1
|
Moustafa PE, Farouk H, Khattab MS, El-Marasy SA. Diacerein counteracts amiodarone‑induced hepatotoxicity in rats via targeting TLR4/NF-kB/NLRP3 pathways. Toxicol Mech Methods 2025:1-13. [PMID: 40331897 DOI: 10.1080/15376516.2025.2499024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
This study investigates the protective effects of diacerein (DCN) against amiodarone (AMIO)-induced hepatotoxicity in a rat model. AMIO administration resulted in significant elevations of liver enzymes, ALT and AST, indicating hepatocellular membrane disruption and oxidative stress, as demonstrated by elevated levels of malondialdehyde (MDA) and decreased glutathione (GSH). Additionally, pro-inflammatory cytokines including TNF-α and IL-1β were expressed more when AMIO triggered the Toll-like receptor 4/nuclear factor kappa B/inflammasome 3 (TLR4/NF-κB/NLRP3) inflammatory pathway, along with elevated caspase-1 (CASP1) levels, which promoted apoptosis. In contrast, oral administration of DCN for two weeks effectively mitigated these effects by reducing liver enzyme levels and improving histopathological alterations. DCN also demonstrated anti-oxidant properties by decreasing MDA levels and increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and GSH content. Furthermore, DCN downregulated the hepatic content of TLR4, NF-κB p65, NLRP3, CASP1, and pro-inflammatory cytokines, thereby inhibiting the activation of the inflammatory cascade. Moreover, DCN reduced protein expression of caspase 3. Those findings suggest that DCN exerts its hepatoprotective effects through its anti-oxidant activity, modulation of TLR4/NF-κB/NLRP3 inflammatory pathways, and reduction of apoptosis. These results provide new insights into potential therapeutic strategies for managing AMIO-induced hepatotoxicity, warranting further investigation into the underlying molecular mechanisms of DCN's protective effects.
Collapse
Affiliation(s)
- Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Demishkevich EA, Stefanova SA, Zyubin AY, Rafalskiy VV, Zozulya AS, Evtifeev DO, Kundalevich AA, Tatarinova AA, Anoshin AA, Lyatun II, Samusev IG. Sers-based methodology for nanomolar methotrexate concentration detection for clinics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125801. [PMID: 40023615 DOI: 10.1016/j.saa.2025.125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
The paper proposes a new rapid and reliable method for the detection of methotrexate (MTX) in human blood serum using truncated triangular silver nanoparticles (AgNP) deposited on quartz glass. The article describes the application of the SERS method and the synthesized surfaces for the detection of pure MTX, MTX molecules and its metabolites in patient serum. Using this approach, it was possible to detect methotrexate in controls up to 10-9 M concentration and in human plasma samples at clinical concentration up to 10-6 M. The developed methodology can be a fast and cheap alternative to traditional methods in clinics, such as high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
| | - Svetlana A Stefanova
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Andrey Y Zyubin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Vladimir V Rafalskiy
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Aleksandr S Zozulya
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Denis O Evtifeev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Anna A Kundalevich
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Alisa A Tatarinova
- Joint Institute for Nuclear Research, 6 Joliot-Curie str., Dubna, Russia 141980
| | - Aleksandr A Anoshin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ivan I Lyatun
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ilia G Samusev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| |
Collapse
|
3
|
Alhaddad A, Mosalam EM, AboShabaan HS, Sallam AS, Mahfouz MM, Elhosary E, Mohammed AA, Metwally EM, Shaldam MA, Ghoneim MES. Mechanistic and Molecular Insights into Empagliflozin's Role in Ferroptosis and Inflammation Trajectories in Acetaminophen-Induced Hepatotoxicity. Pharmaceuticals (Basel) 2025; 18:405. [PMID: 40143181 PMCID: PMC11944739 DOI: 10.3390/ph18030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Acetaminophen (APAP)-induced acute liver injury (ALI) is increasingly becoming a public health issue with high rate of morbidity and mortality. Therefore, there is a critical demand for finding protective modalities by understanding the underlying proposed mechanisms including, but not limited to, ferroptosis and inflammation. Objectives: This study seeks to investigate the possible hepatoprotective effect of empagliflozin (EMPA) against APAP-induced ALI through modulation of ferroptosis and inflammatory cascades. Methods: Mice were allocated into the following five groups: vehicle control, APAP, EMPA 10, EMPA 20 (10 and 20 mg/kg/day, respectively, P.O.), and N-acetylcysteine (NAC, hepatoprotective agent against APAP-induced ALI). The hepatic injury was detected by determining liver enzymes and by histopathological examination. Inflammation, oxidative stress, apoptosis, and ferroptosis were also evaluated. Results: The APAP group showed an elevated level of hepatic enzymes with disrupted hepatic architecture. This toxicity was promoted by inflammation, oxidative stress, apoptosis, and ferroptosis, as indicated by elevated cytokines, lipid peroxidation, reduced antioxidants, increased caspase-3, decreased Bcl-2, and activation of the NF-κB/STAT3/hepcidin pathway. Pretreatment with EMPA remarkably reversed these features, which was reflected by restoration of the histoarchitecture of hepatic tissue, but the higher dose of EMPA was more efficient. Conclusions: APAP can induce ALI through initiation of inflammatory and oxidative conditions, which favor ferroptosis. EMPA hindered these unfavorable consequences; an outcome which indicates its anti-inflammatory, antioxidant, anti-apoptotic, and anti-ferroptotic effects. This modulatory action advocated EMPA as a potential hepatoprotective agent.
Collapse
Affiliation(s)
- Aisha Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt; (A.S.S.); (M.M.M.)
| | - Marwa M. Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt; (A.S.S.); (M.M.M.)
| | - Enas Elhosary
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt;
| | - Asmaa A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Girls, AL Azhar University, Cairo 11651, Egypt;
| | - Ebtehal M. Metwally
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 12613, Kafrelsheikh, Egypt;
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia Governorate, Egypt;
| |
Collapse
|
4
|
Demir S, Alemdar NT, Yulug E, Demir EA, Durmus TB, Mentese A, Aliyazicioglu Y. Usnic acid suppresses inflammation and endoplasmic reticulum stress in a methotrexate-induced pulmonary toxicity model via modulating Nrf2 pathway. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:572-578. [DOI: 10.1016/j.sajb.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Ismail R, Habib HA, Anter AF, Amin A, Heeba GH. Modified citrus pectin ameliorates methotrexate-induced hepatic and pulmonary toxicity: role of Nrf2, galectin-3/TLR-4/NF-κB/TNF-α and TGF-β signaling pathways. Front Pharmacol 2025; 16:1528978. [PMID: 39917614 PMCID: PMC11798997 DOI: 10.3389/fphar.2025.1528978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Methotrexate (MTX) is a frequently utilized anti-inflammatory and anticancer agent. Its potential liver and lung toxicity often limits its clinical effectiveness. We conducted this study to demonstrate the possible protective impacts of a natural galectin-3 (Gal-3) inhibitor, modified citrus pectin (MCP), against MTX-induced liver and lung toxicity and verify the potential signaling pathways of these suggested effects. In vitro, the cytotoxicity of MCP and its modulatory effect on MTX cytotoxic efficacy were assessed. Methods Four groups of rats were used: control, MTX (40 mg/kg, single intraperitoneal injection on day 9), MTX + MCP (200 mg/kg/day, orally, for 2 weeks), and MCP alone. MCF7, Nalm6, and JEG3 cell lines were used for the in vitro cytotoxicity assay. Results MCP counteracted liver and lung toxicity evidenced by ameliorating the markers of liver and lung functions. Moreover, MCP minimized oxidative stress elicited by MTX in lung and liver tissues, as indicated by reduced malondialdehyde levels, elevated levels of reduced glutathione, increased superoxide dismutase activity, and upregulated Nrf2 protein expression. In hepatic and pulmonary tissues, MCP downregulated the inflammatory signaling pathway, Gal-3/TLR-4/NF-κB/TNF-α. MCP pretreatment decreased TGF-β, collagen content, and cleaved caspase-3 levels. MCP enhanced the cytotoxicity of MTX in Nalm6 and JEG3 and did not interfere with its cytotoxicity in the MCF7 cell lines. Discussion MCP attenuated MTX-induced liver and lung toxicity through antioxidant, anti-fibrotic, anti-inflammatory, and anti-apoptotic influences, as demonstrated by the improved histopathological changes induced by MTX in pulmonary and hepatic tissues. Moreover, it increased MTX cytotoxicity in different human cell lines.
