1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Inagawa H, Watanabe C, Zhou J, Sugamori Y, Wakabayashi N, Aoki K, Shibata Y. The genetic basis of micro-structural fragility in murine dentin: Insights from type 2 diabetes mellitus. J Oral Biosci 2025; 67:100629. [PMID: 39938864 DOI: 10.1016/j.job.2025.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVES Diabetes mellitus (DM) is a health issue affecting millions of people worldwide. Prolonged hyperglycemia increases the risk of pathological fractures; however, verifying this risk through bone analysis is challenging because of the heterogeneity of bone. METHODS The systemic effects of type 2 DM (T2DM) on calcified tissues were investigated by examining dentin in mice, focusing on the underlying cellular and molecular mechanisms. Mouse incisor dentin was selected because of its continuous growth, similar to the annual rings of wood, offering a unique opportunity to study the time-dependent deterioration of calcified tissue affected by T2DM. RNA sequencing of pulp-derived cells was used to identify transcriptomic alterations in a db/db mouse model (BKS.cg-Lepr[db]/Lepr[db]Jc). Structural and mechanical changes in dentin were evaluated using Raman spectroscopy and nanoindentation. RESULTS There was an increase in dentin volume in diabetic mice, accompanied by a deterioration in mechanical properties, particularly in primary dentin. This mechanical deterioration is likely to be associated with an inflammation-driven formation of abnormal dentin matrix caused by long-term hyperglycemia. No significant differences were observed in cross-linked collagen structures or advanced glycation end products. CONCLUSIONS The findings demonstrated that gene expression in T2DM affects dentin and bone, contributing to micro-structural fragility through protein production. The incisor model used in this study proved to be a versatile tool for assessing other diseases that affect the integrity of calcified tissues over time.
Collapse
Affiliation(s)
- Hideaki Inagawa
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chie Watanabe
- Department of Biomaterials and Engineering, Graduate School of Dentistry, Showa University, Tokyo, Japan.
| | - Jun Zhou
- Department of Biomaterials and Engineering, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Yasutaka Sugamori
- Department of Biomaterials and Engineering, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Yo Shibata
- Department of Biomaterials and Engineering, Graduate School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
3
|
Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, Brugaletta S, Campuzano V, Egea G, Dantas AP. Extracellular Vesicles as Mediators of Endothelial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1008. [PMID: 39940780 PMCID: PMC11816526 DOI: 10.3390/ijms26031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This comprehensive review aims to provide a thorough overview of the vital role that extracellular vesicles (EVs) play in endothelial dysfunction, particularly emphasizing how physiological factors-such as sex and aging-along with significant cardiovascular risk factors, influence this process. The review covers studies ranging from the first description of EVs in 1945 to contemporary insights into their biological roles in intercellular signaling and endothelial dysfunction. A comprehensive analysis of peer-reviewed articles and reviews indexed in the PubMed database was conducted to compile the information. Initially, Medical Subject Headings (MeSH) terms included keywords aimed at providing general knowledge about the role of EVs in the regulation of endothelial signaling, such as "extracellular vesicles", "endothelium", and "intercellular signaling". Subsequently, terms related to the pathophysiological implications of EV interactions with endothelial dysfunction and cardiovascular disease were added, including "cardiovascular disease", "sex", "aging", "atherosclerosis", "obesity", and "diabetes". Additionally, the potential applications of EVs in cardiovascular disease were explored using the MeSH terms "extracellular vesicles", "cardiovascular disease", "biomarker", and "therapeutic strategy". The results of this bibliographical review reveal that EVs have the capacity to induce various cellular responses within the cardiovascular system and play a significant role in the complex landscape of endothelial dysfunction and cardiovascular disease. The composition of the EV cargo is subject to modification by pathophysiological conditions such as sex, aging, and cardiovascular risk factors, which result in a complex regulatory influence on endothelial function and neighboring cells when released from a dysfunctional endothelium. Moreover, the data suggest that this field still requires further exploration, as EV biology is continuously evolving, presenting a dynamic and engaging area for research. A deeper understanding of the molecular cargo involved in EV-endothelium interactions could yield valuable biomarkers for monitoring cardiovascular disease progression and facilitate the development of innovative bioengineered therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Francisco Rafael Jimenez-Trinidad
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sergi Calvo-Gomez
- Department of Biomedical Sciences, School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain;
| | - Manel Sabaté
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Rare Diseases Biomedical Research Network Center (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerpen, 2659 Edegem, Belgium
