1
|
Zhang K, Li H, Wang T, Li F, Xie Z, Luo H, Zhu X, Kang P, Kang Q, Fei Z, Peng W. Mechanisms of bone regeneration repair and potential and efficacy of small molecule drugs. Biomed Pharmacother 2025; 187:118070. [PMID: 40262235 DOI: 10.1016/j.biopha.2025.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Bone regeneration and repair is a complex physiological process of bone formation. To date, existing research has greatly enhanced our understanding of bone regeneration and repair, achieving significant success in treating bone injuries. However, extensive bone defects, bone nonunion, and metabolic bone diseases remain incompletely solved challenges in modern medicine. With the emergence of High-Throughput Screening (HTS) technology, previous studies have identified numerous small molecule compounds with potential for inducing bone formation and enhancing bone metabolism. However, the effects of these small molecules on bone regeneration and repair through related signaling pathways have not been systematically elaborated. Therefore, in this literature review, we focus on summarizing the classical signaling pathways affecting bone regeneration and repair, as well as the research progress and applications of related small molecule drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zhihong Xie
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hong Luo
- Department of Orthopedics,The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou 550018, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Pengde Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Fei
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Wuxun Peng
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
2
|
Zhu H, Liu X, He J, Lei J, Zhao J. High-affinity, broad-spectrum, "centipede-like" multi-branched drug conjugates, anchored to the S protein, for blocking coronavirus infection. Eur J Med Chem 2025; 289:117450. [PMID: 40022880 DOI: 10.1016/j.ejmech.2025.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Over the past two decades, various coronaviruses have posed a severe threat to human life and health, with the spike protein (S protein) being a critical protein for infecting host cells. Glycyrrhizic acid (GA), as a natural drug, can inhibit the infection of coronaviruses by binding to the receptor-binding domain (RBD) of the S protein. However, issues like poor water solubility and weak binding affinity with the S protein have hindered its further application. Therefore, drawing inspiration from the biological structure of centipedes, a ROS-responsive multi-branched drug conjugate (ODPAG) was constructed through a "polymer-drug linkage" strategy using dextran as the backbone and GA as the active "claw". ODPAG exhibited drug loading of 22.0 ± 0.2% (OD40kPAG) and 19.7 ± 0.1% (OD450kPAG), showing ROS responsiveness with a half-life 6.4 times that of GA (OD40kPAG) and 5.4 times longer (OD450kPAG). In in vitro antiviral experiments, ODPAG exhibited an enhanced binding affinity to the S protein, with IC50 values of 1.33 μM (OD40kPAG) and 0.89 μM (OD450kPAG) against SARS-CoV-2 pseudovirus, demonstrating exceptional antiviral efficacy. These results collectively indicate that ODPAG can block coronavirus infection by binding to the S protein, exhibiting significant potential in addressing the current challenges posed by the novel coronavirus. Additionally, the "polymer-drug conjugate" strategy employed in this process is efficient, cost-effective, and offers new insights for combating future emergent coronaviruses.