Collapse
Affiliation(s)
- Randa Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Aliaa F. Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Gehan H. Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
6
|
Yu L, Qin J, Zhang M, Gao Y, Zhao Y. Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone. Drug Des Devel Ther 2024; 18:6089-6113. [PMID: 39717199 PMCID: PMC11664478 DOI: 10.2147/dddt.s489377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Ethnopharmacological Relevance Rhubarb has the effect of breaking blood stasis and abnormal mass, and was often used to treat various tumor diseases including liver cancer in ancient China. Recipes containing rhubarb have anti-liver cancer properties and are still used today. However, the main components and mechanism of action of rhubarb against liver cancer are still unclear. Aim of the Review To conduct a review of the anti-liver cancer effects and toxicity of rhubarb anthraquinones (AQs). Materials and Methods This article reviewed the effects of rhubarb AQs in the treatment of liver cancer and the signaling pathways involved, and discussed the toxicity and pharmacokinetics of rhubarb AQs by searching the Web of Science, PubMed and CNKI databases. Results Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine that has been existed for thousands of years and is used as an anti-cancer drug. Modern pharmacological research shows that rhubarb AQs, as the main component of rhubarb, contains emodin, rhein, chrysophanol, physcione and aloe-emodin, which has anti-liver cancer effects and can be considered as a potential therapeutic drug for liver cancer. However, many modern studies have shown that rhubarb AQs have certain toxicity, which hinders in-depth research on rhubarb AQs. Conclusion Rhubarb AQs can be used as a potential anti-liver cancer drug, but its research still has many limitations. Strengthening research on related experiments and finding a balance between toxicity and efficacy are all directions worth studying in the future.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Jinxing Qin
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Mei Zhang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, 550000, People’s Republic of China
| | - Yawen Gao
- Department of Anesthesia, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongli Zhao
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
| |
Collapse
|
7
|
Mahmoud NM, Elshazly SM, El-shaarawy F, Zaitone SA, Aldahish AA, Ahmed GA, Fawzy MS, Aloyouni SY, Abed SY, Saeedi T, El-Sayed SS. Nitazoxanide mitigates methotrexate hepatotoxicity in rats: role in inhibiting apoptosis and regulating endoplasmic reticulum stress. Front Pharmacol 2024; 15:1491249. [PMID: 39687303 PMCID: PMC11647085 DOI: 10.3389/fphar.2024.1491249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Hepatotoxicity is a severe outcome of methotrexate (MTX) therapy, limiting its clinical use and contributing to its related morbidity and mortality. This study investigated the hepatoprotective effects of nitazoxanide (NTZ), an antiprotozoal drug, against MTX-induced hepatotoxicity and whether endoplasmic reticulum (ER) stress-modulation underlies the expected beneficial effects of NTZ. Methods Thirty-six rats were allocated to six groups, one control group and five MTX groups, where induction of hepatotoxicity was achieved via injecting MTX (20 mg/kg). Groups were assigned as MTX-vehicle, NTZ-100, and NTZ-200 groups (at 100 and 200 mg/kg/day, gavage, respectively), N-acetyl cysteine (NAC) group (500 mg/kg), and 4-phenyl butyric acid (4-PBA) group (150 mg/kg, i.p). Liver function enzymes in serum, hepatic oxidative stress, proinflammatory cytokines, apoptosis, and ER-stress biomarkers were assessed. A histopathological examination was performed. Results Treatment with NTZ lessened the serum liver enzymes, reduced malondialdehyde (lipid peroxidation product), enhanced antioxidant capacity, attenuated proinflammatory cytokines, and suppressed apoptosis. The protective effect of NTZ was dose-dependent, and the findings observed with the high-dose NTZ were similar to those obtained with the ER-stress inhibitor (4-PBA). Conclusion NTZ exerted a hepatoprotective effect in MTX-challenged rats that is mediated via modulation of ER stress and inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Shimaa M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma El-shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gehan A. Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sally Y. Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tahani Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
9
|
Mansoure AN, Elshal M, Helal MG. Renoprotective effect of diacetylrhein on diclofenac-induced acute kidney injury in rats via modulating Nrf2/NF-κB/NLRP3/GSDMD signaling pathways. Food Chem Toxicol 2024; 187:114637. [PMID: 38582345 DOI: 10.1016/j.fct.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
10
|
Mansoure AN, Elshal M, Helal MG. Inhibitory effect of diacerein on diclofenac-induced acute nephrotoxicity in rats via modulating SIRT1/HIF-1α/NF-κB and SIRT1/p53 regulatory axes. Int Immunopharmacol 2024; 131:111776. [PMID: 38471363 DOI: 10.1016/j.intimp.2024.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The aim of this study is to explore the potential of repurposing the antiarthritic drug diacerein (DCN) against diclofenac (DCF)-induced acute nephrotoxicity in rats. Rats were divided into four groups: Group I (CTRL) served as the negative control; Group II (DCF) served as the positive control and was injected with DCF (50 mg/kg/day) for three consecutive days (fourth-sixth) while being deprived of water starting on day 5; Group III (DCF + DCN50) and Group IV (DCF + DCN100) were orally administered DCN (50 and 100 mg/kg/day, respectively) for six days and injected with DCF, while being deprived of water as described above. Changes in kidney function biomarkers were assessed. Levels of MDA and GSH along with NO content in kidney tissues were measured as indicators of oxidative stress status. Histopathological changes of the renal cortex and medulla were evaluated. Changes in renal NF-κB and SIRT-1 levels were immunohistochemically addressed. Western blotting was used to estimate the relative expressions of HIF-1α, p53, and active caspase-3. Our results showed that DCN inhibited kidney dysfunction and suppressed oxidative stress, which were reflected in improved kidney architecture, including less tubular degeneration and necrosis in the cortex and medulla. Interestingly, DCN reduced renal HIF-1α, p53, and active caspase-3 expression and NF-κB activation while increasing renal SIRT1 expression. In conclusion, for the first time, DCN counteracts acute kidney injury induced by DCF in rats by its anti-oxidative, anti-inflammatory, antinecrotic, and anti-apoptotic effects in a dose-dependent manner, which are mainly via targeting SIRT1/HIF-1α/NF-κB and SIRT1/p53 regulatory axes.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Dept. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Dept. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
11
|
Xia N, Ding Z, Dong M, Li S, Liu J, Xue H, Wang Z, Lu J, Chen X. Protective Effects of Lycium ruthenicum Murray against Acute Alcoholic Liver Disease in Mice via the Nrf2/HO-1/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:497. [PMID: 38675458 PMCID: PMC11054480 DOI: 10.3390/ph17040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute alcoholic liver disease (ALD) resulting from short-term heavy alcohol consumption has become a global health concern. Moreover, anthocyanins have attracted much attention for their ability to prevent oxidation and inflammation. The present work evaluates the protective effects of Lycium ruthenicum Murray (LRM) against ALD and explores the possible underlying mechanism involved. The total anthocyanin content in LRM was 43.64 ± 9.28 Pt g/100 g dry weight. Mice were orally administered 50, 125, or 375 mg LRM/kg body weight (BW) for 21 days. On days 18-21, mice were orally administered 15 mL of ethanol/kg BW. Markers of liver damage, oxidative stress, and inflammation were examined. Furthermore, the modulatory effect of LRM on Nrf2/HO-1/NF-κB pathway molecules was evaluated through quantitative reverse transcription polymerase chain reaction (RT‒qPCR) and immunohistochemistry analyses. The difference between the groups indicated that LRM improved liver histopathology and the liver index, decreased aspartate transaminase, alanine transaminase, malondialdehyde, reactive oxygen species, IL-6, TNF-α, and IL-1β expression, but elevated superoxide dismutase, catalase, and glutathione-s-transferase levels. Moreover, LRM upregulated Nrf2 and Ho-1 but downregulated Nf-κb and Tnf-α genes at the transcript level. In summary, LRM alleviated ethanol-induced ALD in mice by reducing oxidative damage and associated inflammatory responses. LRM protects against ALD by reducing damage factors and enhancing defense factors, especially via the Nrf2/HO-1/NF-κB pathway. Thus, LRM has application potential in ALD prophylaxis and treatment.
Collapse
Affiliation(s)
- Niantong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zimian Ding
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Mingran Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Shuyang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Hongwei Xue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Juan Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Xi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| |
Collapse
|
12
|
Zhao T, Lun S, Yan M, Park J, Wang S, Chen C. 6,7-Dimethoxycoumarin, Gardenoside and Rhein combination improves non-alcoholic fatty liver disease in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117646. [PMID: 38135236 DOI: 10.1016/j.jep.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study explores the potential therapeutic benefits of using a three-component DGR (composed of specific compounds) to target the NLRP3 inflammasome in the context of non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY To assess the impact of a three-component DGR on NAFLD, specifically examining its effects on liver lipid accumulation, inflammation, and the diversity of intestinal microbial communities. METHODS NAFLD was induced in 8-week-old Sprague Dawley rats by feeding them a high-fat emulsion diet every morning for 8 consecutive weeks. Oral administration of DGR or its constituent equivalents in the afternoon. The pharmacological effects of DGR were evaluated using H&E, ORO and ELISA methods to determine the changes in serum and liver tissue indexes of rat-models. Immunohistochemical staining and Western blot were used to assess the interaction between DGR, NLRP3 and IL-1β. RESULTS The induction of NAFLD resulted in elevated hepatic triglycerides (TG), total cholesterol (TC), and free fatty acids (FFA). However, these alterations were ameliorated upon administration of DGR. It is noteworthy that DGR exhibited superior efficacy in comparison to its constituent compounds, manifesting augmented antioxidant activity, diminished hepatic damage, and the attenuation of pro-inflammatory factors. Both DGR and its individual monomeric constituents exhibited the capacity to attenuate the activation of the NLRP3 inflammasome in the liver, leading to an amelioration of the pathological characteristics associated with NAFLD. An analysis of the intestinal flora unveiled an elevated abundance of p_Firmicutes (1.1-fold), p_Cyanobacteria (5.76-fold), and p_Verrucomicrobia (5.2-fold), accompanied by a heightened p_Firmicutes to p_Bacteroidetes ratio (5.49-fold). CONCLUSIONS In the non-alcoholic fatty liver disease (NAFLD) rat model, the concurrent administration of three-component DGR effectively regulated lipid deposition, suppressed liver inflammation, and restored balance in the intestinal flora, thereby improving NAFLD pathology. These findings propose a promising therapeutic strategy for NAFLD, centered on inhibiting the NLRP3 inflammasome through the use of the three-component DGR.