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
4
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
5
|
Tengbom J, Kontidou E, Collado A, Yang J, Alvarsson M, Brinck J, Rössner S, Zhou Z, Pernow J, Mahdi A. Differences in endothelial function between patients with Type 1 and Type 2 diabetes: effects of red blood cells and arginase. Clin Sci (Lond) 2024; 138:975-985. [PMID: 39037711 DOI: 10.1042/cs20240447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase. Thirteen patients with T1DM and twenty-six patients with T2DM, matched for HbA1c and sex were included. In vivo endothelium-dependent and -independent vasodilation (EDV and EIDV) were assessed by venous occlusion plethysmography before and after administration of an arginase inhibitor. RBCs were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR) in isolated organ chambers. In vivo EDV, but not EIDV, was significantly impaired in patients with T2DM compared with patients with T1DM. Arginase inhibition resulted in improved EDV only in T2DM. RBCs from patients with T2DM induced impaired EDR but not EIDR in isolated aortic segments, whereas RBCs from patients with T1DM did not affect EDR nor EIDR. The present study demonstrates markedly impaired EDV in patients with T2DM in comparison with T1DM. In addition, it highlights the divergent roles of RBCs and arginase in mediating endothelial dysfunction in T1DM and T2DM. While endothelial dysfunction is mediated via RBCs and arginase in T2DM, these phenomena are not prominent in T1DM thereby indicating distinct differences in underlying mechanisms.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sophia Rössner
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Flanary SM, Jo S, Ravichandran R, Alejandro EU, Barocas VH. A computational bridge between traction force microscopy and tissue contraction. JOURNAL OF APPLIED PHYSICS 2023; 134:074901. [PMID: 37593660 PMCID: PMC10431945 DOI: 10.1063/5.0157507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Arterial wall active mechanics are driven by resident smooth muscle cells, which respond to biological, chemical, and mechanical stimuli and activate their cytoskeletal machinery to generate contractile stresses. The cellular mechanoresponse is sensitive to environmental perturbations, often leading to maladaptation and disease progression. When investigated at the single cell scale, however, these perturbations do not consistently result in phenotypes observed at the tissue scale. Here, a multiscale model is introduced that translates microscale contractility signaling into a macroscale, tissue-level response. The microscale framework incorporates a biochemical signaling network along with characterization of fiber networks that govern the anisotropic mechanics of vascular tissue. By incorporating both biochemical and mechanical components, the model is more flexible and more broadly applicable to physiological and pathological conditions. The model can be applied to both cell and tissue scale systems, allowing for the analysis of in vitro, traction force microscopy and ex vivo, isometric contraction experiments in parallel. When applied to aortic explant rings and isolated smooth muscle cells, the model predicts that active contractility is not a function of stretch at intermediate strain. The model also successfully predicts cell-scale and tissue-scale contractility and matches experimentally observed behaviors, including the hypercontractile phenotype caused by chronic hyperglycemia. The connection of the microscale framework to the macroscale through the multiscale model presents a framework that can translate the wealth of information already collected at the cell scale to tissue scale phenotypes, potentially easing the development of smooth muscle cell-targeting therapeutics.
Collapse
Affiliation(s)
- Shannon M. Flanary
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Rohit Ravichandran
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Assi G, Faour WH. Arginine deprivation as a treatment approach targeting cancer cell metabolism and survival: A review of the literature. Eur J Pharmacol 2023:175830. [PMID: 37277030 DOI: 10.1016/j.ejphar.2023.175830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Amino acid requirement of metabolically active cells is a key element in cellular survival. Of note, cancer cells were shown to have an abnormal metabolism and high-energy requirements including the high amino acid requirement needed for growth factor synthesis. Thus, amino acid deprivation is considered a novel approach to inhibit cancer cell proliferation and offer potential treatment prospects. Accordingly, arginine was proven to play a significant role in cancer cell metabolism and therapy. Arginine depletion induced cell death in various types of cancer cells. Also, the various mechanisms of arginine deprivation, e.g., apoptosis and autophagy were summarized. Finally, the adaptive mechanisms of arginine were also investigated. Several malignant tumors had high amino acid metabolic requirements to accommodate their rapid growth. Antimetabolites that prevent the production of amino acids were also developed as anticancer therapies and are currently under clinical investigation. The aim of this review is to provide a concise literature on arginine metabolism and deprivation, its effects in different tumors, its different modes of action, as well as the related cancerous escape mechanisms.
