective is to summarize mouse model studies that investigate the link between statins and breast cancer using a cancer care continuum framework to provide a clinically relevant picture of the potential use of statins in breast cancer. A systematic review of the PubMed database was performed to identify studies published between January 2007 and July 2022 that investigated the effects of statins on breast cancer prevention, treatment, and survivorship in mouse models. Overall, 58 studies were identified using our search strategy. Based on our inclusion and exclusion criteria, 26 mouse model studies were eligible to be included in our systematic review. In breast cancer mouse models, statins alone and in combination with anti-cancer therapies demonstrate proven antineoplastic effects across the cancer care continuum. The antineoplastic benefit of statins as single agents in mouse model studies helps inform their synergistic benefit that future clinical studies can test. Parameters such as statin timing, dose, and breast cancer subtype are key stepping stones in defining how statins could be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Raj Watson
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Angela Tulk
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| |
Collapse
|
9
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
10
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
11
|
Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14020346. [PMID: 35053509 PMCID: PMC8773583 DOI: 10.3390/cancers14020346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Several histone deacetylase inhibitors have been approved by FDA for cancer treatment. Intensive efforts have been devoted to enhancing its anti-cancer efficacy by combining it with various other agents. Yet, no guideline is available to assist in the choice of candidate drugs for combination towards optimal solutions for different clinical problems. Thus, it is imperative to characterize the primary cancer hallmarks that lysine acetylation is associated with and gain knowledge on the key cancer features that each combinatorial onco-therapeutic modality targets to aid in the combinatorial onco-therapeutic design. Cold atmospheric plasma represents an emerging anti-cancer modality via manipulating cellular redox level and has been demonstrated to selectively target several cancer hallmarks. This review aims to delineate the intrinsic connections between lysine acetylation and cancer properties, and forecast opportunities histone deacetylase inhibitors may have when combined with cold atmospheric plasma as novel precision onco-therapies. Abstract Acetylation, a reversible epigenetic process, is implicated in many critical cellular regulatory systems including transcriptional regulation, protein structure, activity, stability, and localization. Lysine acetylation is the most prevalent and intensively investigated among the diverse acetylation forms. Owing to the intrinsic connections of acetylation with cell metabolism, acetylation has been associated with metabolic disorders including cancers. Yet, relatively little has been reported on the features of acetylation against the cancer hallmarks, even though this knowledge may help identify appropriate therapeutic strategies or combinatorial modalities for the effective treatment and resolution of malignancies. By examining the available data related to the efficacy of lysine acetylation against tumor cells and elaborating the primary cancer hallmarks and the associated mechanisms to target the specific hallmarks, this review identifies the intrinsic connections between lysine acetylation and cancer hallmarks and proposes novel modalities that can be combined with HDAC inhibitors for cancer treatment with higher efficacy and minimum adverse effects.
Collapse
|
12
|
Vorinostat in autophagic cell death: A critical insight into autophagy-mediated, -associated and -dependent cell death for cancer prevention. Drug Discov Today 2022; 27:269-279. [PMID: 34400351 PMCID: PMC8714665 DOI: 10.1016/j.drudis.2021.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) inhibit the acetylation of crucial autophagy genes, thereby deregulating autophagy and autophagic cell death (ACD) and facilitating cancer cell survival. Vorinostat, a broad-spectrum pan-HDAC inhibitor, inhibits the deacetylation of key autophagic markers and thus interferes with ACD. Vorinostat-regulated ACD can have an autophagy-mediated, -associated or -dependent mechanism depending on the involvement of apoptosis. Molecular insights revealed that hyperactivation of the PIK3C3/VPS34-BECN1 complex increases lysosomal disparity and enhances mitophagy. These changes are followed by reduced mitochondrial biogenesis and by secondary signals that enable superactivated, nonselective or bulk autophagy, leading to ACD. Although the evidence is limited, this review focuses on molecular insights into vorinostat-regulated ACD and describes critical concepts for clinical translation.
