1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
3
|
Jin Y, Liu T, Luo H, Liu Y, Liu D. Targeting Epigenetic Regulatory Enzymes for Cancer Therapeutics: Novel Small-Molecule Epidrug Development. Front Oncol 2022; 12:848221. [PMID: 35419278 PMCID: PMC8995554 DOI: 10.3389/fonc.2022.848221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of the epigenetic enzyme-mediated transcription of oncogenes or tumor suppressor genes is closely associated with the occurrence, progression, and prognosis of tumors. Based on the reversibility of epigenetic mechanisms, small-molecule compounds that target epigenetic regulation have become promising therapeutics. These compounds target epigenetic regulatory enzymes, including DNA methylases, histone modifiers (methylation and acetylation), enzymes that specifically recognize post-translational modifications, chromatin-remodeling enzymes, and post-transcriptional regulators. Few compounds have been used in clinical trials and exhibit certain therapeutic effects. Herein, we summarize the classification and therapeutic roles of compounds that target epigenetic regulatory enzymes in cancer treatment. Finally, we highlight how the natural compounds berberine and ginsenosides can target epigenetic regulatory enzymes to treat cancer.
Collapse
Affiliation(s)
- Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yangyang Liu
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Wu Q, Zheng Z, Zhang J, Piao Z, Xin M, Xiang X, Wu A, Zhao T, Huang S, Qiao Y, Zhou J, Xu S, Cheng H, Wu L, Ouyang K. Chordin-Like 1 Regulates Epithelial-to-Mesenchymal Transition and Metastasis via the MAPK Signaling Pathway in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:862751. [PMID: 35494000 PMCID: PMC9046701 DOI: 10.3389/fonc.2022.862751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAccumulating evidence suggests that dysregulation of Chordin-like 1 (CHRDL1) is associated with malignant biological behaviors in multiple cancers. However, the exact function and molecular mechanism of CHRDL1 in oral squamous cell carcinoma (OSCC) remain unclear.MethodsThe expression levels of CHRDL1 in OSCC tissues and CAL27 cells were determined by RT-qPCR. Immunohistochemical staining was applied to detect CHRDL1 protein expression in sample tissues from OSCC patients. Gain of function and knockdown by lentivirus were further used to examine the effects of CHRDL1 on cell proliferation, migration, invasion, and adhesion in OSCC. Tail vein injection of CAL27 cells with dysregulated CHRDL1 expression was further used to examine the effect of CHRDL1 on lung colonization. RNA sequencing was performed to explore the molecular mechanisms of CHRDL1 that underlie the progression of OSCC.ResultsCHRDL1 was significantly downregulated in OSCC tissues and CAL27 cells compared to controls. CHRDL1 knockdown enhanced migration, invasion, adhesion, and EMT, but not proliferation, in CAL27 cells. Overexpression of CHRDL1 had the opposite effects. Moreover, CHRDL1 was proven to inhibit tumor metastasis in vivo. Mechanistically, MAPK signaling pathway components, including ERK1/2, p38, and JNK, were found to regulate the malignant biological behaviors of CAL27 cells.ConclusionsOur results suggest that CHRDL1 has an inhibitory effect on OSCC metastasis via the MAPK signaling pathway, which provides a new possible potential therapeutic target against OSCC.