Collapse
Affiliation(s)
- Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
8
|
Montanaro R, Vellecco V, Torregrossa R, Casillo GM, Manzo OL, Mitidieri E, Bucci M, Castaldo S, Sorrentino R, Whiteman M, Smimmo M, Carriero F, Terrazzano G, Cirino G, d'Emmanuele di Villa Bianca R, Brancaleone V. Hydrogen sulfide donor AP123 restores endothelial nitric oxide-dependent vascular function in hyperglycemia via a CREB-dependent pathway. Redox Biol 2023; 62:102657. [PMID: 36913800 PMCID: PMC10025109 DOI: 10.1016/j.redox.2023.102657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetes is associated with severe vascular complications involving the impairment of endothelial nitric oxide synthase (eNOS) as well as cystathionine γ-lyase (CSE) activity. eNOS function is suppressed in hyperglycaemic conditions, resulting in reduced NO bioavailability, which is paralleled by reduced levels of hydrogen sulfide (H2S). Here we have addressed the molecular basis of the interplay between the eNOS and CSE pathways. We tested the impact of H2S replacement by using the mitochondrial-targeted H2S donor AP123 in isolated vessels and cultured endothelial cells in high glucose (HG) environment, at concentrations not causing any vasoactive effect per se. Aorta exposed to HG displayed a marked reduction of acetylcholine (Ach)-induced vasorelaxation that was restored by the addition of AP123 (10 nM). In HG condition, bovine aortic endothelial cells (BAEC) showed reduced NO levels, downregulation of eNOS expression, and suppression of CREB activation (p-CREB). Similar results were obtained by treating BAEC with propargylglycine (PAG), an inhibitor of CSE. AP123 treatment rescued eNOS expression, as well as NO levels, and restored p-CREB expression in both the HG environment and the presence of PAG. This effect was mediated by a PI3K-dependent activity since wortmannin (PI3K inhibitor) blunted the rescuing effects operated by the H2S donor. Experiments performed in the aorta of CSE-/- mice confirmed that reduced levels of H2S not only negatively affect the CREB pathway but also impair Ach-induced vasodilation, significantly ameliorated by AP123. We have demonstrated that the endothelial dysfunction due to HG involves H2S/PI3K/CREB/eNOS route, thus highlighting a novel aspect of the H2S/NO interplay in the vasoactive response.
Collapse
Affiliation(s)
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Onorina Laura Manzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - Sigismondo Castaldo
- U.O.C.Ricerca Formazione & Cooperazione Internazionale, A.O.R.N." Antonio Cardarelli", Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | | | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Flavia Carriero
- Department of Science, University of Basilicata, Potenza, Italy
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
9
|
Fu D, Wu S, Jiang X, You T, Li Y, Xin J, Feng X, Wen J, Huang Y, Hu C. Caveolin-1 alleviates acetaminophen-induced vascular oxidative stress and inflammation in non-alcoholic fatty liver disease. Free Radic Biol Med 2023; 195:245-257. [PMID: 36596386 DOI: 10.1016/j.freeradbiomed.2022.12.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Acetaminophen (APAP) is one of the most widely used drugs in the world. The literature shows that excessive or long-term use of APAP can lead to increased cardiovascular dysfunction. An acute increase in angiotensin Ⅱ (Ang Ⅱ) caused by APAP use in fatty liver disease may increase the risk and severity of vascular injury. However, the underlying mechanism remains unclear. Caveolin-1 (CAV1) is a broad-spectrum kinase inhibitor that significantly determines endothelial function. This study aimed to observe the effects of APAP on the vasculature in non-alcoholic fatty liver disease (NAFLD) and to determine whether CAV1 could alleviate vascular oxidative stress and inflammation by targeting Ang Ⅱ or its downstream pathways. In this study, 7-week-old C57BL/6 male mice (18-20 g) were administered APAP by gavage after eight weeks of a high-fat diet. Any resulting vascular oxidative stress and inflammation were assessed. Levels of Ang Ⅱ, CAV1, and other related proteins were measured using ELISA and western blotting. In APAP-treated NAFLD mice, CAV1 expression was downregulated and Ang Ⅱ expression was upregulated compared to normal APAP-treated mice. In vitro, HUVECs were incubated with Ang Ⅱ (300 nM) for 48 h. Overexpression of CAV1 in HUVECs attenuated Ang Ⅱ-induced oxidative stress and inflammation and downregulated the expression of Protein kinase C (PKC) and p-P38/P38. After intervention with CAV1-siRNA, immunofluorescence results showed that the fluorescence intensity of PKC on mitochondria was further increased, and flow cytometry results showed that the mitochondrial membrane potential increased. PKC inhibitors alleviated Ang Ⅱ-induced endothelial injury. In conclusion, our findings confirmed that CAV1 exerts a protective effect against vascular injury by inhibiting oxidative stress and inflammation through the PKC/MAPK pathway. Therefore, restoration of CAV1 may have clinical benefits in reducing APAP-induced vascular damage in NAFLD patients.
