1
|
Alshehri MA, Seyed MA, Panneerselvam C, Sayed SM, Shukry M. Mechanistic insights into Retama raetam's anti-proliferative and pro-apoptotic effects in A549 lung cancer cells: targeting PI3K/Akt pathway and ROS production. Toxicol Res (Camb) 2024; 13:tfae137. [PMID: 39233844 PMCID: PMC11368664 DOI: 10.1093/toxres/tfae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), is a leading cause of cancer-related deaths worldwide. This study investigates the molecular mechanisms behind the anti-cancer effects of the tropical desert plant Retama raetam (R. raetam) on the A549 NSCLC cell line. The research examined R. raetam's anti-proliferative effects, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and cell morphology in NSCLC A549 and L-132 cells. In addition, the influence of R. raetam on DNA fragmentation, apoptotic signaling, and PI3K/Akt pathways for its anti-cancer mechanism was examined. Our results indicated that R. raetam's effects were dose- and time-dependent to exhibit anti-proliferative effects on A549 cells. R. raetam treatment promoted apoptotic cell death cycle arrest, increased apoptotic cells, depolarized the mitochondrial membrane, and induced morphological alterations in cells and nuclei. It also inhibited A549 cell migration (P < 0.05), colonization, and invasiveness. Moreover, the study demonstrated that R. raetam treatment resulted in the upregulation of Bax expression, downregulation of Bcl-2 expression, and apoptotic fragmented DNA in A549 cells. The top five bioactive compounds derived from R. raetam exhibited molecular interactions that inhibit PIK3CA and AKT1. This inhibition leads to an increased frequency of apoptosis and subsequent death of cancer cells. Additionally, R. raetam extract induced an increase in ROS formation and cytochrome c levels, indicating that its toxic effects on A549 cells involve both ROS-dependent cytotoxicity through the disruption of mitochondrial transmembrane potential ΔΨm and ROS-independent cell cycle arrest through downregulation BCL-2, PARP, E-Cadherin, PI3K, and Akt expressions pathways.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Ali Seyed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
2
|
Zhao Z, Hu C, Li L, Zhang J, Zhang L. Main chemical constituents and mechanism of anti-tumor action of Solanum nigrum L. Cancer Med 2024; 13:e7314. [PMID: 39155844 PMCID: PMC11331249 DOI: 10.1002/cam4.7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.
Collapse
Affiliation(s)
- Zhen‐duo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Hu
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM‐Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024; 67:7406-7430. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Lv J, Ma S, Wang X, Dang J, Ma F. PSMD12 promotes non-small cell lung cancer progression through activating the Nrf2/TrxR1 pathway. Genes Genomics 2024; 46:263-277. [PMID: 38243044 DOI: 10.1007/s13258-023-01484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive. OBJECTIVE To explore the role and underlying mechanisms of PSMD12 in NSCLC. METHODS The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter. RESULTS We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown. CONCLUSION PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Junqi Lv
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China.
| | - Shengmao Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Xiaowen Wang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Jifang Dang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Fuchun Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
6
|
Günaydın Ş, Sulukoğlu EK, Kalın ŞN, Altay A, Budak H. Diffractaic acid exhibits thioredoxin reductase 1 inhibition in lung cancer A549 cells. J Appl Toxicol 2023; 43:1676-1685. [PMID: 37329199 DOI: 10.1002/jat.4505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths all over the world. Therefore, it has gained importance in the development of new chemotherapeutic strategies to identify anticancer agents with low side effects, reliable, high anticancer potential, and specific to lung cancer cells. Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for lung cancer treatment because of its overexpression in tumor cells. Here, we aimed to examine the anticancer effect of diffractaic acid, a lichen secondary metabolite, in A549 cells by comparing it with the commercial chemotherapeutic drug carboplatin and also to investigate whether the anticancer effect of diffractaic acid occurs via TrxR1-targeting. The IC50 value of diffractaic acid on A549 cells was determined as 46.37 μg/mL at 48 h, and diffractaic acid had stronger cytotoxicity than carboplatin in A549 cells. qPCR results revealed that diffractaic acid promoted the intrinsic apoptotic pathway through the upregulation of the BAX/BCL2 ratio and P53 gene in A549 cells, which is consistent with the flow cytometry results. Furthermore, migration analysis results indicated that diffractaic acid impressively suppressed the migration of A549 cells. While the enzymatic activity of TrxR1 was inhibited by diffractaic acid in A549 cells, no changes were seen in the quantitative expression levels of gene and protein. These findings provide fundamental data on the anticancer effect of diffractaic acid on A549 cells targeting TrxR1 activity, suggesting that it could be considered a chemotherapeutic agent for lung cancer therapy.