Collapse
Affiliation(s)
- Tianyi Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Shiyi Lun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Maoying Yan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - JongPil Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Changbao Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| |
Collapse
|
13
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
15
|
Li L, Ju J, Zhuang X, Li S, Ma R, Li J, Ding M, Ma C, Wang X, Zhang B. Chemistry of Bairui granules and its mechanisms in the protective effect against methotrexate-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155158. [PMID: 37935081 DOI: 10.1016/j.phymed.2023.155158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Bairui granules (BRKL), a traditional Chinese medicine preparation, possess a range of pharmacological effects. However, its impact on methotrexate (MTX)-induced liver damage remains unexplored. PURPOSE The present work focused on investigating the potential protection of BRKL on MTX-induced liver damage, along with its potential active ingredients and underlying mechanisms. METHODS We evaluated the hepatoprotective activities of BRKL in liver-damaged Wistar rats induced by intraperitoneal MTX injection, observing the liver's morphological and pathological features. Additionally, we measured serum ALT, AST, and LDH levels using kits. Ultra High-Performance Liquid Chromatography-Q-Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) analyzed BRKL composition, and network pharmacology strategy predicted and analyzed BRKL's targets and pathways. Thereafter, we conducted molecular docking for analyzing affinity of bioactive ingredients for targets with Autodock. At last, results were verified through in vitro experiments. RESULTS The animal experiments revealed the significant protection of BRKL against MTX-mediated rat liver damage. A total of 64 major chemical constituents were identified in BRKL by UHPLC-Q-Exactive Orbitrap MS. We then applied the network-based pharmacological strategy to clarify BRKL's molecular mechanism on liver damage based on the identified components. The targets EGFR, SRC, PIK3R1, AKT1, and ESR1, as well as compounds isorhamnetin 3,7-O-diglucoside, β-ecdysone, chrysoeriol, apigenin, and diosmetin, may play pivotal roles in treating MTX-mediated liver damage. According to our in vitro experiments, isorhamnetin 3,7-O-diglucoside may exert its liver-protective effect via AKT/NF-κB pathway. CONCLUSION BRKL protected against MTX-mediated liver injury, and the bioactive ingredients, key pathways, and liver injury-related molecular targets have been identified. These findings provide new insights into using BRKL in treating liver damage and propose a feasible approach to exploring phytomedicine's chemical and pharmacological foundation.
Collapse
Affiliation(s)
- Li Li
- Department of pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan 250014, China
| | - Jianfeng Ju
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Xiuping Zhuang
- School of Pharmacy, Shandong University of TCM, Jinan 250355, China
| | - Shuming Li
- Jiuhua Huayuan Pharmaceutical Company Limited, Chuzhou 239001,China
| | - Rui Ma
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Ji Li
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Ming Ding
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Chuanjiang Ma
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Xin Wang
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China; School of Pharmacy, Shandong University of TCM, Jinan 250355, China.
| | - Baoqing Zhang
- Department of pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan 250014, China.
| |
Collapse
|
16
|
Fikry E, Orfali R, El-Sayed SS, Perveen S, Ghafar S, El-Shafae AM, El-Domiaty MM, Tawfeek N. Potential Hepatoprotective Effects of Chamaecyparis lawsoniana against Methotrexate-Induced Liver Injury: Integrated Phytochemical Profiling, Target Network Analysis, and Experimental Validation. Antioxidants (Basel) 2023; 12:2118. [PMID: 38136237 PMCID: PMC10740566 DOI: 10.3390/antiox12122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Methotrexate (MTX) therapy encounters significant limitations due to the significant concern of drug-induced liver injury (DILI), which poses a significant challenge to its usage. To mitigate the deleterious effects of MTX on hepatic function, researchers have explored plant sources to discover potential hepatoprotective agents. This study investigated the hepatoprotective effects of the ethanolic extract derived from the aerial parts of Chamaecyparis lawsoniana (CLAE) against DILI, specifically focusing on MTX-induced hepatotoxicity. UPLC-ESI-MS/MS was used to identify 61 compounds in CLAE, with 31 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 195 potential DILI targets for the bioactive compounds, including TP53, IL6, TNF, HSP90AA1, EGFR, IL1B, BCL2, and CASP3 as top targets. In vivo experiments conducted on rats with acute MTX-hepatotoxicity revealed that administering CLAE orally at 200 and 400 mg/kg/day for ten days dose-dependently improved liver function, attenuated hepatic oxidative stress, inflammation, and apoptosis, and reversed the disarrayed hepatic histological features induced by MTX. In general, the findings of the present study provide evidence in favor of the hepatoprotective capabilities of CLAE in DILI, thereby justifying the need for additional preclinical and clinical investigations.
Collapse
Affiliation(s)
- Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Safina Ghafar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Maher M. El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| |
Collapse
|
17
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
18
|
Ali DM, Mahmoud MH, Rifaai RA, Fawzy MA, Atta M, Welson NN, Batiha GE, Alexiou A, Papadakis M, Abdelzaher WY. Diacerein modulates TLR4/ NF-κB/IL-1β and TRPC1/CHOP signalling pathways in gentamicin-induced parotid toxicity in rats. J Cell Mol Med 2023; 27:1735-1744. [PMID: 37257043 PMCID: PMC10273056 DOI: 10.1111/jcmm.17791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The present study aimed to identify the possible protective effect of diacerein (DIA) on gentamicin (GNT)-induced parotid toxicity in rats. DIA was administered in the presence and absence of GNT. Thirty-two Wistar adult male rats were randomly arranged into four groups: control, DIA (50 mg/kg/day), GNT (100 mg/kg) and GNT+DIA groups for 8 days. Parotid oxidative stress parameters, besides inflammatory and apoptotic biomarkers, were evaluated. Salivary flow rate, transient receptor potential canonical 1 (TRCP1), and C/EBP homologous protein (CHOP) in parotid tissue were measured. A parotid histopathological examination and an interleukin-1 beta (IL-1β) immunohistochemical study were also performed. GNT significantly increased parotid oxidative stress, inflammatory, apoptotic and CHOP biomarkers with decreased salivary flow rate and TRCP1 level. A histopathological picture of parotid damage and high IL-1β immunoexpression were detected. DIA significantly normalized the distributed oxidative, inflammatory and apoptotic indicators, CHOP and TRCP1, with a prompt improvement in the histopathological picture and a decrease in IL-1β immunoexpression. These results reported that DIA protects against GNT-induced parotid toxicity via modulation of TLR4/NF-κB/IL-1β and TRPC1/CHOP signalling pathways.
Collapse
Affiliation(s)
- Dalia Mohamed Ali
- Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of PharmacyMinia UniversityMiniaEgypt
| | - Medhat Atta
- Department of Anatomy, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineBeni‐Suef UniversityBeni SuefEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of History of Medicine, School of MedicineUniversity of IoanninaIoanninaGreece
| | | |
Collapse
|
19
|
Ren Q, Bakker W, de Haan L, Rietjens IMCM, Bouwmeester H. Induction of Nrf2-EpRE-mediated gene expression by hydroxyanthraquinones present in extracts from traditional Chinese medicine and herbs. Food Chem Toxicol 2023; 176:113802. [PMID: 37116774 DOI: 10.1016/j.fct.2023.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 μM, 1.1 μM, 23 μM and 2.3 μM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 μM, 15 μM, 9.8 μM and 3.8 μM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
20
|
Schmidt S, Messner CJ, Gaiser C, Hämmerli C, Suter-Dick L. Methotrexate-Induced Liver Injury Is Associated with Oxidative Stress, Impaired Mitochondrial Respiration, and Endoplasmic Reticulum Stress In Vitro. Int J Mol Sci 2022; 23:ijms232315116. [PMID: 36499436 PMCID: PMC9735468 DOI: 10.3390/ijms232315116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Low-dose methotrexate (MTX) is a standard therapy for rheumatoid arthritis due to its low cost and efficacy. Despite these benefits, MTX has been reported to cause chronic drug-induced liver injury, namely liver fibrosis. The hallmark of liver fibrosis is excessive scarring of liver tissue, triggered by hepatocellular injury and subsequent activation of hepatic stellate cells (HSCs). However, little is known about the precise mechanisms through which MTX causes hepatocellular damage and activates HSCs. Here, we investigated the mechanisms leading to hepatocyte injury in HepaRG and used immortalized stellate cells (hTERT-HSC) to elucidate the mechanisms leading to HSC activation by exposing mono- and co-cultures of HepaRG and hTERT-HSC to MTX. The results showed that at least two mechanisms are involved in MTX-induced toxicity in HepaRG: (i) oxidative stress through depletion of glutathione (GSH) and (ii) impairment of cellular respiration in a GSH-independent manner. Furthermore, we measured increased levels of endoplasmic reticulum (ER) stress in activated HSC following MTX treatment. In conclusion, we established a human-relevant in vitro model to gain mechanistical insights into MTX-induced hepatotoxicity, linked oxidative stress in HepaRG to a GSH-dependent and -independent pathway, and hypothesize that not only oxidative stress in hepatocytes but also ER stress in HSCs contribute to MTX-induced activation of HSCs.