Collapse
Affiliation(s)
- Qiuyu Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junwei Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xi Xiang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Antong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Tianyu Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Songkai Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yu Qiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jiayu Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| | - Kexiong Ouyang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| |
Collapse
|
5
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
6
|
Analysis on Value of Applying Serum miR-144 and miR-221 Levels in Diagnosing Atherosclerosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2261854. [PMID: 35126910 PMCID: PMC8808211 DOI: 10.1155/2022/2261854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To explore the value of serum miR-144 and miR-221 in diagnosing atherosclerosis (AS). METHODS The clinical data of 52 AS patients treated in the department of cardiovascular medicine of our hospital from August 2019 to August 2020 were retrospectively analyzed, and 53 healthy persons were selected from the physical examination center at the same period as the control group. By measuring the indicators including the serum vascular endothelial growth factor (VEGF), superoxide dismutase (SOD), miR-144, and miR-221 in patients of both groups, their value of diagnosing AS was analyzed. RESULTS Compared with the control group, the AS group obtained significantly higher serum miR-221 and miR-144 expression levels (P < 0.001), significantly higher mean serum homocysteine (Hcy) level value (P < 0.001), lower mean serum SOD level (P < 0.001), and significantly higher level values of serum VEGF, nuclear factor-kappaB (NF-kB), and transforming growth factor-β (TGF-β) (P < 0.001), and the area under ROC curve, sensitivity, and specificity of combining miR-221 with miR-144 were significantly higher than those of single diagnosis. CONCLUSION Serum miR-221 and miR-144 expression levels are increased in AS patients, and combining the two indicators in diagnosis is more accurate and can provide an accurate basis for diagnosis and condition assessment of AS.
Collapse
|
7
|
Zhu Y, Sun Y, Zhang S, Li C, Zhao Y, Zhao B, Li G. Xinmai 'an extract enhances the efficacy of sildenafil in the treatment of pulmonary arterial hypertension via inhibiting MAPK signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:594-605. [PMID: 34010580 PMCID: PMC8143608 DOI: 10.1080/13880209.2021.1917629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 06/01/2023]
Abstract
CONTEXT Xinmai 'an tablet has been used to improve myocardial blood supply. Recently, some compounds from its formula have shown that they can treat pulmonary arterial hypertension (PAH). OBJECTIVE This study investigates the effects of Xinmai 'an extract (XMA) on PAH and further tests the co-therapeutic enhancement with sildenafil (SIL). MATERIALS AND METHODS Pulmonary artery smooth muscle cells were subjected to stimulation with SIL (12.5 μM) and XMA (250 μg/mL) for 48 h. Sprague-Dawley rats were randomly grouped into eight groups (n = 8 per group): (I) control group received saline; (II) MCT group received MCT (60 mg/kg); (III) SIL-Low group received MCT + SIL at 10 mg/kg/day; (IV) SIL-high group received MCT + SIL at 30 mg/kg/day; (V) XMA-High group received MCT + XMA at 251.6 mg/kg/day; (VI) SIL (Low)+XMA (Low) group received SIL (10 mg/kg) + XMA at 62.9 mg/kg/day; (VII) SIL (Low)+XMA (Medium) group received SIL (10 mg/kg) + XMA at 125.8 mg/kg/day; (VIII) SIL (Low)+XMA (High) group received SIL (10 mg/kg) + XMA at 251.6 mg/kg/day. Both XMA and SIL were given by gavage and were maintained daily for 2 weeks. RESULTS XMA could improve SIL's efficacy in the treatment of PAH by decreasing cell viability more effectively at non-cytotoxic concentrations (250 μg/mL) and reducing Right Ventricular Systolic Pressure (RVSP) in PAH rat. Potential mechanisms might at least in part be through activating the MAPK signalling pathway. DISCUSSION AND CONCLUSIONS The combination of XMA and SIL can improve the efficacy of pulmonary hypertension and reduce the dosage of SIL.
Collapse
Affiliation(s)
- Yaolu Zhu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabin Sun
- Modern Chinese Medicine Institute, Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Company Limited, Guangzhou, China
| | - Shichang Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuyuan Li
- Office of the General Manager, Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Company Limited, Guangzhou, China
| | - Yiwei Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Hyun TK. A recent overview on ginsenosides as microRNA modulators in the treatment of human diseases. EXCLI JOURNAL 2021; 20:1453-1457. [PMID: 34737687 PMCID: PMC8564905 DOI: 10.17179/excli2021-4200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
MicroRNAs in Epithelial-Mesenchymal Transition Process of Cancer: Potential Targets for Chemotherapy. Int J Mol Sci 2021; 22:ijms22147526. [PMID: 34299149 PMCID: PMC8305963 DOI: 10.3390/ijms22147526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, a kind of small non-coding RNA molecules, called as microRNAs, has been applied as negative regulators in various types of cancer treatment through down-regulation of their targets. More recent studies exert that microRNAs play a critical role in the EMT process of cancer, promoting or inhibiting EMT progression. Interestingly, accumulating evidence suggests that pure compounds from natural plants could modulate deregulated microRNAs to inhibit EMT, resulting in the inhibition of cancer development. This small essay is on the purpose of demonstrating the significance and function of microRNAs in the EMT process as oncogenes and tumor suppressor genes according to studies mainly conducted in the last four years, providing evidence of efficient target therapy. The review also summarizes the drug candidates with the ability to restrain EMT in cancer through microRNA regulation.