Collapse
|
13
|
The potential use of simvastatin for cancer treatment: A review. Biomed Pharmacother 2021; 141:111858. [PMID: 34323700 DOI: 10.1016/j.biopha.2021.111858] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Statins, typically used to reduce lipid levels, have been rediscovered for exhibiting anticancer activities. Among them, especially simvastatin may influence the proliferation, migration, and survival of cancer cells. The concept of using statins to treat cancer has been adopted since the 1990s In vitro and in vivo experiments and cohort studies using statins have been carried out to demonstrate their antitumor effects (such as proliferation and migration impairment) by influencing inflammatory and oxidative stress-related tumorigenesis. Nevertheless, the biological mechanisms for these actions are not fully elucidated. In this review, we present an overview of the most important studies conducted from 2015 to date on the use of simvastatin in cancer therapy. This review brings the most recent perspectives and targets in epidemiological, in vitro, and in vivo studies, regarding the use of simvastatin alone or in combination with other drugs for the treatment of various types of cancer.
Collapse
|
14
|
Okubo K, Miyai K, Kato K, Asano T, Sato A. Simvastatin-romidepsin combination kills bladder cancer cells synergistically. Transl Oncol 2021; 14:101154. [PMID: 34144348 PMCID: PMC8220249 DOI: 10.1016/j.tranon.2021.101154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Simvastatin-romidepsin combination kills bladder cancer cells synergistically. The combination induces histone acetylation by activating AMPK. AMPK activation and histone acetylation are associated with ER stress induction. Positive feedback cycle between ER stress induction and PPARγ expression.
The HMG-CoA reductase inhibitor simvastatin activates AMP-activated protein kinase (AMPK) and thereby induces histone acetylation. We postulated that combining simvastatin with the histone deacetylase (HDAC) inhibitor romidepsin would kill bladder cancer cells by inducing histone acetylation cooperatively. The combination of romidepsin and simvastatin induced robust apoptosis and killed bladder cancer cells synergistically. In murine subcutaneous tumor models using MBT-2 cells, a 15-day treatment with 0.5 mg/kg romidepsin and 15 mg/kg simvastatin was well tolerated and inhibited tumor growth significantly. Mechanistically, the combination induced histone acetylation by activating AMPK. The combination also decreased the expression of HDACs, thus further promoting histone acetylation. This AMPK activation was essential for the combination's action because compound C, an AMPK inhibitor, suppressed the combination-induced histone acetylation and the combination's ability to induce apoptosis. We also found that the combination increased the expression of peroxisome proliferator-activated receptor (PPAR) γ, leading to reactive oxygen species production. Furthermore, the combination induced endoplasmic reticulum (ER) stress and this ER stress was shown to be associated with increased AMPK expression and histone acetylation, thus playing an important role in the combination's action. Our study also suggests there is a positive feedback cycle between ER stress induction and PPARγ expression.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kimi Kato
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
15
|
Cunha DL, Richardson R, Tracey-White D, Abbouda A, Mitsios A, Horneffer-van der Sluis V, Takis P, Owen N, Skinner J, Welch AA, Moosajee M. REP1 deficiency causes systemic dysfunction of lipid metabolism and oxidative stress in choroideremia. JCI Insight 2021; 6:146934. [PMID: 33755601 PMCID: PMC8262314 DOI: 10.1172/jci.insight.146934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Rose Richardson
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Dhani Tracey-White
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alessandro Abbouda
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Andreas Mitsios
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Panteleimon Takis
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Nicholas Owen
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane Skinner
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Ailsa A. Welch
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Mariya Moosajee
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
16
|
Bai L, Wang Y, Huo J, Li S, Wen Y, Liu Q, Yang J, Liu Y, Li R. Simvastatin accelerated motoneurons death in SOD1 G93A mice through inhibiting Rab7-mediated maturation of late autophagic vacuoles. Cell Death Dis 2021; 12:392. [PMID: 33846297 PMCID: PMC8041862 DOI: 10.1038/s41419-021-03669-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by motoneuron loss, for which there is currently no effective treatment. Statins, as inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are used as drugs for treatment for a variety of disease such as ischemic diseases, neurodegenerative diseases, cancer, and inflammation. However, our previous evidence has demonstrated that simvastatin leads to cytotoxicity in NSC34-hSOD1G93A cells by aggravating the impairment of autophagic flux, but the role of simvastatin in ALS model remains elusive. In present study, we reported that after simvastatin treatment, SOD1G93A mice showed early onset of the disease phenotype and shortened life span, with aggravated autophagic flux impairment and increased aggregation of SOD1 protein in spinal cord motoneurons (MNs) of SOD1G93A mice. In addition, simvastatin repressed the ability of Rab7 localization on the membrane by inhibiting isoprenoid synthesis, leading to impaired late stage of autophagic flux rather than initiation. This study suggested that simvastatin significantly worsened impairment of late autophagic flux, resulting in massive MNs death in spinal cord and accelerated disease progression of SOD1G93A mice. Together, these findings might imply a potential risk of clinic application of statins in ALS.