Collapse
Affiliation(s)
- Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
10
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
12
|
Prastiwi R, Elya B, Hanafi M, Sauriasari R, Desmiaty Y, Dewanti E, Herowati R. The chemical constituents of Sterculia comosa (wall) Roxb woods for arginase inhibitory, antioxidant activity, and molecular docking against SARS CoV-2 protein. Heliyon 2022; 8:e08798. [PMID: 35079656 PMCID: PMC8769564 DOI: 10.1016/j.heliyon.2022.e08798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 01/13/2022] [Indexed: 10/27/2022] Open
Abstract
Flavonoids and phenols have an arginase inhibitory and antioxidant activity. The Sterculia genus has phenols and flavonoids content. This study aimed to investigate the arginase inhibitory and antioxidant activity of the chemical constituent of Sterculia comosa (wall) Roxb and also their binding affinities to arginase. The most active extract was methanol extract. This active extract was determined for its arginase inhibitory and antioxidant activity, determined the total phenols and total flavonoids, and identified chemical compound. The methanol extract has IC50 2.787 μg/ml for arginase inhibitory activity and IC50 4,199 μg/ml for DPPH scavenging activity. The total phenols 723.61 mg GAE/gr, total flavonoids content 28.96 mg QE/gr extract. The chemical constituent: KC4.4.6 ((-)-2-(E)-caffeoyl-D-glyceric acid) and KC4.4.5.1 (trans-isoferulic acid) have an arginase inhibitory activity KC4.4.6: 98,03 μg/ml and KC4.4.5.1: 292,58 μg/ml. Antioxidant activity with DPPH methods KC4.4.6: 48,77 μg/ml and KC4.4.5.1: 88,08 μg/ml. Antioxidant by FRAP methods KC4.4.6: 16,4 FeEAC mol/g and KC4.4.5.1: 15,79 FeEAC mol/g. The isolate trans-isoferulic acid predicted has good interaction to arginase. Isolate KC4.4.6. Predicted has good interaction to PLPro of SARS CoV-2 PLpro. However, both isolates did not show good interaction to 3CLPro, nsp12, and Spike protein of SARS CoV-2.
Collapse
Affiliation(s)
- Rini Prastiwi
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. Dr. Hamka, 1340, Jakarta, Indonesia
| | - Berna Elya
- Faculty of Pharmacy Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Muhammad Hanafi
- Research Centre for Chemistry - National Research and Innovation Agency (BRIN), Indonesia
- Faculty of Pharmacy Universitas Pancasila, Jakarta, West Java, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Yesi Desmiaty
- Faculty of Pharmacy Universitas Pancasila, Jakarta, West Java, Indonesia
| | - Ema Dewanti
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. Dr. Hamka, 1340, Jakarta, Indonesia
| | - Rina Herowati
- Faculty of Pharmacy Universitas Setia Budi, Surakarta, Central of Java, Indonesia
| |
Collapse
|
13
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Costa G, Shushanof M, Bouskela E, Bottino D. Oral L-Arginine (5 g/day) for 14 Days Improves Microcirculatory Function in Healthy Young Women and Healthy and Type 2 Diabetes Mellitus Elderly Women. J Vasc Res 2021; 59:24-33. [PMID: 34784595 DOI: 10.1159/000519428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of oral supplementation with L-arginine on serum biochemical profile, blood pressure, microcirculation, and vasoreactivity/endothelial function in young controls, and elderly women with and without type 2 diabetes mellitus (T2DM). METHODS Healthy young (n = 25), healthy elderly (n = 25), and elderly women with type 2 diabetes mellitus (T2DME, n = 23, glycated Hb ≥6.4% and mean of 7.7 years for duration of the disease), aged 18-30 and older than 65 years, respectively, were included in the study. All patients underwent biochemical analysis (fasting glycemia and lipidogram), arterial blood pressure, nailfold videocapillaroscopy (capillary diameters, functional capillary density [FCD], peak red blood cell velocity [RBCVmax] after 1 min ischemia, time to reach peak RBCV [TRBCVmax]), and venous occlusion plethysmography (vasoreactivity), before and after 14 days of oral supplementation with L-arginine (5 g/day). RESULTS L-Arginine did not change fasting glycemia and lipidogram, but it decreased systolic, diastolic, and mean arterial pressure in elderly women, increased RBCVmax in all groups, and did not decrease TRBCVmax in T2DME. Capillary diameters and FCD remained unchanged in all groups. L-Arginine improved vasoreactivity during reactive hyperemia and after sublingual nitroglycerin (0.4 mg) in all groups. CONCLUSION L-Arginine supplementation (5g/day during 14 days) was able to improve vascular/microvascular health in the elderly women with or without T2DM.