Collapse
Affiliation(s)
- Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- Science Faculty, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
8
|
Kanwal L, Ali S, Rasul A, Tahir HM. Smilax china root extract as a novel Glucose- 6-phosphate dehydrogenase inhibitor for the treatment of hepatocellular carcinoma. Saudi J Biol Sci 2022; 29:103400. [PMID: 35991850 PMCID: PMC9382562 DOI: 10.1016/j.sjbs.2022.103400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A novel therapeutic strategy for cancer treatment is to target altered tumor metabolism. Glucose- 6-phosphate dehydrogenase (G6PD) has been recently discovered to be implicated in apoptosis and angiogenesis, making it an excellent target in cancer treatment. The current study aimed to screen the plant extracts library to find potent hits against G6PD through enzymatic assay. Protein expression was induced by IPTG and purified using Ni-NTA columns after transformation of the pET-24a-HmG6PD plasmid into E. coli BL21-DE3 strain. An enzymatic assay was established by using purified rG6PD protein, for the screening of G6PD inhibitors. Out of 46 plant extracts screened, the sixteen plant extracts have shown inhibitory activity against the G6PD enzyme. At doses from 1 to 4 µg/ml, this extract demonstrated concentration-dependent inhibition of G6PD with an IC50 value of I.397 µg/ml. Moreover, the anticancer activity evaluation against HepG2 cells determined Smilax china as a potent inhibitor of cancer cells (IC50 value of 16.017 μg/ml). The acute and subacute toxicities were not observed in mice with various concentrations (50, 100, 200 and 2000 mg/kg). Furthermore, to identify the compounds from Smilax china as G6PD inhibitors, a literature-based phytochemical investigation of Smilax china was conducted, and sixty compounds were docked against the NADP+ and G6P binding sites of G6PD. The results of this study showed that three compounds were Scirpusin A, Smilachinin and Daucosterol with MolDock Score of −156.832, −148.215, and −145.733 respectively, against NADP+ binding site of G6PD. Conclusively, Smilax china root extract could be a safer drug candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lubna Kanwal
- Department of Zoology, University of Okara, Okara, Pakistan
- Applied Entomology and Medical Toxicology Laboratory Department of Zoology, Government College University Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory Department of Zoology, Government College University Lahore, Pakistan
- Corresponding author at: Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Pakistan. Tel.: +92-3054190596.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology Laboratory Department of Zoology, Government College University Lahore, Pakistan
| |
Collapse
|
9
|
Natural Sources, Pharmacological Properties, and Health Benefits of Daucosterol: Versatility of Actions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Daucosterol is a saponin present in various natural sources, including medicinal plant families. This secondary metabolite is produced at different contents depending on species, extraction techniques, and plant parts used. Currently, daucosterol has been tested and explored for its various biological activities. The results reveal potential pharmacological properties such as antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, immunomodulatory, neuroprotective, and anticancer. Indeed, daucosterol possesses important anticancer effects in many signaling pathways, such as an increase in pro-apoptotic proteins Bax and Bcl2, a decrease in the Bcl-2/Bax ratio, upregulation of the phosphatase and tensin homolog (PTEN) gene, inhibition of the PI3K/Akt pathway, and distortion of cell-cycle progression and tumor cell evolution. Its neuroprotective effect is via decreased caspase-3 activation in neurons and during simulated reperfusion (OGD/R), increased IGF1 protein expression (decreasing the downregulation of p-AKT3 and p-GSK-3b4), and activation of the AKT5 signaling pathway. At the same time, daucosterol inhibits key glucose metabolism enzymes to keep blood sugar levels within normal ranges. Therefore, this review describes the principal research on the pharmacological activities of daucosterol and the mechanisms of action underlying some of these effects. Moreover, further investigation of pharmacodynamics, pharmacokinetics, and toxicology are suggested.