Collapse
Affiliation(s)
- Lin Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yafei Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shuai Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China.
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
17
|
Yang Y, Zhu Y, Li X, Zhang X, Yu B. Identification of potential biomarkers and metabolic pathways based on integration of metabolomic and transcriptomic data in the development of breast cancer. Arch Gynecol Obstet 2021; 303:1599-1606. [PMID: 33791842 DOI: 10.1007/s00404-021-06015-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Breast cancer (BC) is the most common type of malignant tumor and the most common cause of cancer-related mortality among women. Metabolic reprogramming is considered a hallmark of cancer, and the study of BC metabolism may be the key to the development of new strategies for diagnosis and treatment. In this study, we aimed to explore the potential metabolites and gene biomarkers for BC through the integration of metabolomics and transcriptomic data, which could further understand BC tumor biology. METHODS Transcriptome dataset GSE139038 was downloaded to explore the differentially expressed genes (DEGs) between BC and normal control (NC) samples. Metabolomics dataset MTBLS326 was downloaded and preprocessed to obtain altered metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEGs-metabolites relations. Finally, the pathway enrichment analysis of altered metabolites was performed. RESULTS A total of 280 DEGs and eight metabolites were explored between BC and NC samples. The liner module analysis investigated 28 DEGs-metabolites interactions including WASP family member 3 (WASF3)-lactate, ras-related protein Rab-7B (RAB7B)-lactate, and methyltransferase-like 7A (METTL7A)-pyruvate. Finally, pathways analysis showed that these metabolites (such as lactate and pyruvate) were mainly enriched in pathways like disorders of the Krebs cycle. CONCLUSIONS Combining with the transcriptomic and metabolomics data, we found that lactate, pyruvate, WASF3, RAB7B, and METTL7A might be used as novel biomarkers and potential therapeutic targets for BC. In addition, the disorders of the Krebs cycle pathway might affect the progression of BC.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Yunhua Zhu
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Xiaoyan Li
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Xiuxia Zhang
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Bin Yu
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China.