Collapse
Affiliation(s)
- Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xuan Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Jingyang Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, China Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Zhang M, Xiong W, Qiao R, Li M, Zhang C, Yang C, Zhu Y, He J, Ma Z. Irisin in the modulation of bone and cartilage homeostasis: a review on osteoarthritis relief potential. Front Physiol 2025; 16:1570157. [PMID: 40313878 PMCID: PMC12043700 DOI: 10.3389/fphys.2025.1570157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Osteoarthritis, a progressive and degenerative joint disease, disrupts the integrity of the entire joint structure, underscoring the urgency of identifying more effective therapeutic strategies and innovative targets. Among these, exercise therapy is considered a key component in the early management of osteoarthritis, functioning by stimulating the secretion of myokines from the skeletal muscle system. Irisin, a myokine predominantly secreted by skeletal muscle during exercise and encoded by the FNDC5 gene, has garnered attention for its regulatory effects on bone health. Emerging evidence suggests that irisin may play a protective role in osteoarthritis by promoting tissue homeostasis, enhancing subchondral bone density and microstructure, and inhibiting chondrocyte apoptosis. By improving chondrocyte viability, preserving extracellular matrix integrity, and maintaining homeostasis in osteoblasts, osteoclasts, and osteocytes, irisin emerges as a promising therapeutic target for osteoarthritis. This review delves into the role of irisin in osteoarthritis pathogenesis, highlighting its influence on cartilage and bone metabolism as well as its dynamic relationship with exercise. Additionally, this review suggests that further exploration on its specific molecular mechanisms, optimization of drug delivery systems, and strategic utilization of exercise-induced benefits will be pivotal in unlocking the full potential of irisin as a novel intervention for osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaying He
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Li J, Sun L, Wang F, Yin S, Li S, Zhang J, Wu D. Pro-differentiative, Pro-adhesive and Pro-migratory Activities of Isorhamnetin in MC3T3-E1 Osteoblasts via Activation of ERK-dependent BMP2-Smad Signaling. Cell Biochem Biophys 2024; 82:3607-3617. [PMID: 39136840 DOI: 10.1007/s12013-024-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Osteoporosis (OP) is an epidemic bone remodeling disorder of growing relevance with the aging population. Considering that isorhamnetin (ISO), a flavonoid derived from plant, has been newly reckoned as an active ingredient in treating OP, our paper was conducted to investigate the regulatory role and mechanism of ISO in OP. CCK-8 method detected cell activity. Alkaline phosphatase (ALP) assay kit, ALP staining and alizarin red S staining measured osteogenic differentiation. RT-qPCR and Western blot examined the expressions of osteoblast-related proteins. Wound healing and cell adhesion assays severally detected cell migration and adhesion. Also, Western blot tested the expressions of extracellular signal-regulated kinase (ERK) signaling-associated proteins. As illustrated, after MC3T3-E1 pre-osteoblasts were stimulated to differentiate to osteoblasts, ISO markedly promoted the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts in a concentration-dependent manner. In addition, administration of ISO functioned as an activator of ERK-dependent BMP2-Smad signaling in MC3T3-E1 osteoblasts and pretreatment with ERK inhibitor PD98059 partially compensated the impacts of ISO on MC3T3-E1 osteoblasts differentiation, mineralization, migration as well as adhesion. To be summarized, ISO might activate ERK-dependent BMP2-Smad signaling to facilitate the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts, suggesting the protective potential of ISO in OP.
Collapse
Affiliation(s)
- Jing Li
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Lili Sun
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Fanli Wang
- Pharmacy Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Shihua Yin
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Siwei Li
- Department of Orthopedics, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Jiaoyue Zhang
- Genetic Testing Center, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China.
| | - Dengbin Wu
- Oncology Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| |
Collapse
|
5
|