Collapse
|
10
|
Gao ZY, Gu NJ, Wu MZ, Wang SY, Xu HT, Li QC, Wu GP. Human papillomavirus16 E6 but not E7 upregulates GLUT1 expression in lung cancer cells by upregulating thioredoxin expression. Technol Cancer Res Treat 2021; 20:15330338211067111. [PMID: 34939468 PMCID: PMC8721363 DOI: 10.1177/15330338211067111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background and objective: E6 and E7 proteins in human papillomavirus (HPV) 16 are major oncogenes in several types of tumors, including lung cancer. Previous studies have demonstrated that both E6 and E7 oncoproteins can upregulate GLUT1 protein and mRNA expression levels in lung cancer cells. Thus, the present study aimed to investigate the main differences in the molecular mechanisms of GLUT1 expression regulated by E6 and E7. Methods: The double directional genetic manipulation and immunofluorescence were performed to explore the molecular mechanism of E6 or E7 upregulating the expression of GLUT1 in H1299 and A549 cell lines. Results: The overexpression of E6 in well-established lung cancer cell lines upregulated thioredoxin (Trx) protein expression. Notably, plasmid transfection or small interfering RNA transfection with E7 had no regulatory effect on Trx expression. As an important disulfide reductase of the intracellular antioxidant system, Trx plays important role in maintaining oxidative stress balance and protecting cells from oxidative damage. The overexpression of Trx increased the activation of NF-κB by upregulating p65 expression and promoting p65 nuclear translocation, and further upregulated GLUT1 protein and mRNA expression levels. The results of the present study demonstrated that E6, but not E7, upregulated GLUT1 expression in lung cancer cells by activating NF-κB due to the participation of Trx. Conclusion: These results suggest that Trx plays an important role in the pathogenesis of HPV-associated lung cancer, and propose a novel therapeutic target for HPV-associated lung cancer.
Collapse
Affiliation(s)
- Zi-Yu Gao
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,The College of Basic Medical Sciences of Jinzhou Medical University, Jinzhou, China
| | - Na-Jin Gu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Zhe Wu
- The First Hospital of China Medical University, Shenyang, China
| | - Shi-Yu Wang
- 24460White River Health System, Batesville, AR, USA
| | - Hong-Tao Xu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qing-Chang Li
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Qian Y, Shanbo M, Shaojie H, Long L, Yuhan C, Jin W, Shan M, Xiao-Peng S. Integrating bioinformatics with pharmacological evaluation for illustrating the action mechanism of herbal formula Jiao'e mixture in suppressing lung carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114513. [PMID: 34400263 DOI: 10.1016/j.jep.2021.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung carcinoma (LC) is not only a kind of disease that seriously threatens human life but also an intractable problem in modern medicine. Jiao'e Mixture (JEM) is an innovative Chinese medicine formula with Chinese patent, which is composed of two herbal extracts with a specific ratio-zedoary turmeric oil and medicinal Zanthoxylum bungeanum Maxim(Z. bungeanum Maxim) seeds oil (ZMSO). Zedoary turmeric oil is extracted from dried rhizomes of Curcuma wenyujin Y.H.Chen et C. Ling, which has been reported have an anti-cancer effects. Medicinal ZMSO is a by-product of Z. bungeanum Maxim, refined from kernel shell separation, modern cold soaking and refining technology; JEM is used to treat Lung carcinoma (LC) patients in folk for many years. However, its therapeutic mechanisms for treating LC have not been fully explored. AIM OF THE STUDY The purpose of this study was to explore the therapeutic mechanisms of JEM for treating LC. MATERIALS AND METHODS The action mechanism of JEM in LC treatment was analysed by comprehensive network pharmacology approach combined with experimental validation (in vivo and in vitro). RESULTS Seventeen active compounds and 457 related targets were collected from the HERB, TCMSP, and Swiss Target Prediction platforms. Nine hundred and thirty-eight LC related targets were obtained from Gene Cards and OMIM databases. Finally, 140 overlapping targets were obtained, which representing the target of JEM in LC treatment. The pathway analysis showed that PI3K-AKT could be a potential pathway for JEM in LC treatment. In vivo results presented that JEM had a good effect in inhibiting the growth of LC tumour cells with high efficacy and low toxicity. In vitro experiments validated that JEM had inhibited LC cells' proliferation, migration and invasion, and had induced cell apoptosis mainly via PI3K/Akt signalling pathways. CONCLUSION The anti-LC activity of JEM might via regulating the PI3K-AKT signalling pathways.This study may provide further evidence for the potential use of JEM in LC treatment.