Collapse
Affiliation(s)
- Saskia Schmidt
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Carine Gaiser
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Carina Hämmerli
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
- Correspondence:
| |
Collapse
|
21
|
Wang M, Luo W, Yu T, Liang S, Zou C, Sun J, Li G, Liang G. Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154387. [PMID: 36027716 DOI: 10.1016/j.phymed.2022.154387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heart failure is a common event in the course of hypertension. Recent studies have highlighted the key role of the non-hemodynamic activity of angiotensin II (Ang II) in hypertension-related cardiac inflammation and remodeling. A naturally occurring compound, diacerein, exhibits anti-inflammatory activities in various systems. HYPOTHESIS/PURPOSE In this study, we have examined the potential effects of diacerein on Ang II-induced heart failure. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop hypertensive heart failure. Mice were treated with diacerein by gavage for final 2 weeks. RNA-sequencing analysis was performed to explore the potential mechanism of diacerein. RESULTS We found that diacerein could inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of blood pressure. To explore the potential mechanism of diacerein, RNA-sequencing analysis was performed, indicating that MAPKs/c-Myc pathway is involved in that cardioprotective effects of Diacerein. We further confirmed that diacerein inhibits Ang II-activated MAPKs/c-Myc pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Deficiency of MAPKs or c-Myc in cardiomyocytes abolished the anti-inflammatory effects of diacerein. CONCLUSION Our results indicate that diacerein protects hearts in Ang II-induced mice through inhibiting MAPKs/c-Myc-mediated inflammatory responses, rendering diacerein a potential therapeutic candidate agent for hypertensive heart failure.
Collapse
Affiliation(s)
- Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
22
|
Liu S, Yin R, Yang Z, Wei F, Hu J. The effects of rhein on D-GalN/LPS-induced acute liver injury in mice: Results from gut microbiome-metabolomics and host transcriptome analysis. Front Immunol 2022; 13:971409. [PMID: 36389730 PMCID: PMC9648667 DOI: 10.3389/fimmu.2022.971409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Rhubarb is an important traditional Chinese medicine, and rhein is one of its most important active ingredients. Studies have found that rhein can improve ulcerative colitis by regulating gut microbes, but there are few reports on its effects on liver diseases. Therefore, this study aims to investigate these effects and underlying mechanisms. Methods Mice were given rhein (100 mg/kg), with both a normal control group and a model group receiving the same amount of normal saline for one week. Acute liver injury was induced in mice by intraperitoneal injection of D-GalN (800 mg/kg)/LPS (10 ug/kg). Samples (blood, liver, and stool) were then collected and assessed for histological lesions and used for 16S rRNA gene sequencing, high-performance liquid chromatography-mass spectrometry (LC-MS) and RNA-seq analysis. Results The levels of ALT and AST in the Model group were abnormal higher compared to the normal control group, and the levels of ALT and AST were significantly relieved in the rhein group. Hepatic HE staining showed that the degree of liver injury in the rhein group was lighter than that in the model group, and microbiological results showed that norank_o:Clostridia_UCG-014, Lachnoclostridium, and Roseburia were more abundant in the model group compared to the normal control group. Notably, the rhein treatment group showed reshaped disturbance of intestinal microbial community by D-GalN/LPS and these mice also had higher levels of Verrucomicrobia, Akkermansiaceae and Bacteroidetes. Additionally, There were multiple metabolites that were significantly different between the normal control group and the model group, such as L-α-amino acid, ofloxacin-N-oxide, 1-hydroxy-1,3-diphenylpropan-2-one,and L-4-hydroxyglutamate semialdehyde, but that returned to normal levels after rhein treatment. The gene expression level in the model group also changed significantly, various genes such as Cxcl2, S100a9, Tnf, Ereg, and IL-10 were up-regulated, while Mfsd2a and Bhlhe41 were down-regulated, which were recovered after rhein treatment. Conclusion Overall, our results show that rhein alleviated D-GalN/LPS-induced acute liver injury in mice. It may help modulate gut microbiota in mice, thereby changing metabolism in the intestine. Meanwhile, rhein also may help regulate genes expression level to alleviate D-GalN/LPS-induced acute liver injury.
Collapse
Affiliation(s)
- Shuhui Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ruiying Yin
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ziwei Yang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| | - Jianhua Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| |
Collapse
|
23
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
24
|
Yang W, Liu J, Zheng Y, Qu J, Tang X, Bai H, Liu C, Fan B. Study on chronic toxicity of rhubarb extract in Sprague-Dawley rats. Heliyon 2022; 8:e10907. [PMID: 36247124 PMCID: PMC9557872 DOI: 10.1016/j.heliyon.2022.e10907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Objective The purpose of this study was to evaluate the safety of rhubarb extract. Methods SD rats were treated with rhubarb extract at 0, 101, 405 and 1620 mg/kg/day for 52 weeks. food consumption and body weights were recorded. Blood and urine samples were collected for serum biochemical evaluation and urinalysis, and organ tissues were collected for histopathological examination. Results The rats of 1620 mg/kg group developed diarrhea symptoms with dark brown loose stool after exposure; decreased body weight and increased food consumption were observed in the 1620 mg/kg and 405 mg/kg groups; urine WBC and NIT was significantly increased in the male and female rats of 1620 mg/kg group, and the urine pH was decreased in male rats of 1620 mg/kg group; renal tubular pigmentation was observed in the 1620 mg/kg group. Conclusion The NOAEL of rhubarb extract on chronic toxicity (52 weeks) of Sprague-Dawley rats was 101 mg/kg in female and 94 mg/kg in male, and the LOAEL was 408 mg/kg in female and 381 mg/kg in male. The target organ of toxicity was the kidney, and the target cells was tubular epithelial cells.
Collapse
Affiliation(s)
- Wenxiang Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Ji Liu
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 10070, China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jingjing Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xiaoqiao Tang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Hong Bai
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 10070, China
- Corresponding author.
| | - Chunxia Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
- Corresponding author.
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
- Corresponding author.
| |
Collapse
|
25
|
Zhao Y, Wang J, Liu L, Wu Y, Hu Q, Zhao R. Vinegar-baked Radix Bupleuri enhances the liver-targeting effect of rhein on liver injury rats by regulating transporters. J Pharm Pharmacol 2022; 74:1588-1597. [PMID: 36181768 DOI: 10.1093/jpp/rgac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to explore whether the liver-targeting enhancing effect of vinegar-baked Radix Bupleuri (VBRB) on rhein was achieved by affecting transporters, metabolism enzymes as well as hepatocyte nuclear factor 1α/4α (HNF1α/HNF4α) in liver injury. METHODS The effect of VBRB on the efficacy of rhein was performed with the LPS-induced acute liver injury rat model. Aspartate aminotransferase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) levels were determined and histopathological examination was taken. Drug concentrations in tissues were determined by high performance liquid chromatography (HPLC). The protein expressions of drug transporters, metabolic enzymes and hepatic nuclear factors were determined by Western blotting and ELISA assays. KEY FINDING VBRB improved the liver protecting effect of rhein, which was consistent with its promoting effect on targeted enrichment of rhein in the liver. VBRB or in combination with rhein inhibited P-glycoprotein (Pgp) and multi-resistance related protein 2 (MRP2), while increased organic anion transporting polypeptide 2 (OATP2), which might be the reason why VBRB promoted liver-targeting effect of rhein. CONCLUSION VBRB enhances the liver-protecting effect of rhein by down-regulating Pgp, MRP2, and up-regulating OATP2.
Collapse
Affiliation(s)
- Ya Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jinqiu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yayun Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiaohong Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
26
|
Tan YR, Lu Y. Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology. Mol Divers 2022:10.1007/s11030-022-10501-w. [PMID: 35933455 DOI: 10.1007/s11030-022-10501-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. Rhubarb, a traditional Chinese medicine, has been widely used in the treatment of inflammatory and autoimmune diseases. This study aimed to investigate the possible mechanism of the rhubarb herb in the treatment of NSCLC by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating lung cancer. The main active chemical components and targets of rhubarb were screened through Swiss Target Prediction, TargetNet, and Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The protein-protein interaction (PPI) network was built via an in-depth exploration of the relationships between the proteins. The enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to predict the potential roles in the pathogenesis of NSCLC via the R package cluster Profiler. Potential targets and active ingredients associated with anti-tumor effects of rhubarb were screened by reverse molecular docking. By searching databases and literature, a total of 295 targets were found for the 21 active ingredients in rhubarb. There were 68 common target genes associated with NSCLC, of which 9 are derived from FDA-approved drugs. GO Gene Set Enrichment Analysis (GSEA) explored up to 1103 biological processes, 62 molecular functions, and 18 cellular components. KEGG GSEA explored 65 basic pathways, and 71 disease pathways. Four key targets (JUN, EGFR, BCL2, and JAK2) were screened through the protein-protein interaction network, target-pathway network, and FDA drug-target network. Molecular docking results showed that these key targets had relatively strong binding activities with rhubarb's active ingredients. The present study explored the potential pharmacological mechanisms of rhubarb on NSCLC, promoting the clinical application of rhubarb in treating NSCLC, and providing references for advanced research.