Collapse
Affiliation(s)
- Gerusa Costa
- Clinical and Experimental Research Laboratory on Vascular Biology, State University of Rio de Janeiro (BIOVASC/UERJ), Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, State University of Rio de Janeiro (PGCM/UERJ), Rio de Janeiro, Brazil
| | - Milenna Shushanof
- Clinical and Experimental Research Laboratory on Vascular Biology, State University of Rio de Janeiro (BIOVASC/UERJ), Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Clinical and Experimental Research Laboratory on Vascular Biology, State University of Rio de Janeiro (BIOVASC/UERJ), Rio de Janeiro, Brazil
| | - Daniel Bottino
- Clinical and Experimental Research Laboratory on Vascular Biology, State University of Rio de Janeiro (BIOVASC/UERJ), Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, State University of Rio de Janeiro (PGCM/UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Flores-Ramírez AG, Tovar-Villegas VI, Maharaj A, Garay-Sevilla ME, Figueroa A. Effects of L-Citrulline Supplementation and Aerobic Training on Vascular Function in Individuals with Obesity across the Lifespan. Nutrients 2021; 13:nu13092991. [PMID: 34578869 PMCID: PMC8466140 DOI: 10.3390/nu13092991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Children with obesity are at higher risk for developing cardiometabolic diseases that once were considered health conditions of adults. Obesity is commonly associated with cardiometabolic risk factors such as dyslipidemia, hyperglycemia, hyperinsulinemia and hypertension that contribute to the development of endothelial dysfunction. Endothelial dysfunction, characterized by reduced nitric oxide (NO) production, precedes vascular abnormalities including atherosclerosis and arterial stiffness. Thus, early detection and treatment of cardiometabolic risk factors are necessary to prevent deleterious vascular consequences of obesity at an early age. Non-pharmacological interventions including L-Citrulline (L-Cit) supplementation and aerobic training stimulate endothelial NO mediated vasodilation, leading to improvements in organ perfusion, blood pressure, arterial stiffness, atherosclerosis and metabolic health (glucose control and lipid profile). Few studies suggest that the combination of L-Cit supplementation and exercise training can be an effective strategy to counteract the adverse effects of obesity on vascular function in older adults. Therefore, this review examined the efficacy of L-Cit supplementation and aerobic training interventions on vascular and metabolic parameters in obese individuals.
Collapse
Affiliation(s)
- Anaisa Genoveva Flores-Ramírez
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
| | - Verónica Ivette Tovar-Villegas
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
| | - Arun Maharaj
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
- Correspondence: (M.E.G.-S.); (A.F.)
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence: (M.E.G.-S.); (A.F.)
| |
Collapse
|
16
|
de Oliveira AA, Nunes KP. Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications? Vascul Pharmacol 2021; 139:106879. [PMID: 34051372 PMCID: PMC8152239 DOI: 10.1016/j.vph.2021.106879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 4 (TLR4) contributes to the pathophysiology of diabetes. This happens, at least in part, because TLR4 modulates the enzyme NADPH oxidase, a primary source of ROS in vascular structures. Increased oxidative stress disrupts key vascular signaling mechanisms and drives the progression of diabetes, elevating the likelihood of cardiovascular diseases. Recently, it has been shown that patients with diabetes are also at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Given the importance of the interaction between TLR4 and NADPH oxidase to the disrupted diabetic vascular system, we put forward the hypothesis that TLR4-mediated NADPH oxidase-derived ROS might be a critical mechanism to help explain why this disparity appears in diabetic patients, but unfortunately, conclusive experimental evidence still lacks in the literature. Herein, we focus on discussing the pathological implications of this signaling communication in the diabetic vasculature and exploring this crosstalk in the context of diabetes-associated severe COVID-19.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
17
|
Ogino N, Takahashi H, Nagaoka K, Harada Y, Kubo M, Miyagawa K, Kusanaga M, Oe S, Honma Y, Harada M, Eitoku M, Suganuma N, Ogino K. Possible contribution of hepatocyte secretion to the elevation of plasma exosomal arginase-1 in high-fat diet-fed mice. Life Sci 2021; 278:119588. [PMID: 33961860 DOI: 10.1016/j.lfs.2021.119588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