Collapse
Affiliation(s)
- Yang Qian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Ma Shanbo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Huang Shaojie
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Li Long
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Chen Yuhan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Wang Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Miao Shan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| | - Shi Xiao-Peng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| |
Collapse
|
12
|
Uncovering the Anti-Lung-Cancer Mechanisms of the Herbal Drug FDY2004 by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6644018. [PMID: 33628308 PMCID: PMC7886515 DOI: 10.1155/2021/6644018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
With growing evidence on the therapeutic efficacy and safety of herbal drugs, there has been a substantial increase in their application in the lung cancer treatment. Meanwhile, their action mechanisms at the system level have not been comprehensively uncovered. To this end, we employed a network pharmacology methodology to elucidate the systematic action mechanisms of FDY2004, an anticancer herbal drug composed of Moutan Radicis Cortex, Persicae Semen, and Rhei Radix et Rhizoma, in lung cancer treatment. By evaluating the pharmacokinetic properties of the chemical compounds present in FDY2004 using herbal medicine-associated databases, we identified its 29 active chemical components interacting with 141 lung cancer-associated therapeutic targets in humans. The functional enrichment analysis of the lung cancer-related targets of FDY2004 revealed the enriched Gene Ontology terms, involving the regulation of cell proliferation and growth, cell survival and death, and oxidative stress responses. Moreover, we identified key FDY2004-targeted oncogenic and tumor-suppressive pathways associated with lung cancer, including the phosphatidylinositol 3-kinase-Akt, mitogen-activated protein kinase, tumor necrosis factor, Ras, focal adhesion, and hypoxia-inducible factor-1 signaling pathways. Overall, our study provides novel evidence and basis for research on the comprehensive anticancer mechanisms of herbal medicines in lung cancer treatment.
Collapse
|
13
|
Balan DJ, Rajavel T, Das M, Sathya S, Jeyakumar M, Devi KP. Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol Rep 2020; 73:240-254. [PMID: 33095436 DOI: 10.1007/s43440-020-00171-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thymol is a monoterpene phenol found in thyme species plants. The present study was carried out to investigate the effect of thymol and its molecular mechanism on non-small lung cancer (A549) cells. METHODS The cytotoxic effect of thymol on A549 cells was assessed via MTT assay. ROS production, macromolecular damage, apoptosis were determined using DCF-DA, PI, AO/EtBr stains, respectively. ROS-dependent effect of thymol was confirmed using NAC. The expression of caspase-9, Bcl-2, Bax and cell cycle profile was analyzed via western blot and FACS, respectively. RESULTS The antiproliferative effect of thymol on A549 cells was found to be both dose and time dependent with IC50 values of 112 μg/ml (745 μM) at 24 h. Thymol treatment favored apoptotic cell death and caused G0/G1 cell cycle arrest. It mediated cellular and nuclear morphological changes, phosphatidylserine translocation, and mitochondrial membrane depolarization. Additionally, upregulation of Bax, downregulation of Bcl-2, and apoptotic fragmented DNA were also observed. Thymol induced ROS by reducing the SOD level which was confirmed via in vitro and in silico analysis. Furthermore, the levels of lipid peroxides and protein carbonyl content were elevated in thymol-treated groups. Notably, N-acetyl cysteine pretreatment reversed the efficacy of thymol on A549 cells. Moreover, thymol-treated human PBMC cells did not show any significant cytotoxicity. CONCLUSION Overall, our results confirmed that thymol can act as a safe and potent therapeutic agent to treat NSCLC.
Collapse
Affiliation(s)
- Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
14
|
Zhang SR, Zhang XC, Liang JF, Fang HM, Huang HX, Zhao YY, Chen XQ, Ma SL. Chalcomoracin inhibits cell proliferation and increases sensitivity to radiotherapy in human non-small cell lung cancer cells via inducing endoplasmic reticulum stress-mediated paraptosis. Acta Pharmacol Sin 2020; 41:825-834. [PMID: 32066885 PMCID: PMC7470873 DOI: 10.1038/s41401-019-0351-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022]
Abstract
Chalcomoracin (CMR) is a kind of Diels–Alder adduct extracted from the mulberry leaves. Recent studies showed that CMR has a broad spectrum of anticancer activities and induces paraptosis in breast cancer and prostate cancer cells. In this study, we investigated the effects of CMR against human non-small cell lung cancer cells and the underlying mechanisms. We found that CMR dose-dependently inhibited the proliferation of human lung cancer H460, A549 and PC-9 cells. Furthermore, exposure to low and median doses of CMR induced paraptosis but not apoptosis, which was presented as the formation of extensive cytoplasmic vacuolation with increased expression of endoplasmic reticulum stress markers, Bip and Chop, as well as activation of MAPK pathway in the lung cancer cells. Knockdown of Bip with siRNA not only reduced the cell-killing effect of CMR, but also decreased the percentage of cytoplasmic vacuoles in H460 cells. Moreover, CMR also increased the sensitivity of lung cancer cells to radiotherapy through enhanced endoplasmic reticulum stress. In lung cancer H460 cell xenograft nude mice, combined treatment of CMR and radiation caused greatly enhanced tumor growth inhibition with upregulation of endoplasmic reticulum stress proteins and activation of pErk in xenograft tumor tissue. These data demonstrate that the anticancer activity and radiosensitization effect of CMR result from inducing paraptosis, suggesting that CMR could be considered as a potential anticancer agent and radiation sensitizer in the future cancer therapeutics.
Collapse
|