Collapse
Affiliation(s)
- Ye-Ru Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yu Lu
- The First Affiliated Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
27
|
Xu N, Chen Y, Guo D, Deng Y, Guo W, Liu X, Wang Y, Lu H, Liu A, Zhu J, Li F. Rhein promotes the proliferation of keratinocytes by targeting oestrogen receptors for skin ulcer treatment. BMC Complement Med Ther 2022; 22:209. [PMID: 35932049 PMCID: PMC9354312 DOI: 10.1186/s12906-022-03691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Sheng-ji Hua-yu (SJHY) formula is a quite effective Traditional Chinese Medicines (TCM) in the treatment of delayed diabetic wounds. Previous research has shown that the SJHY formula has significant anti-inflammatory and wound-healing effects, but the precise mechanism remains unknown. The purpose of this study was to evaluate the effects of rhein, a compound extracted from SJHY formula, in keratinocytes and to investigate the underlying mechanisms. Methods Microscale thermophoresis (MST) technology was used to confirm that rhein binds directly to oestrogen receptors (ERs). Rhein was then used to treat keratinocytes in vitro. Cell cycle and proliferation analysis, Real-time polymerase chain reaction (RT-PCR) and Western-blot were conducted. Results Rhein increased the proportion of cells in the S phase of the cell cycle and promoted keratinocyte proliferation. ICI 182,780, an ER inhibitor, was also used to treat keratinocytes. The expression of c-myc mRNA and protein induced by rhein was antagonized by ICI 182,780, indicating that this induction is ER dependent. Intervention with ICI 182,780 had no effect on the upregulation of FosB and JunD, indicating that activator protein 1 (AP-1) members (FosB and JunD) are involved in rhein-induced c-myc mRNA and protein expression but does not require the ER. Conclusion The present study found that rhein stimulates keratinocyte proliferation by activating the oestrogen signalling pathway via the oestrogen receptor, which induces the expression of c-myc in collaboration with FosB and JunD, thereby accelerating the process of re-epithelialization. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03691-1.
Collapse
|
28
|
Zhu Y, Jin H, Huo X, Meng Q, Wang C, Sun P, Ma X, Sun H, Dong D, Wu J, Liu K. Protective effect of Rhein against vancomycin-induced nephrotoxicity through regulating renal transporters and Nrf2 pathway. Phytother Res 2022; 36:4244-4262. [PMID: 35820659 DOI: 10.1002/ptr.7559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022]
Abstract
Vancomycin (VCM)'s nephrotoxicity limits its application and therapeutic efficiency. The aim of this study was to determine the protective effect of rhein against VCM-induced nephrotoxicity (VIN). VIN models were established in rats and NRK-52E cells. Rhein up-regulated the expressions of renal organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2), mammal multidrug and toxin extrusion proteins 1 (Mate 1) and P-glycoprotein (P-gp) to facilitate the efflux of plasma creatinine, blood urea nitrogen (BUN), and plasma indoxyl sulfate. Rhein increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate the expression of Mrp2, P-gp, and Mate 1. The increased level of superoxide dismutase (SOD), decreased level of malondialdehyde (MDA) and reduced number of apoptosis cells were observed after treatment of rhein. Rhein decreased the number of apoptosis cells as well as increased the expression of B-cell lymphoma-2 (Bcl-2) and decreased expressions of Bcl-2-like protein 4 (Bax). ML385, as a typical inhibitor of Nrf2, reversed the protective effects of rhein in cells. Rhein oriented itself in the site of Keap1, inhibiting the Keap1-Nrf2 interaction. Rhein ameliorated VIN mainly through regulating the expressions of renal transporters and acting on Nrf2 pathway.
Collapse
Affiliation(s)
- Yanna Zhu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huan Jin
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Lu W, Zhu H, Wu J, Liao S, Cheng G, Li X. Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK–FGF23 signaling. J Transl Med 2022; 20:305. [PMID: 35794561 PMCID: PMC9258170 DOI: 10.1186/s12967-022-03482-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/11/2022] [Indexed: 12/07/2022] Open
Abstract
Background Increasing evidence indicates that myocardial oxidative injury plays a crucial role in the pathophysiology of cardiac hypertrophy (CH) and heart failure (HF). The active component of rhubarb, rhein exerts significant actions on oxidative stress and inflammation. Nonetheless, its role in cardiac remodeling remains unclear. Methods CH was induced by angiotensin II (Ang II, 1.4 mg/kg/d for 4 weeks) in male C57BL/6 J mice. Then, rhein (50 and 100 mg/kg) was injected intraperitoneally for 28 days. CH, fibrosis, oxidative stress, and cardiac function in the mice were examined. In vitro, neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) pre-treated with rhein (5 and 25 μM) were challenged with Ang II. We performed RNA sequencing to determine the mechanistic role of rhein in the heart. Results Rhein significantly suppressed Ang II-induced CH, fibrosis, and reactive oxygen species production and improved cardiac systolic dysfunction in vivo. In vitro, rhein significantly attenuated Ang II-induced CM hypertrophy and CF collagen expression. In addition, rhein obviously alleviated the increased production of superoxide induced by Ang II. Mechanistically, rhein inhibited FGF23 expression significantly. Furthermore, FGF23 overexpression abolished the protective effects of rhein on CMs, CFs, and cardiac remodeling. Rhein reduced FGF23 expression, mostly through the activation of AMPK (AMP-activated protein kinase). AMPK activity inhibition suppressed Ang II-induced CM hypertrophy and CF phenotypic transformation. Conclusion Rhein inhibited Ang II-induced CH, fibrosis, and oxidative stress during cardiac remodeling through the AMPK–FGF23 axis. These findings suggested that rhein could serve as a potential therapy in cardiac remodeling and HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03482-9.
Collapse
|
30
|
Mohamed Kamel GA, Harahsheh E, Hussein S. Diacerein ameliorates acetaminophen hepatotoxicity in rats via inhibiting HMGB1/TLR4/NF-κB and upregulating PPAR-γ signal. Mol Biol Rep 2022; 49:5863-5874. [PMID: 35366176 PMCID: PMC8975726 DOI: 10.1007/s11033-022-07366-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1β), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Eman Harahsheh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
31
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
32
|
Wang M, Sun J, Yu T, Wang M, Jin L, Liang S, Luo W, Wang Y, Li G, Liang G. Diacerein protects liver against APAP-induced injury via targeting JNK and inhibiting JNK-mediated oxidative stress and apoptosis. Biomed Pharmacother 2022; 149:112917. [PMID: 36068777 DOI: 10.1016/j.biopha.2022.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
33
|
Elshal M, Abdelmageed ME. Diacerein counteracts acetaminophen-induced hepatotoxicity in mice via targeting NLRP3/caspase-1/IL-1β and IL-4/MCP-1 signaling pathways. Arch Pharm Res 2022; 45:142-158. [PMID: 35244883 PMCID: PMC8967791 DOI: 10.1007/s12272-022-01373-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The current study aims at repurposing the anti-arthritic drug diacerein (DCN) for the treatment of acetaminophen hepatotoxicity and investigating the potential underlying mechanisms. Mice were randomly divided into six groups receiving either no treatment (control group), 20 mg/kg DCN i.p, 400 mg/kg acetaminophen i.p, DCN 4 h before acetaminophen, DCN 2 h after acetaminophen, or 400 mg/kg N-acetylcysteine (NAC) i.p, 2 h after acetaminophen. Biomarkers of liver dysfunction, oxidative stress, and apoptosis were assessed. Hepatic necroinflammatory changes were evaluated along with hepatic expression of NF-κB and caspase-1. The levels of NLRP3, IL-1β, IL-4, MCP-1, and TNF-α in the liver, as well as CYP2E1 mRNA expression, were measured. Diacerein significantly reduced biomarkers of liver dysfunction, oxidative stress, hepatocyte necrosis, and infiltration of neutrophils and macrophages whether administered 4 h before or 2 h after acetaminophen. Further, the effects were comparable to those of NAC. Diacerein also counteracted acetaminophen-induced hepatocellular apoptosis by increasing Bcl-2 and decreasing Bax and caspase-3 expression levels. Moreover, DCN normalized hepatic TNF-α and significantly decreased NF-κB p65 expression. Accordingly, DCN can prevent or reverse acetaminophen hepatotoxicity in mice, suggesting potential utility as a repurposed drug for clinical treatment.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| | - Marwa E. Abdelmageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| |
Collapse
|
34
|
Silva RCL, Sasso‐Cerri E, Cerri PS. Diacerein‐induced interleukin‐1β deficiency reduces the inflammatory infiltrate and immunoexpression of matrix metalloproteinase‐8 in periodontitis in rat molars. J Periodontol 2022; 93:1540-1552. [DOI: 10.1002/jper.21-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Renata Cristina Lima Silva
- Department of Diagnosis and Surgery, Dental School São Paulo State University (UNESP) Araraquara São Paulo Brazil
| | - Estela Sasso‐Cerri
- Laboratory of Histology and Embryology – Department of Morphology, Genetics Orthodontics and Pediatric Dentistry – Dental School – São Paulo State University (UNESP) Araraquara SP Brazil
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology – Department of Morphology, Genetics Orthodontics and Pediatric Dentistry – Dental School – São Paulo State University (UNESP) Araraquara SP Brazil
| |
Collapse
|
35
|
Shalkami AGS, Hassanein EHM, Sayed AM, Mohamed WR, Khalaf MM, Hemeida RAM. Hepatoprotective effects of phytochemicals berberine and umbelliferone against methotrexate-induced hepatic intoxication: experimental studies and in silico evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67593-67607. [PMID: 34258700 DOI: 10.1007/s11356-021-15358-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic drugs are used effectively to manage wide types of malignancies, but their therapeutic use is limited due to their associated hepatic intoxication. The current study sheds light on the effect of phytochemicals berberine (BBR) and umbelliferone (UMB) on methotrexate (MTX)-induced hepatic intoxication. Forty-eight rats were allocated to normal, BBR (50 mg/kg orally for 10 days), UMB (30 mg/kg orally for 10 days), MTX (20 mg/kg at the 5th day), BBR+MTX, and UMB+MTX. With regard to MTX, the results of this investigation reveal potent amelioration of MTX hepatotoxicity by BBR and UMB through reduction of the elevated serum levels of ALT, ALP, AST, and LDH confirmed by the attenuation of histopathological abrasion in liver tissues. BBR and UMB markedly restored antioxidant status. More importantly, BBR resulted in reducing P38 mitogen-activated protein kinase (P38MAPK), nuclear factor kappa-B (NF-κB), and Kelch-like ECH-associated protein 1 (Keap-1) genes and enhanced mRNA expression of Nrf-2 (P < 0.05). Interestingly, in silico studies via molecular docking pinpointed the binding modes of BBR and UMB to the binding pocket residues of P38MAPK, NF-κB, and Keap-1 and demonstrated a promising inhibition of Keap-1, P38MAPK, and NF-κB. BBR and UMB reduced the expression of pro-apoptotic protein Bax and apoptotic protein caspase-3 as well as increased the expression of anti-apoptotic protein Bcl-2. Therefore, BBR and UMB may denote promising therapeutic agents that can avert hepatic intoxication in patients receiving MTX.