AIMS The elevation of arginase in vascular tissues decreases nitric oxide production, which is considered as an early step of atherosclerosis in obesity. Previously, we found that arginase-1, one of arginase isozymes, was elevated in the blood plasma of obese adults. The purpose of this study is to elucidate the mechanism by which obesity increases arginase-1 levels in the blood. MAIN METHODS C57/BL6J male mice fed a high-fat diet (HFD) for 12 weeks were analyzed for factors related to nitric oxide/arginine metabolism and plasma exosomes. To explore the arginase secretory organs, the protein expression levels were analyzed in several organs. To further investigate the relationship between exosomal arginase-1 in plasma, blood glucose levels and arginase-1 in the liver, HepG2 (the human hepatoma cell line) was analyzed after treatment with high glucose. KEY FINDINGS The increase in arginase activity in the plasma of HFD-fed mice was positively corelated with blood glucose levels and was accompanied by an increase in exosomal arginase-1 levels. Among the organs that highly express arginase, the liver of HFD-fed mice showed a significant increase in arginase-1. The expression of arginase-1 in exosomes and total lysates of HepG2 cells were increased by high glucose exposure. SIGNIFICANCE Increased exosomal arginase-1 in plasma contributes to increased plasma arginase activity in obesity. The liver is a candidate organ for the secretion of exosomal arginase-1 into plasma, and the p38 pathway induced by high glucose levels may be involved.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan; Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hidekazu Takahashi
- Division of Veterinary Medicine, Department of Public Health, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Yuki Harada
- Department of Biofunction Imaging Analysis, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008530, Japan
| | - Masayuki Kubo
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Keiki Ogino
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.
| |
Collapse
|
18
|
Dada FA, Oyeleye SI, Adefegha SA, Oboh G. Extracts from Almond (Terminalia catappa) leaf and stem bark mitigate the activities of crucial enzymes and oxidative stress associated with hypertension in cyclosporine A-stressed rats. J Food Biochem 2020; 45:e13435. [PMID: 32794232 DOI: 10.1111/jfbc.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
We investigated the effect of extracts from the leaf (ALE) and stem bark (ABE) of Almond tree on activities of some crucial enzymes [angiotensin-1 converting enzyme (ACE), arginase, acetylcholinesterase (AChE), phosphodiesterase-5 (PDE-5), adenosine deaminase (ADA), superoxide dismutase (SOD), catalase], and thiobarbituric acid reactive species (TBARS) associated with hypertension in normal adult male Wistar albino rats and Cyclosporine A (CsA)-stressed rats. The result revealed that CsA-stressed rats treated with captopril and extracts (ALE and ABE) had lowered ACE, arginase, AChE, PDE-5, ADA activities, and TBARS level, coupled with improved SOD and catalase activities compared with untreated CsA-stressed rats, which had reversed these biochemicals compared to normal rats. This suggests that the extracts could be explored to suppress hypertension and other cardiac injury known with CsA treatment; the potentials that could be linked with the constituent polyphenols. However, further studies including blood pressure should be determined to ascertain this claim. PRACTICAL APPLICATIONS: Drug-induced cardiotoxicity, hypertension, and organ damage are among the most common side effects of pharmaceutics. Therefore, it becomes imperative to find natural, effective, and alternative therapy with little or no side effect to combat drug toxicity. The use of Almond (leaf and stem bark) in folklore for the treatment/management of hypertension and other heart-related diseases without full scientific basis is on the increase. Hence, this study provides some biochemical evidences on the effect of Almond leaf and stem back extracts on crucial enzymes and oxidative stress markers involve in the incidence of hypertension in the course of Cyclosporine A administration. The findings of this study indicated that the studied plant materials could be promoted as nutraceutical agents to neutralize drug-induced cardiac injury and hypertension.