Collapse
|
10
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Zhou Z, Wu W, Li J, Liu C, Xiao Z, Lai Q, Qin R, Shen M, Shi S, Kang M. Bioinformatics analysis of the expression and role of microRNA-221-3p in head and neck squamous cell carcinoma. BMC Cancer 2021; 21:395. [PMID: 33845800 PMCID: PMC8042693 DOI: 10.1186/s12885-021-08039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, associated with a high rate of morbidity and mortality. However, the target genes of miR-221-3p and the underlying mechanism involved in HNSCC are still not clear. Therefore, in the current study, we studied the role of miR-221-3p in the HNSCC. METHODS Tissues collected from 48 control and 21 HNSCC patients were processed to check the differential expression of miR-221-3p by RT-qPCR. Overexpression of microRNA-221-3p (miR-221-3p) is significantly correlated to the onset and progression of HNSCC. We also conducted the meta-analysis of the cancer literature from the cancer genome atlas (TCGA) and the Gene Expression Omnibus (GEO) database to estimate the expression of miR-221-3p in HNSCC. The miR-221-3p target genes in the HNSCC were predicted with the miRWalk and TCGA databases, and functionally annotated via the Gene Ontology. Finally, Spearman's analysis was used to determine the role of the related target genes in important pathways involved in the development of HNSCC. RESULTS We observed a significantly higher expression of miR-221-3p in HNSCC compared to the normal with a summary receiver operating characteristic (sROC) of 0.86(95% Cl: 0.83,0.89). The KEGG and GO comprehensive analysis predicted that miR-221-3p might be involved in the development of HNSCC through the following metabolic pathways, viz. Drug metabolism - cytochrome P450 UGT1A7 and MAOB may be important genes for the role of miR-221-3p. CONCLUSION Based on bioinformatics analysis, our results indicate that miR-221-3p may be used as a non-invasive and hypersensitive biomarker in the diagnosis. Thus, it can be concluded that miR-221-3p may be an extremely important gene locus involved in the process of the deterioration and eventual tumorigenesis of HNSCC. Hopefully, additional work will validate its usefulness as a target for future clinical research.
Collapse
Affiliation(s)
- Ziyan Zhou
- Department of Radiation Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenling Wu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jixi Li
- Department of Radiation Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, 530021, Guangxi, People's Republic of China
| | - Chang Liu
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Zixi Xiao
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Qinqiao Lai
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Rongxing Qin
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Mingjun Shen
- Department of Radiation Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, 530021, Guangxi, People's Republic of China
| | - Shuo Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Min Kang
- Department of Radiation Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Chen Y, Wang S, Yang S, Li R, Yang Y, Chen Y, Zhang W. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA‑216a. Mol Med Rep 2021; 23:415. [PMID: 33786633 PMCID: PMC8025470 DOI: 10.3892/mmr.2021.12054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Targeting microRNAs (miRs) using small chemical molecules has become a promising strategy for disease treatment. miR‑216a has been reported to be a potential therapeutic target in endothelial senescence and atherosclerosis via the Smad3/NF‑κB signaling pathway. Ginsenoside Rb2 (Rb2) is the main bioactive component extracted from the plant Panax ginseng, and is a widely used traditional Chinese medicine. In the present study, Rb2 was identified to have a high score for miR‑216a via bioinformatics analysis based on its sequence and structural features. The microscale thermophoresis experiment further demonstrated that Rb2 had a specific binding affinity for miR‑216a and the dissociation constant was 17.6 µM. In both young and senescent human umbilical vein endothelial cells (HUVECs), as well as human aortic endothelial cells, Rb2 decreased the expression of endogenous miR‑216a. Next, a replicative endothelial senescence model of HUVECs was established by infection with pre‑miR‑216a recombinant lentiviruses (Lv‑miR‑216a) and the number of population‑doubling level (PDL) was calculated. Stable overexpression of miR‑216a induced a premature senescent‑like phenotype, whereas the senescent features and increased activity of senescence‑associated β‑galactosidase (SA‑β‑gal) were reversed after Rb2 treatment. The percentage of SA‑β‑gal‑positive