Collapse
Affiliation(s)
- Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Menia, 61768, Egypt
| |
Collapse
|
36
|
Azadnasab R, Kalantar H, Khorsandi L, Kalantari H, Khodayar MJ. Epicatechin ameliorative effects on methotrexate-induced hepatotoxicity in mice. Hum Exp Toxicol 2021; 40:S603-S610. [PMID: 34802285 DOI: 10.1177/09603271211047924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to the fact that methotrexate is widely used both as an immunosuppressive drug and as a chemotherapy agent, many studies are needed to reduce the side effects of this drug on non-target organs. PURPOSE This study was designed to investigate the effects of epicatechin (Epi) on MTX (methotrexate)-induced hepatotoxicity in mice. RESEARCH DESIGN After 1 week for adaptation, we randomly divided 42 male Naval Medical Research Institute mice into six groups: (I) control; (II) Epi (100 mg/kg, po); (III) MTX (20 mg/kg, i.p.) on the fifth day; and (IV, V, and VI) Epi (25, 50, and 100 mg/kg, po) + MTX (20 mg/kg, i.p.) on the fifth day. At day 10, the mice were sacrificed and serum factors, oxidative stress markers, and inflammatory cytokines were measured. RESULTS MTX increased activity level of serum enzymes (alanine aminotransferase and aspartate aminotransferase), lipid peroxidation marker (malondialdehyde), and inflammatory factors including interleukin-1 beta, tumor necrosis factor-alpha, and nitric oxide. Furthermore, MTX decreased glutathione level and activity level of catalase, superoxide dismutase, and glutathione peroxidase. Epi was able to reduce the destructive effects of oxidative/antioxidant system imbalance and inflammatory reactions and also histopathological damage in MTX intoxicated mice. Epi pretreatment reduced liver dysfunction by improving the antioxidant defense system, anti-inflammatory effects, and alleviation of histopathological damage in MTX hepatotoxicity. CONCLUSIONS Accordingly, Epi can be used as a therapeutic agent in hepatotoxicity associated with MTX chemotherapy.
Collapse
Affiliation(s)
- Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Ibrahim YF, Refaie MM, Kamel MY, Ahmed SM, Moussa RA, Bayoumi AM, Ibrahim MA. Molecular mechanisms underlying the effect of diacerein on trichloroacetic acid-induced hepatic pre-neoplastic lesions in rats. Hum Exp Toxicol 2021; 40:S788-S803. [PMID: 34794354 DOI: 10.1177/09603271211056331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CONCLUSION IL-1β mediates angiogenesis indirectly, as it has been shown to induce hypoxia-inducible factor-1α (HIF-1α) which upregulates VEGF.
Collapse
Affiliation(s)
- Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | - Marwa Mm Refaie
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | - Maha Y Kamel
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | - Sara M Ahmed
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | - Asmaa Ma Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, 68877Minia University, Minia, Egypt.,Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mohamed A Ibrahim
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt
| |
Collapse
|
38
|
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281:119754. [PMID: 34174323 DOI: 10.1016/j.lfs.2021.119754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
AIM The present study was undertaken to elucidate the potential protective mechanism of berberine (BBR) and/or zinc (Zn) against methotrexate (MTX)-induced intestinal injury. METHODS Five groups of rats were assigned; normal group (received vehicle), MTX group (20 mg/kg; i.p. single dose), and the other three groups received a single daily oral dose of BBR (50 mg/kg), Zn (5 mg/kg), and BBR plus Zn respectively, for 5 days before MTX and 5 days after. RESULTS Our results emphasized the toxic effect of MTX on rat's intestine as shown by disturbance of oxidant/antioxidant status, down-regulation of NRF2, SIRT1, FOXO-3, Akt, and mTOR expressions, along with up-regulation of GSK-3β, JAK1, and STAT-3 expressions. Besides, severe intestinal histopathological changes were also observed. On the contrary, BBR and/or Zn produced marked protection against MTX-induced intestinal toxicity via amelioration of oxidative stress, improving NRF2, SIRT1, FOXO-3, GSK-3β, Akt, mTOR, JAK1, and STAT-3 alterations. Moreover, our treatments significantly restored histopathological abnormalities. Interestingly, combination therapy of BBR plus Zn exhibited higher effectiveness than mono-therapy. SIGNIFICANCE BBR plus Zn could be used as a novel therapy for the treatment of MTX-induced intestinal damage through modulation of GSK-3β/NRF2, Akt/mTOR, JAK1/STAT-3, and SIRT1/FOXO-3 signaling pathways.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | |
Collapse
|
39
|
de Oliveira SA, Cerri PS, Sasso-Cerri E. Impaired macrophages and failure of steroidogenesis and spermatogenesis in rat testes with cytokines deficiency induced by diacerein. Histochem Cell Biol 2021; 156:561-581. [PMID: 34515835 PMCID: PMC8436873 DOI: 10.1007/s00418-021-02023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/13/2022]
Abstract
The role of cytokines in testicular function under normal conditions has not been completely understood. Here, we evaluated testicular macrophages (TM), steroidogenesis by Leydig cells (LC) and seminiferous tubules integrity in cytokines-deficient rat testes induced by diacerein, an anti-inflammatory drug that inhibits interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-α). Male rats received daily 100 mg/kg of diacerein (DIAG; n = 8) or saline (CG; n = 8) for 30 days. Serum testosterone (T) levels were measured and the seminiferous tubule (ST) area, epithelial area (EA), frequency of damaged ST and number of Sertoli cells (SC) were evaluated. TUNEL method and immunoreactions for detection of pro-IL-1β, TNF-α, steroidogenic acute regulatory protein (StAR), 17β-hydroxysteroid dehydrogenase (17β-HSD), androgen receptor (AR) and scavenger receptor for hemoglobin-haptoglobin complexes (CD163), a TM marker, were performed. Testicular AR, 17β-HSD and IL-1β levels were detected by Western blot. Data were submitted to Student t test (p ≤ 0.05). In DIAG, T and testicular AR, 17β-HSD and IL-1β levels decreased significantly (p < 0.05). The number of TUNEL-positive interstitial cells increased and LC showed weak StAR, 17β-HSD and AR immunoexpression in association with reduced IL-1β immunoexpression and number of CD163-positive TM in the interstitial tissue from diacerein-treated rats. Numerous damaged ST were found in DIAG, and reduction in the EA were associated with germ cells death. Moreover, the number of SC reduced and weak AR and TNF-α immunoexpression was observed in SC and germ cells, respectively. The cytokines deficiency induced by diacerein impairs TM, LC and spermatogenesis, and points to a role of IL-1β in steroidogenesis under normal conditions. In the ST, the weak AR and TNF-α immunoexpression in SC and germ cells, respectively, reinforces the idea that TNF-α plays a role in the SC androgenic control.