| |
Collapse
|
18
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Sahebkar A. New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anticancer Agents Med Chem 2021; 21:679-691. [PMID: 32560613 DOI: 10.2174/1871520620666200619180716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. METHODS A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. RESULTS It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. CONCLUSION Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | |
Collapse
|
19
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
20
|
Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:213. [PMID: 33032653 PMCID: PMC7545949 DOI: 10.1186/s13046-020-01723-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Simona De Rienzo
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Angela Sorice
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy. .,Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
21
|
Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res 2020; 26:5791-5800. [PMID: 32887721 DOI: 10.1158/1078-0432.ccr-20-1967] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed cholesterol-lowering drugs that inhibit HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate metabolic pathway. Multiple lines of evidence indicate that certain cancers depend on the mevalonate pathway for growth and survival, and, therefore, are vulnerable to statin therapy. However, these immediately available, well-tolerated, and inexpensive drugs have yet to be successfully repurposed and integrated into cancer patient care. In this review, we highlight recent advances and outline important considerations for advancing statins to clinical trials in oncology.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jenna E van Leeuwen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mohamad Elbaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Branchard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Liu H, Xu J, Yao Q, Zhang Z, Guo Q, Lin J. Rab7 Is Associated with Poor Prognosis of Gastric Cancer and Promotes Proliferation, Invasion, and Migration of Gastric Cancer Cells. Med Sci Monit 2020; 26:e922217. [PMID: 32591494 PMCID: PMC7339976 DOI: 10.12659/msm.922217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rab7 belongs to the Ras oncogene family. Many studies have shown that its dysfunction is associated with many types of malignant tumors, but its effect on the pathogenesis of gastric cancer (GC) is still unknown. Therefore, we investigated the effect and mechanism of Rab7 in GC. MATERIAL AND METHODS The expression of Rab7 in GC and adjacent tissues was detected by immunohistochemistry, Western blot analysis, and qRT-PCR. The relationship of Rab7 with clinicopathological parameters and prognosis was analyzed. The expressions of Rab7, PI3K, and AKT in GC cells were assessed by Western blot. Overexpressed and silenced GC cell lines were constructed and AGS cells were treated with LY294002. The proliferation capacity of GC cells was detected by CCK8 assay, cell cycle changes were detected by flow cytometry, and the invasion and migration abilities of GC cells were assessed by transwell assay. RESULTS The expression of Rab7 was upregulated in the samples and cells, and was positively correlated with lymph node metastasis but negatively correlated with histological differentiation and clinical prognosis. In cell function experiments, overexpression of Rab7 induced the transition from S phase to G2 phase and promoted the proliferation, invasion, and migration of GC cells. Our assessment of the molecular mechanism showed that Rab7 promoted the phosphorylation of PI3K and AKT in GC cells. Incubation with the PI3K inhibitor Ly294002 impaired the enhanced effect of Rab7 overexpression on proliferation, migration, and invasion abilities of GC cells. These results show that the Rab7 affects GC cell progression by modulating the PI3K/AKT pathway. CONCLUSIONS Rab7 could be a prognostic biomarker and therapeutic target of the PI3K/AKT pathway in GC.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Jie Xu
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qingzhi Yao
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Zhongyi Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qiaonan Guo
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Jianqing Lin
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
23
|
Guerra F, Bucci C. Role of the RAB7 Protein in Tumor Progression and Cisplatin Chemoresistance. Cancers (Basel) 2019; 11:cancers11081096. [PMID: 31374919 PMCID: PMC6721790 DOI: 10.3390/cancers11081096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
24
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 2019; 24:685-702. [DOI: 10.1016/j.drudis.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
25
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
26
|
Knockdown of Rab7a suppresses the proliferation, migration, and xenograft tumor growth of breast cancer cells. Biosci Rep 2019; 39:BSR20180480. [PMID: 29769411 PMCID: PMC6361774 DOI: 10.1042/bsr20180480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is a common invasive cancer in women. Ras-related protein Rab-7a (Rab7a) is involved in late endocytic trafficking, while its role in breast cancer is largely unclear. In the present study, we investigated the role of Rab7a in breast cancer. Comparing with adjacent breast tissues, Rab7a expression was increased in breast cancer tissues. Using lentivirus-mediated knockdown strategy, we found that Rab7a silencing inhibited the proliferation and colony formation of MDA-MB-231 cells. Apoptosis and G2 cell cycle arrest were induced in Rab7a knockdown. By contrast, Rab7a suppressed the apoptosis and promoted proliferation and colony formation of MCF-7 cells. The migration of MDA-MB-231 cells was suppressed by Rab7a knockdown. In vivo, depletion of Rab7a inhibited the xenograft tumor development of MDA-MB-231 cells. Altogether, our results highlight the novel function of Rab7a in the proliferation, invasion, and xenograft tumor development of breast cancer cells.
Collapse
|