cells in senescent PDL25 cells transfected with Lv‑miR‑216a was decreased 76% by Rb2 treatment compared with the Lv‑miR‑216a group without Rb2 treatment (P=0.01). Mechanistically, miR‑216a inhibited Smad3 protein expression, promoted IκBα degradation and activated NF‑κB‑responsive genes, such as vascular cell adhesion molecule 1 (VCAM1), which promoted the adhesiveness of endothelial cells to monocytes. These pro‑inflammatory effects of miR‑216a were significantly suppressed by Rb2 treatment. When Smad3 was suppressed by small interfering RNA, the elevated expression levels of intercellular adhesion molecule 1 and VCAM1 induced by miR‑216a were significantly reversed. Collectively, to the best of our knowledge, the present study demonstrated for the first time that Rb2 exerted an anti‑inflammation effect on the process of endothelial cell senescence and could be a potential therapeutic drug by targeting miR‑216a.
Collapse
Affiliation(s)
- Yutong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Shuting Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Shujun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Rongxia Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Yunyun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| |
Collapse
|
13
|
Liu TJ, Hu S, Qiu ZD, Liu D. Anti-Tumor Mechanisms Associated With Regulation of Non-Coding RNA by Active Ingredients of Chinese Medicine: A Review. Front Oncol 2021; 10:634936. [PMID: 33680956 PMCID: PMC7930492 DOI: 10.3389/fonc.2020.634936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the second leading cause of death worldwide; however, its complex pathogenesis remains largely unclear. Previous research has shown that cancer development and progression are closely associated with various non-coding RNAs, including long non-coding RNAs and microRNAs, which regulate gene expression. Target gene abnormalities are regulated and engaged in the complex mechanism underlying tumor formation, thereby controlling apoptosis, invasion, and migration of tumor cells and providing potentially effective targets for the treatment of malignant tumors. Chemotherapy is a commonly used therapeutic strategy for cancer; however, its effectiveness is limited by general toxicity and tumor cell drug resistance. Therefore, increasing attention has been paid to developing new cancer treatment modalities using traditional Chinese medicines, which exert regulatory effects on multiple components, targets, and pathways. Several active ingredients in Chinese medicine, including ginsenoside, baicalin, and matrine have been found to regulate ncRNA expression levels, thus, exerting anti-tumor effects. This review summarizes the scientific progress made regarding the anti-tumor mechanisms elicited by various active ingredients of Chinese medicine in regulating non-coding RNAs, to provide a theoretical foundation for treating tumors using traditional Chinese medicine.
Collapse
Affiliation(s)
- Tian-Jia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhi-Dong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Kim H, Ji HW, Kim HW, Yun SH, Park JE, Kim SJ. Ginsenoside Rg3 Prevents Oncogenic Long Noncoding RNA ATXN8OS from Inhibiting Tumor-Suppressive microRNA-424-5p in Breast Cancer Cells. Biomolecules 2021; 11:biom11010118. [PMID: 33477683 PMCID: PMC7831931 DOI: 10.3390/biom11010118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rg3 exerts antiproliferation activity on cancer cells by regulating diverse noncoding RNAs. However, little is known about the role of long noncoding RNAs (lncRNAs) or their relationship with competitive endogenous RNA (ceRNA) in Rg3-treated cancer cells. Here, a lncRNA (ATXN8OS) was found to be downregulated via Rg3-mediated promoter hypermethylation in MCF-7 breast cancer cells. SiRNA-induced downregulation of ATXN8OS decreased cell proliferation but increased apoptosis, suggesting that the noncoding RNA possessed proproliferation activity. An in silico search for potential ATXN8OS-targeting microRNAs (miRs) identified a promising candidate (miR-424-5p) based on its high binding score. As expected, miR-424-5p suppressed proliferation and stimulated apoptosis of the MCF-7 cells. The in silico miR-target-gene prediction identified 200 potential target genes of miR-424-5p, which were subsequently narrowed down to seven that underwent hypermethylation at their promoter by Rg3. Among them, three genes (EYA1, DACH1, and CHRM3) were previously known oncogenes and were proven to be oppositely regulated by ATXN8OS and miR-424-5p. When taken together, Rg3 downregulated ATXN8OS that inhibited the tumor-suppressive miR-424-5p, leading to the downregulation of the oncogenic target genes.