Collapse
Affiliation(s)
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School - São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP, CEP: 14801-903, Brazil
| | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School - São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP, CEP: 14801-903, Brazil.
| |
Collapse
|
40
|
Katturajan R, S V, Rasool M, Evan Prince S. Molecular toxicity of methotrexate in rheumatoid arthritis treatment: A novel perspective and therapeutic implications. Toxicology 2021; 461:152909. [PMID: 34453959 DOI: 10.1016/j.tox.2021.152909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory systematic complication which is a chronic disorder that severely affects bones and joints and results in the quality of life impairment. Methotrexate (MTX), an FDA-approved drug has maintained the standard of care for treating patients affected with RA. The mechanism of MTX includes the inhibition of purine and pyrimidine synthesis, suppression of polyamine accumulation, promotion of adenosine release, adhesion of the inflammatory molecules, and controlling of cytokine cascade in RA. The recommended dose for RA patients is 5-25 mg of MTX per week, depending on the severity of the disease but MTX has proven to be cytotoxic with side effects affecting various tissues when treating RA patients even with low doses over a prolonged period of time. The mechanism of such toxicity is not entirely understood. This review strives to understand it by correlating the different pathways, including MTX in folate metabolism, Sirt1/Nrf2/γ-gcs, and γ-gcs/CaSR-TNF-α/NF-kB signaling. In addition to this, the importance of targeted therapy combination with MTX on RA treatment and combinations approved from the clinical trials are also briefly discussed. Overall, this review elucidates the various MTX molecular mechanisms and toxicity at the molecular level, the limitations, and the scope for future directions.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Vijayalakshmi S
- Department of English, School of Social Sciences and Languages, VIT, Vellore, Tamil Nadu, India
| | - Mahabookhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
41
|
Li GM, Chen JR, Zhang HQ, Cao XY, Sun C, Peng F, Yin YP, Lin Z, Yu L, Chen Y, Tang YL, Xie XF, Peng C. Update on Pharmacological Activities, Security, and Pharmacokinetics of Rhein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4582412. [PMID: 34457021 PMCID: PMC8387172 DOI: 10.1155/2021/4582412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Rhein, belonging to anthraquinone compounds, is one of the main active components of rhubarb and Polygonum multiflorum. Rhein has a variety of pharmacological effects, such as cardiocerebral protective effect, hepatoprotective effect, nephroprotective effect, anti-inflammation effect, antitumor effect, antidiabetic effect, and others. The mechanism is interrelated and complex, referring to NF-κB, PI3K/Akt/MAPK, p53, mitochondrial-mediated signaling pathway, oxidative stress signaling pathway, and so on. However, to some extent, its clinical application is limited by its poor water solubility and low bioavailability. Even more, rhein has potential liver and kidney toxicity. Therefore, in this paper, the pharmacological effects of rhein and its mechanism, pharmacokinetics, and safety studies were reviewed, in order to provide reference for the development and application of rhein.
Collapse
Affiliation(s)
- Gang-Min Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun-Ren Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hui-Qiong Zhang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao-Yu Cao
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chen Sun
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fu Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Peng Yin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ziwei Lin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lei Yu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yan Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun-Li Tang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Xiao-Fang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
42
|
Karabulut D, Öztürk E, Kaymak E, Kuloglu N, Akin AT, Yakan B. Vitamin B12 suppresses GADD153, prevents apoptosis and regulates the testicular function in methotrexate treated rat testis. Biotech Histochem 2021; 97:290-297. [PMID: 34365888 DOI: 10.1080/10520295.2021.1962976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Methotrexate (MTX) is an anti-neoplastic drug that also causes testicular damage. Vitamin B12 (Vit B12) is a water soluble vitamin that is required for normal metabolism. We investigated Vit B12 as a possible protective agent against testicular damage caused by MTX treatment. We divided rats into four groups: control group, Vit B12 group treated with Vit B12 daily for 15 days, MTX group treated with MTX on day 8, MTX + Vit B12 group treated with MTX on day 8 + Vit B12 for 15 days. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were measured. We also measured proliferating cell nuclear antigen (PCNA), connexin43 (Cx43) and the growth arrest- and DNA damage-inducible gene, 153 (GADD153), using immunohistochemical staining. Apoptosis was assessed using TUNEL staining. The MTX group exhibited degeneration of seminiferous tubules; decreased serum testosterone, LH and FSH levels; fewer PCNA positive cells; increased Cx43 expression; and increased GADD153 and TUNEL stained cells compared to the control group. These pathologic findings were substantially reversed In the MTX + Vit B12 group. MTX caused increased endoplasmic reticulum stress and apoptosis via GADD153. Consequently, Vit B12 potentially is a protective agent against damage caused by MTX.
Collapse
Affiliation(s)
- Derya Karabulut
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emel Öztürk
- Histology-Embryology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Nurhan Kuloglu
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Health Care Services Elderly Care Department, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Ali Tuğrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
43
|
Li Y, Gao M, Yin LH, Xu LN, Qi Y, Sun P, Peng JY. Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic Biol Med 2021; 169:99-109. [PMID: 33836263 DOI: 10.1016/j.freeradbiomed.2021.03.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Dioscin, one natural product, has various pharmacological actions. However, its effects on methotrexate (MTX)-induced hepatorenal damages still remain unknown. In the present study, the data manifested that dioscin restored the viabilities of L-02 and NRK-52E cells, reduced ALT, AST, Cr, BUN levels, and ameliorated histopathological changes of liver and kidney. Besides, dioscin decreased ROS levels in cells, and adjusted SOD, MDA, GSH and GSH-Px levels in rats. Dioscin reduced the expression levels of miR-145-5p which directly targeted Sirt5, and then regulated the expression levels of SOD1, Nrf2, Gst, Keap1, HO-1, GCLC and NQO1. MiR-145-5p mimic in cells deteriorated ROS levels and decreased Sirt5 expression to accentuate oxidative stress by regulating the expression levels of SOD1, Nrf2, Keap1, which were all reversed by dioscin. Moreover, MTX-induced hepatorenal damage were worsened in mice by Sirt5 siRNA or miR-145-5p agomir, which were also alleviated by dioscin. Dioscin relieved MTX-induced hepatorenal damages through regulating miR-145-5p-medicated oxidative stress, which should be considered as one effective drug to treat the disorder in future.
Collapse
Affiliation(s)
- Y Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - M Gao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - L-H Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - L-N Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Y Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
44
|
Long-Term Administration of Anthraquinone Rhein on Induction of Constipation in Sprague-Dawley Rats via SCF/c-Kit Signaling Pathways. Can J Gastroenterol Hepatol 2021. [DOI: 10.1155/2021/6649199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background and Study Aims. It has been shown that abuse of laxatives is becoming a serious problem; therefore, a comprehensive understanding of its effect and possible mechanism on colon motility is essential to select effective treatments and avoid their abuse. Herein, we aimed to investigate the long-term stimulation of rhein on induction of constipation in rats and its underlying mechanisms. Materials and Methods. After establishing rat models of constipation, the rats were randomly divided into two equal subgroups and administered daily with normal saline (model control group) or 10 ml/kg PEG4,000 (PEG-treated group). Simultaneously, normal Sprague-Dawley (SD) rats were administered with normal saline (normal group). Physiological and fecal parameters were calculated, and intestinal transmission function was evaluated. After scarification, colonic tissues were freshly prepared for histological localization detected by immunohistochemical analysis and for the expression of stem cell factor (SCF) and c-kit proteins determined by western blot assay. Results. Following the initiation of rhein-induced rat constipation, body weight was lost slightly, the first time of black stool discharge was obviously longer, and the fecal moisture and number of fecal pellets decreased distinctly as compared with normal group. A decreased expression of SCF and c-kit was detected in model control group in comparison with normal group. Notably, compared with model control group, neither the alterations of fecal parameters and intestinal transmission function were effectively restored, nor the expression of SCF and c-kit was markedly elevated after administration of PEG4,000 for 30 d. Conclusion. Long-term stimulation of rhein can develop the constipation via SCF/c-kit signaling pathway, yet the symptoms of constipation and colon power cannot be alleviated or restored by PEG4,000. Collectively, these findings strongly suggest that long-term use of anthraquinone laxatives should be avoided for clinical treatment of constipation.
Collapse
|
45
|
Kour G, Haq SA, Bajaj BK, Gupta PN, Ahmed Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol Res 2021; 169:105618. [PMID: 33878447 DOI: 10.1016/j.phrs.2021.105618] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The use of biologically active compounds derived from plants i.e. phytochemicals, have been known for ages for their pharmacological activities in the treatment of autoimmune disorders like rheumatoid arthritis (RA). Besides enormous scientific evidence, the therapeutic potential of phytochemicals is often undervalued. The treatment in RA involves the use of synthetic and biological disease modifying anti-rheumatic drugs (DMARDs). However, the long-term treatment in RA is associated with the risk of gastrointestinal, liver, pulmonary and renal toxicities and serious infections including latent tuberculosis, pneumococcus influenza, herpes zoster and hepatitis. These adverse effects sometimes lead to discontinuation of the therapy. A relatively new vision based on the combination of DMARDs with phytochemicals exhibiting anti-inflammatory, anti-arthritic, anti-oxidant, hepatoprotective and nephroprotective properties for the treatment of RA has achieved substantial importance in the last decade. From this perspective, the present review focuses on the combination of DMARDs (primarily MTX) with phytochemicals that have shown synergistic therapeutic effects while decreasing the toxic repercussions of current RA therapy. The review covers recent evidences of such combination studies that have shown promising results both in experimental arthritic models and clinical arthritis. Few of the combinations including resveratrol, sinomenine, coenzyme Q10 exhibited considerable interest because of their efficacy as an adjuvant to the MTX/standard DMARDs therapy in clinical trials. Besides giving an overview of such combination studies the review also critically discusses the limitations with the use of phytochemicals (e.g. solubility, permeability and bioavailability) compromising their clinical application. Additionally, it stresses upon the need of novel delivery systems and pharmaceutical technologies to increase the therapeutic efficacy of the combination therapy. Overall, the review unveils the potential of phytochemicals in combination with DMARDs with increased tolerability and superior efficacy in further refining the future of the RA therapy.