Collapse
Affiliation(s)
- Felix Abayomi Dada
- Biochemistry Unit, Science Laboratory Technology Department, Federal Polytechnic Ede, Ede, Nigeria
| | - Sunday Idowu Oyeleye
- Biochemistry Department, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | | | - Ganiyu Oboh
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
19
|
Wang Y, Wang M, Yu P, Zuo L, Zhou Q, Zhou X, Zhu H. MicroRNA-126 Modulates Palmitate-Induced Migration in HUVECs by Downregulating Myosin Light Chain Kinase via the ERK/MAPK Pathway. Front Bioeng Biotechnol 2020; 8:913. [PMID: 32850751 PMCID: PMC7411007 DOI: 10.3389/fbioe.2020.00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNA-126 (miR-126) is an endothelial-specific microRNA that has shown beneficial effects on endothelial dysfunction. However, the underlying molecular mechanism is unclear. The present study evaluated the effects of miR-126 on the cell migration and underlying mechanism in HUVECs treated with palmitate. The present results demonstrated that overexpression of miR-126 was found to decrease cell migration in palmitate-treated HUVECs, with decreased MLCK expression and subsequent decreased phosphorylated MLC level. miR-126 also decreased the phosphorylation of MYPT1 in palmitate-treated HUVECs. In addition, it was demonstrated that miR-126 decreases expression of the NADPH oxidase subunits, p67 and Rac family small GTPase 1 with a subsequent decrease in cell apoptosis. Moreover, the phosphorylation of ERK was reduced by miR-126 in palmitate-induced HUVECs. Taken together, the present study showed that the effect of miR-126 on cell migration and cell apoptosis is mediated through downregulation of MLCK via the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei, China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Mei Wang
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Pei Yu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Xiaomei Zhou
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
21
|
Cacanyiova S, Krskova K, Zorad S, Frimmel K, Drobna M, Valaskova Z, Misak A, Golas S, Breza J, Breza J, Berenyiova A. Arterial Hypertension and Plasma Glucose Modulate the Vasoactive Effects of Nitroso-Sulfide Coupled Signaling in Human Intrarenal Arteries. Molecules 2020; 25:E2886. [PMID: 32585916 PMCID: PMC7356001 DOI: 10.3390/molecules25122886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
We have investigated the vasoactive effects of the coupled nitro-sulfide signaling pathway in lobar arteries (LAs) isolated from the nephrectomized kidneys of cancer patients: normotensive patients (NT) and patients with arterial hypertension (AH). LAs of patients with AH revealed endothelial dysfunction, which was associated with an increased response to the exogenous NO donor, nitrosoglutathione (GSNO). The interaction of GSNO with the H2S donor triggered a specific vasoactive response. Unlike in normotensive patients, in patients with AH, the starting and returning of the vasorelaxation induced by the end-products of the H2S-GSNO interaction (S/GSNO) was significantly faster, however, without the potentiation of the maximum. Moreover, increasing glycemia shortened the time required to reach 50% of the maximum vasorelaxant response induced by S/GSNO products so modulating their final effect. Moreover, we found out that, unlike K+ channel activation, cGMP pathway and HNO as probable mediator could be involved in mechanisms of S/GSNO action. For the first time, we demonstrated the expression of genes coding H2S-producing enzymes in perivascular adipose tissue and we showed the localization of these enzymes in LAs of normotensive patients and in patients with AH. Our study confirmed that the heterogeneity of specific nitroso-sulfide vasoactive signaling exists depending on the occurrence of hypertension associated with increased plasma glucose level. Endogenous H2S and the end-products of the H2S-GSNO interaction could represent prospective pharmacological targets to modulate the vasoactive properties of human intrarenal arteries.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Karel Frimmel
- Institute for Heart Research, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia;
| | - Magdalena Drobna
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Zuzana Valaskova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| |
Collapse
|
22
|
Adebayo AA, Oboh G, Ademosun AO. Effect of dietary inclusion of almond fruit on sexual behavior, arginase activity, pro-inflammatory, and oxidative stress markers in diabetic male rats. J Food Biochem 2020; 45:e13269. [PMID: 32394504 DOI: 10.1111/jfbc.13269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to examine the effect of almond-included diets on sexual behavior, arginase activity, and pro-inflammatory markers in diabetic male rats. Forty-two male rats were divided into seven groups (n = 6). Diabetes was triggered via a single dose intraperitoneal injection of streptozotocin (50 mg/kg). Diabetes was confirmed 72 hr after STZ induction, and animals with blood glucose ≥ 250 mg/dl were considered diabetic and used for the experiment. The effects of almond-supplemented diets on glucose level, sexual function, NF-κB and TNF-α levels, arginase and purinergic enzyme activities, and levels of oxidative stress markers were assessed. A significant decrease in sexual activities with a simultaneous increase in pro-inflammatory markers, arginase and purinergic enzyme activities as well as TBARS and ROS levels was observed in diabetic rats. Interestingly, treatment with supplemented diets ameliorated the effects. Conclusively, intake of almonds could prevent the risk of erectile dysfunction in diabetic subjects. PRACTICAL APPLICATIONS: Intake of diets rich in fruits, nuts, and vegetables has been reported to reduce the risk of metabolic syndrome. Here, we investigate the effect of dietary inclusion of almond fruit on sexual behavior, arginase activity, oxidative stress, and pro-inflammatory markers in diabetic male rats. Interestingly, data generated from this work reveal that the supplemented diets enhanced sexual activities, and reduced oxidative stress and pro-inflammatory markers in diabetic male rats. Thus, consumption of almond (drupe and seed) could prevent/reduce the erectile dysfunction in individual with diabetes.