Collapse
|
15
|
Yin S, Lin X. MicroRNA-21 Contributes to Cutaneous Squamous Cell Carcinoma Progression via Mediating TIMP3/PI3K/AKT Signaling Axis. Int J Gen Med 2021; 14:27-39. [PMID: 33447074 PMCID: PMC7802778 DOI: 10.2147/ijgm.s275016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Though the therapeutic potentials of microRNAs (miRNAs) are extensively explored in cutaneous squamous cell carcinoma (CSCC), the concrete function of miR-21 in this disorder has not been thoroughly comprehended. Therein, this work is launched to clarify the miR-21-pivoted mechanism in CSCC from the perspective of tissue inhibitor of metalloproteinases-3 (TIMP3) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. METHODS Microarray-based analysis was utilized to screen out miR-21 with the most up-regulated expression in CSCC tissues. The relation between miR-21 and TIMP3 expression in tissues, and the overall survival of CSCC patients was evaluated. Loss-of-function assays were performed in cells to explore the independent and combined functions of miR-21 and TIMP3 in CSCC cell progression. Mice were injected with miR-21 inhibitor or TIMP3 si for identifying their roles in tumor formation and liver metastasis. The mechanism among miR-21, TIMP3 and PI3K/AKT pathway was interpreted. RESULTS MiR-21 was up-regulated while TIMP3 was down-regulated in CSCC tissues, which were connected with unsatisfactory survival of patients. Down-regulating miR-21 inhibited CSCC cell progression and retarded CSCC tumor formation and metastasis in mice. Silencing of TIMP3 reversed the effects of miR-21 down-regulation on CSCC progression. Besides, down-regulating miR-21 inhibited PI3K/AKT pathway activation in CSCC cells via mediating TIMP3. CONCLUSION It is elucidated that miR-21 depletion impedes CSCC cell invasion and metastasis via enhancing TIMP3 and suppressing PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Shuhong Yin
- Department of Dermatology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, People’s Republic of China
| | - Xiuying Lin
- Department of Dermatology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, People’s Republic of China
| |
Collapse
|
16
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Effects of Ginsenosides on the Nrf2 Signaling Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:307-322. [PMID: 34981486 DOI: 10.1007/978-3-030-73234-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a major signaling pathway for the maintenance of homeostasis and redox balance. This pathway also plays a significant role in proteostasis, xenobiotic/drug metabolism, apoptosis, and lipid and carbohydrate metabolism. Conversely, the Nrf2 signaling pathway is impaired in several pathological conditions including cancer. Although various drugs have been developed to target the Nrf2 pathway, plant-derived chemicals than can potentially impact this pathway and are particularly attractive due to their minimal side effects. Ginsenosides are active components of ginseng and have been shown to exert pharmacological effects including antioxidant, anti-inflammatory, antitumor, antidiabetes, neuroprotective, and hepatoprotective activities. In this article, we have reviewed the effects of ginsenosides on Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
18
|
Zou H, Li Y, Liu X, Wu Z, Li J, Ma Z. Roles of plant-derived bioactive compounds and related microRNAs in cancer therapy. Phytother Res 2020; 35:1176-1186. [PMID: 33000538 DOI: 10.1002/ptr.6883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Plant-derived bioactive compounds, often called phytochemicals, are active substances extracted from different plants. These bioactive compounds can release therapeutic potential abilities via reducing antitumor drugs side effects or directly killing cancer cells, and others also can adjust cancer initiation and progression via regulating microRNAs (miRNAs) expression, and miRNA can regulate protein-coding expression by restraining translation or degrading target mRNA. A mass of research showed that plant-derived bioactive compounds including tanshinones, astragaloside IV, berberine, ginsenosides and matrine can inhibit tumor growth and metastasis by rescuing aberrant miRNAs expression, which has influence on tumor progression, microenvironment and drug resistance in multifarious cancers. This review aims to provide a novel understanding of plant-derived bioactive compounds targeting miRNAs and shed light on their future clinical applications.