Collapse
Affiliation(s)
- Gurleen Kour
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Syed Assim Haq
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijender Kumar Bajaj
- School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
46
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
47
|
Ibrahim MA, Abdelzaher WY, Ibrahim YF, Ahmed AF, Welson NN, Al-Rashed S, Batiha GES, Abdel-Aziz AM. Diacerein protects rats with liver ischemia/reperfusion damage: Down-regulation of TLR4/ NFκ-B signaling pathway. Biomed Pharmacother 2020; 134:111063. [PMID: 33348310 DOI: 10.1016/j.biopha.2020.111063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Liver ischemia-reperfusion (I/R) injury is an inescapable problem. Diacerein, a chondro-protective drug, has antioxidant and anti-inflammatory effects. Its effect on liver I/R injury has not yet been fully clarified. Therefore, the current study aimed to detect its hepatic protective effect with the explanation of possible underlying mechanisms. METHODS Adult male albino rats were assigned to 4 groups: sham group, diacerein pretreated sham group, I/R non-treated group, and I/R diacerein pretreated group. Serum liver enzymes, hepatic tissue oxidative stress parameters, inflammatory biomarkers mainly Toll-like receptors-4 (TLR4), and liver fatty acid binding protein (L-FABP) levels were determined. Histopathological examination of liver tissues and immunohistochemical studies of heat shock protein 70, nuclear factor-kappa B, and Cluster of Differentiation 68 were also done. RESULTS Diacerein pretreatment has the ability to restore the hepatic I/R damaging effect, proved by the reduction of serum liver enzymes, the decrease of the oxidative stress and hepatic inflammation via down-regulation of TLR4/ NFκ-B signaling pathway together with the restoration of L-FABP level and improvement of the histopathological and immunohistochemical study findings in the hepatic tissue. CONCLUSION These results suggested the hepatoprotective effect of diacerein relies on its antioxidant and anti-inflammatory effects reducing TLR4/ NFκ-B signaling pathway.
Collapse
Affiliation(s)
| | | | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Histology and Cell Biology, Misr University for Science and Technology, Egypt.
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| | | |
Collapse
|
48
|
Karabulut D, Ozturk E, Kuloglu N, Akin AT, Kaymak E, Yakan B. Effects of vitamin B12 on methotrexate hepatotoxicity: evaluation of receptor-interacting protein (RIP) kinase. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2473-2480. [PMID: 33052426 DOI: 10.1007/s00210-020-01992-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
In the study, we aimed to show the effects of vitamin B12 on the necrosis caused by methotrexate (MTX), a folic acid antagonist. Thirty-two rats were randomly assigned to four groups of eight rats per group. Control (n = 8), Vit B12 (n = 8) 3 μg/kg/ip B12 (15 days) per day throughout the experiment, MTX (n = 8) injected with a single dose of 20 mg/kg/ip MTX on 8th day of experiment, MTX + Vit B12 (n = 8) injected with a single dose of 20 mg/kg ip methotrexate on 8th day of experiment + 3 μg/kg/ip Vit B12 (15 days) per day throughout the experiment. Oxidant (TOS)/antioxidant (TAS) system, TNF-α and TGF-β levels, AST and ALT, serum vitamin B12 levels were determined in the tissue. Cyclooxygenase-2 (Cox-2), receptor-interacting protein kinase 1 (RIP1) and 3 (RIP3) immunohistochemistry were applied to the liver tissue. TOS increased; TAS decreased; TNF-α and TGF-β levels increased; AST and ALT levels changed after MTX hepatotoxicity. Vit B12 decreased significantly. COX-2, RIP1, and RIP3 immunoreactivity increased. Vit B12 showed improvement in all of the negative results. Vit B12 is an important supplement to be used against necrosis in tissue after MTX hepatotoxicity.
Collapse
Affiliation(s)
- Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Köşk, Talas Avenue, 38030 Melikgazi-, Kayseri, Turkey.
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - Nurhan Kuloglu
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Köşk, Talas Avenue, 38030 Melikgazi-, Kayseri, Turkey
- Health Care Services Elderly Care Department, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Ali Tuğrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Köşk, Talas Avenue, 38030 Melikgazi-, Kayseri, Turkey
| |
Collapse
|
49
|
Zhang X, Feng J, Su S, Huang L. Hepatoprotective effects of Camellia nitidissima aqueous ethanol extract against CCl 4-induced acute liver injury in SD rats related to Nrf2 and NF-κB signalling. PHARMACEUTICAL BIOLOGY 2020; 58:239-246. [PMID: 32202453 PMCID: PMC7144296 DOI: 10.1080/13880209.2020.1739719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Context: Camellia nitidissima Chi (Theaceae) is an evergreen shrub, the leaves of which are used in many medicinal applications.Objective: To characterize the chemical composition of a 10% aqueous ethanol extract of C. nitidissima leaves (CNE), and to explore the protective effect of the extract against acute liver injury (ALI) in rats.Materials and methods: Male Sprague-Dawley rats were divided into six groups (n = 10): control and negative (0.5% CMC-Na, 5 mL/kg/d), thiopronin (20 mg/kg/d) and CNE (40, 80 and 160 mg/kg/d). All groups were treated for seven consecutive days, and then, except for the control, carbon tetrachloride was administered intraperitoneally. The biochemical parameters, mRNAs, and proteins were analyzed using enzyme-linked immunoassays kits, quantitative polymerase chain reaction and western blot. Chemical components were identified using mass spectroscopy, and the phenol and flavonoid content determined by ultraviolet spectrophotometry.Results: Pre-treatment with CNE (160 mg/kg) attenuated the pathological changes in liver tissues and decreased alanine transaminase (62 and 60%), aspartate transaminase (49 and 53%) and malondialdehyde (35 and 42%) levels in serum and liver tissues. Moreover, CNE reduced the concentrations of reactive oxygen species (55%), tumour necrosis factor-α (26%), interleukin-1β (19%) and IL-6 (19%) and blocked the nuclear translocation of p65. Pre-treatment with CNE increased anti-heme oxygenase-1 (40%), superoxide dismutase (108%) and glutathione (97%) levels through upregulating nuclear factor erythroid-2-related factor 2. Twelve compounds were detected; the content of phenols and flavonoids was determined as 34.474 ± 1.026 and 15.228 ± 0.422 mg/g crude drug in CNE, respectively.Discussion and conclusions: These results suggested that CNE is a promising agent for functional food and hepatoprotective drug against ALI.
Collapse
Affiliation(s)
- Xiaoman Zhang
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Shaofeng Su
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Lei Huang
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
50
|
Abdel-Wahab BA, Ali FEM, Alkahtani SA, Alshabi AM, Mahnashi MH, Hassanein EHM. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacol Immunotoxicol 2020; 42:493-503. [PMID: 32865051 DOI: 10.1080/08923973.2020.1811307] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The fact that methotrexate (MTX) is hepatotoxic is an important reason to limit its clinical use. Rebamipide (REB) has antioxidant and anti-inflammatory properties and is useful for the treatment of gastro-duodenal ulcers. This study investigated the impact and protective mechanisms of REB against MTX-induced hepatotoxicity in rats. MATERIALS AND METHODS Animals were divided into four groups of six rats each: a control group, REB group (REB 100 mg/kg/day, orally), MTX control group (20 mg/kg, single i.p.), and MTX + REB group. RESULTS The administration of MTX induced marked hepatic injury in the form of hepatocyte inflammatory swelling, degeneration, apoptosis, and focal necrosis. In parallel, our biochemical investigations revealed a marked hepatic dysfunction associated with the disturbance of the oxidant/antioxidant balance in the group treated with only MTX. Moreover, MTX led to the down-regulation of the hepatic Nrf2 and Bcl-2 expressions along with a marked elevation in the hepatic NF-κβ-p65, GSK-3β, JAK1, STAT3, PUMA, and Bax expressions. On the other hand, co-treatment with REB significantly ameliorated the aforementioned histopathological, biochemical, and molecular defects caused by MTX treatment. CONCLUSION the outcomes of the present study showed REB's ability to protect from hepatic injury induced by MTX, possibly through its antioxidant, anti-inflammatory, and anti-apoptotic properties. These effects could be attributed to REB's ability to modulate, at least in part, the Nrf2/GSK-3β,NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2signaling pathways.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali M Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|