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Biochemistry Department, Federal University of Technology, Akure, Nigeria.,Chemical Sciences Department (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
23
|
Liu HJ, Li HT, Lin Y, Lu DL, Yue Y, Xiong J, Li CQ, Xu XY, Feng YG. Identification of 2 Potential Core Genes for Influence of Gut Probiotics on Formation of Intracranial Aneurysms by Bioinformatics Analysis. Med Sci Monit 2020; 26:e920754. [PMID: 32141441 PMCID: PMC7077060 DOI: 10.12659/msm.920754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Rupture of intracranial aneurysms (IA) is associated with high rates of mortality around the world. Use of intestinal probiotics can regulate the pathophysiology of aneurysms, but the details of the mechanism involved have been unclear. MATERIAL AND METHODS The GEO2R analysis website was used to detect the DEGs between IAs, AAAs, samples after supplementation with probiotics, and normal samples. The online tool DAVID provides functional classification and annotation analyses of associated genes, including GO and KEGG pathway. PPI of these DEGs was analyzed based on the STRING database, followed by analysis using Cytoscape software. RESULTS We found 170 intersecting DEGs (contained in GSE75240 and more than 2 of the 4 aneurysms datasets), 5 intersecting DEGs (contained in all datasets) and 1 intersecting DEG (contained in GSE75240 and all IAs datasets). GO analysis results suggested that the DEGs primarily participate in signal transduction, cell adhesion, immune response, response to drug, extracellular matrix organization, cell-cell signaling, and inflammatory response in the BP terms, and the KEGG pathways are mainly enriched in focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, amoebiasis, chemokine signaling pathway, proteoglycans, and PI3K-Akt signaling pathway in cancer pathways. Through PPI network analysis, we confirmed 2 candidates for further study: CAV1 and MYH11. These downregulated DEGs are associated with the formation of aneurysms, and the change of these DEGs is the opposite in probiotics-treated animals. CONCLUSIONS Our study suggests that MYH11 and CAV1 are potential target genes for prevention of aneurysms. Further experiments are needed to verify these findings.
Collapse
Affiliation(s)
- Heng-Jian Liu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Huan-Ting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yuan Lin
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Dong-Lin Lu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yong Yue
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jing Xiong
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Cong-Qin Li
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xiang-Yu Xu
- Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yu-Gong Feng
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
24
|
Xue M, Shi Y, Pang A, Men L, Hu Y, Zhou P, Long G, Tian X, Wang R, Zhao Y, Liao X, Shen Y, Cui Y. Corin plays a protective role via upregulating MAPK and downregulating eNOS in diabetic nephropathy endothelial dysfunction. FASEB J 2019; 34:95-106. [PMID: 31914697 DOI: 10.1096/fj.201900531rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients, but its pathogenesis is unclear. We aimed to study the role of the pro-ANP convertase Corin in the pathogenesis of DN. Corin and ANP expression in DN rat kidneys and high-glucose-treated HK-2 cells was analyzed by real-time PCR, western blotting, and immunohistochemical staining. The effect of Corin-siRNA or ANP-siRNA HK-2 cells on EA.hy926 cell migration was determined by scratch-wound healing assay. The expression of mitogen-activated protein kinase (MAPK) and endothelial NO synthase (eNOS) in EA.hy926 cells treated with conditioned medium from Corin-siRNA- or ANP-siRNA-transfected HK-2 cells was determined by western blotting. We found a significant reduction in Corin and ANP expression in DN rat kidneys. These results were recapitulated in HK-2 cells treated with high glucose. EA.hy926 cells treated with conditioned medium from Corin-deficient HK-2 cells had inhibited migration, increased MAPK activity, and decreased eNOS activity. Similar effects were observed with ANP-siRNA transfection. Finally, adding ANP to the Corin-deficient HK-2 conditioned medium rescued the above defects, indicating that Corin mediates its effects through ANP. In conclusion, Corin plays a renoprotective role through pro-ANP processing, and defects in Corin cause endothelial dysfunction through MAPK and eNOS signaling in DN.
Collapse
Affiliation(s)
- Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Shi
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Men
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Rong Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|