Guo X, Qin Y, Feng Z, Li H, Yang J, Su K, Mao R, Li J. Investigating the anti-inflammatory effects of icariin: A combined meta-analysis and machine learning study. Heliyon 2024; 10:e35307. [PMID: 39170422 PMCID: PMC11336647 DOI: 10.1016/j.heliyon.2024.e35307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The objectives of this study were to define the superiority of icariin and its derivatives' anti-inflammatory activities and to create a reference framework for evaluating preclinical evidence. This method combines machine learning and meta-analysis to identify underlying biological pathways. Methods Data came from PubMed, Embase, Web of Science, and the Cochrane Library. SYRCLE was used to evaluate the risk of bias in a subset of research. Meta-analysis and detailed subgroup analyses, categorized by species, genders, disease type, dosage, and treatment duration, were performed using R and STATA 15.0 software to derive nuanced insights. Employing R software (version 4.2.3) and the tidymodels package, the analysis focused on constructing a model and selecting features, with TNF-α as the dependent variable. This approach aims to identify significant predictors of drug efficacy. An in-depth literature facilitated the synthesis of anti-inflammatory mechanisms attributed to icariin and its constituent compounds. Results Following a meticulous search and selection process, 19 studies, involving 370 and 260 animals were included in the meta-analysis and machine-learning assessment, respectively. The findings revealed that icariin and its derivatives markedly reduced inflammation markers, including TNF-α and IL-1β. Additionally, machine-learning outcomes, with TNF-α as the target variable, indicated enhanced anti-inflammatory effects of icariin across respiratory, urological, neurological, and digestive disease types. These effects were more pronounced at doses exceeding 27.52 mg/kg/day and treatment durations beyond 31.22 days. Conclusion Strong anti-inflammatory effects are exhibited by icariiin and its derivatives, which are especially beneficial in the management of digestive, neurological, pulmonary, and urinary conditions. Effective for periods longer than 31.22 days and at dosages more than 27.52 mg/kg/day. Subsequent research will involve more targeted animal experiments and safety assessments to obtain more comprehensive preclinical evidence.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenzhen Feng
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Kailin Su
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Ruixiao Mao
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jiansheng Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| |
Collapse
|
6
|
Liu S, Tian Z, Zhang T, Zhang J, Huo Y, Ma C. Investigating the Underlying Molecular Mechanisms of Yunke on Bone Metastases from Prostate Cancer. Biologics 2024; 18:195-206. [PMID: 39071978 PMCID: PMC11278808 DOI: 10.2147/btt.s457188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Objective To explore analgesic effect and bone repair mechanism of non-radioactive technetium-99 conjugated with methylene diphosphonate (99Tc-MDP, brand name, Yunke) on bone metastases (BM). Procedures In vivo experiment, mouse BM models of prostate cancer RM-1 cell were constructed and divided into Control, Yunke, 99Tc+SnCl2 and MDP groups based on medicine composition. Tumor specimens were inspected for size, X-ray, microCT and histopathology. In vitro experiment, with Cell Counting Kit-8 (CCK8), scratch, clone, apoptosis, Polymerase Chain Reaction (PCR) and Western Blot experiments, effects of Yunke on RM-1 cells and osteoclast-related cells were observed. Results In vivo experiment, there was no difference in tumor size between Yunke and control group. Contrasted with control group, in Yunke group, trabecular spacing (Tb.Sp) of tumor bone was lower, bone volume/total volume (BV/TV) on marrow cavity and bone cortex were higher. Tunnel staining showed that positive rate of apoptosis in Yunke group was higher than that in control group. Ki67 staining showed that Yunke could not inhibit proliferation of tumor cells. In vitro experiment, CCK8 and scratch experiments showed that Yunke neither can inhibit proliferation nor can inhibit migration of RM-1 cells. High concentration of Yunke promoted late apoptosis of RM-1 cells. Yunke could inhibit BMM cell proliferation, differentiation of osteoclasts, and osteoclast-related transcription factors. Yunke displayed different degrees of inhibitory effects on MAPKs signaling pathway during osteoclast differentiation. It had obvious inhibitory effects on osteoclast-related transcription factors, such as cFOS, NFATC1, ACP-5, CTSK, D2 and MMP-9, the strongest inhibitory effects were observed with ACP-5, CTSK and D2. Yunke also displayed different degrees of inhibitory effects on protein activities of JNK, pERK, ERK and pP38. Conclusion Yunke cannot inhibit the proliferation and migration of RM-1 cells, so we think it is not recommended for the treatment of primary tumors and prevention of occurrence of tumors metastatic to bones. The mechanism of therapeutic effect of Yunke on BM by inhibiting proliferation of BMM, inhibiting MAPKs signal transduction and activation of transcription factors during differentiation process of BMM-derived osteoclasts, inhibiting number and size of osteoclasts, inhibiting bone resorption and protecting bone destruction through enhancing bone hardness and bone mass. Thereby, we believe that Yunke is more suitable for promoting the repair induced by BMs, delaying its progression and reducing the occurrence of SREs.