Collapse
Affiliation(s)
- Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
19
|
Chung PC, Hsieh PC, Lan CC, Hsu PC, Sung MY, Lin YH, Tzeng IS, Chiu V, Cheng CF, Kuo CY. Role of Chrysophanol in Epithelial-Mesenchymal Transition in Oral Cancer Cell Lines via a Wnt-3-Dependent Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8373715. [PMID: 33014112 PMCID: PMC7512067 DOI: 10.1155/2020/8373715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Oral cancer belongs to the group of head and neck cancers. If not diagnosed or treated early, it can be life threatening. Epithelial-mesenchymal transition (EMT) plays an important role in tumor formation and progression. An increase in the presence of the EMT phenotype causes tumor cell proliferation, migration, invasion, and poor prognosis. Therefore, attenuating carcinogenesis via EMT inhibition is a good strategy. Herein, we will determine the pharmacological effects of chrysophanol on the EMT in FaDu cells. To analyze EMT, we detected the expression EMT markers, including α-SMA, β-catenin, vimentin, N-cadherin, E-cadherin, phospho-GSK-3β, and nuclear translocations of p65 and β-catenin by western blotting. Additionally, accumulating evidence indicates that reactive oxygen species (ROS) mediate EMT. Our results showed that the level of ROS was significantly increased after chrysophanol treatment. We further speculated that chrysophanol-mediated EMT and metastasis are involved in the Wnt-3-dependent signaling pathway. The inhibition of the EMT phenotype and metastasis and accumulation of ROS caused by chrysophanol was reversed by treatment with the Wnt-3 agonist Bml 284. Therefore, our findings indicated that chrysophanol altered EMT formation, ROS accumulation, and metastasis via the Wnt-3-dependent signaling pathway.
Collapse
Affiliation(s)
- Ping-Chen Chung
- Department of Anesthesia, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Yi Sung
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ya-Hsuan Lin
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I.-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Valeria Chiu
- Division of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
20
|
Zhang S, Luo J, Xie J, Wang Z, Xiao W, Zhao L. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(
S
)‐Rg3 by three thermostable glycosidases. J Appl Microbiol 2019; 128:721-734. [DOI: 10.1111/jam.14513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- S. Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Luo
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Xie
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Z. Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - W. Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - L. Zhao
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
21
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
22
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. MicroRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutr Cancer 2019; 72:1264-1275. [PMID: 31608663 DOI: 10.1080/01635581.2019.1675722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs(, as short non-coding RNAs, regulate important biological processes and mainly are associated with regulation of gene expression. The miRs are beneficial targets for diagnosis of various disorders, particularly cancer, since their expression profile undergoes alterations in pathological conditions. The numerous drugs have been designed with the capability of targeting miRs for treating pathological conditions. On the other hand, the application of naturally occurring compounds has been increased due to their minimal side effects and valuable biological and therapeutic activities. Ginsenosides are able to act as anti-tumor agents via either increasing or decreasing the expression level of miRs. Ginsenosides affect the expression profile of miRNAs to induce their protective impacts. Angiogenesis as a key factor in the progression of cancer can be suppressed by ginsenosides which is mediated by miR regulation. The aim of this review is to shed some light on the protective and anti-tumor activities of ginsenosides mediated by miRNAs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Veterinary Medicine, Department of Basic Science, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|