Collapse
Affiliation(s)
- Simin Liu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiyuan Tian
- Department of Nuclear Medicine, Zibo Ninth People’s Hospital, Zibo, Shandong, People’s Republic of China
| | - Taiming Zhang
- Department of Medical Imaging, People’s Hospital of Shuangjiang Autonomous Country, Lincang, Yunnan, People’s Republic of China
| | - Jirong Zhang
- Department of Medical Imaging, People’s Hospital of Shuangjiang Autonomous Country, Lincang, Yunnan, People’s Republic of China
| | - Yanlei Huo
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Hu S, Hu Y, Tan Z, Zhou C, Zhang C, Yin S, Chen X, Chen K, Wang L, Chen L. Repurposing the multiple sclerosis drug Siponimod for osteoporosis treatment. Eur J Pharmacol 2024; 974:176630. [PMID: 38692426 DOI: 10.1016/j.ejphar.2024.176630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sitao Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangyang Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zenglin Tan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengyu Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheng Yin
- School of Molecular Sciences, The University of Western Australia, Perth, Australia; The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojun Chen
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Kai Chen
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lei Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Huang Y, Li M, Liu Q, Song L, Wang Q, Ding P, Tian W, Guo S. Small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells inhibit cell apoptosis and alveolar bone loss in periodontitis. Arch Oral Biol 2024; 162:105964. [PMID: 38582010 DOI: 10.1016/j.archoralbio.2024.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE This study aimed to explore the effects of small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells (L-D-sEV) on periodontal ligament cells from periodontitis affected teeth (p-PDLCs) in vitro and experimental periodontitis in mice. DESIGN In vitro, the biological function of p-PDLCs and the underlying molecular mechanism were investigated by flow cytometry, Western blot, and quantitative real-time PCR (qRT-PCR) analysis. Eighteen-eight-week-old male C57BL/6 mice were randomly divided into three groups: control (Con), periodontitis (Peri), and L-D-sEV groups. Mice periodontitis model was induced by placing the 5-0 silk thread (around the maxillary second molar) and P.gingivalis (1 ×107 CFUs per mouse). In vivo, the alveolar bone loss, osteoclast activity, and macrophage polarization were measured by micro-computed tomography and histological analysis. RESULTS In vitro, the RANKL/OPG ratio and phosphorylation of JNK and P38 protein levels of p-PDLCs were significantly decreased after L-D-sEV administration. Besides, flow cytometry and qRT-PCR analysis showed that L-D-sEV reduced apoptosis of p-PDLCs, down-regulated apoptosis-related genes Caspase-3 and BCL-2-Associated X expression, and up-regulated B-cell lymphoma-2 gene levels. In vivo, L-D-sEV administration significantly reduced alveolar bone loss, inhibited osteoclast activity, and induced M2 polarization. The histological analysis showed that iNOS/CD206, RANKL/OPG, p-JNK/JNK, and p-P38/P38 ratios were significantly lower in the L-D-sEV group than in the Peri group. CONCLUSIONS L-D-sEV administration alleviated alveolar bone loss by mediating RANKL/OPG-related osteoclast activity and M2 macrophage polarization, alleviating p-PDLCs apoptosis and proliferation via the JNK and P38 pathways.
Collapse
Affiliation(s)
- Yanli Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Mujia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qian Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Lu Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Peihui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
9
|
Zhang M, Guan J, Yu S, Zhang Y, Cheng L, Zhang Y. YTHDC1 inhibits osteoclast differentiation to alleviate osteoporosis by enhancing PTPN6 messenger RNA stability in an m6A-hUR-dependent manner. J Leukoc Biol 2024; 115:1154-1164. [PMID: 38289832 DOI: 10.1093/jleuko/qiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
YTHDC1 has been confirmed to mediate osteoporosis (OP) progression by regulating osteogenic differentiation. However, whether YTHDC1 mediates osteoclast differentiation and its molecular mechanism remains unclear. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the levels of YTHDC1, PTPN6, NFATc1, TRAP, RUNX2, alkaline phosphatase, and HUR. YTHDC1 knockout mice was constructed by CRISPR/Cas9 system, and the OP mice model was established by ovariectomy. Hematoxylin and eosin staining and micro-computed tomography were used to evaluate bone formation and bone mass. Mouse primary bone marrow macrophage cells were isolated and induced into osteoclasts. TRAP-positive cells were detected using TRAP staining. MeRIP-qPCR, RIP-qPCR assay, RNA affinity isolation assay, and co-immunoprecipitation assay were used to confirm the interactions among YTHDC1, PTPN6, and HUR. YTHDC1 expression was reduced and positively correlated with lumbar bone mineral density in OP patients. In the ovariectomy model of YTHDC1 knockout mice, bone formation was reduced, bone histomorphology was changed, and osteoclastic-related factor (NFATc1 and TRAP) levels were enhanced. Overexpression YTHDC1 inhibited osteoclast differentiation. YTHDC1 increased PTPN6 messenger RNA stability in an m6A-dependent manner. Moreover, YTHDC1 interacted with HUR to positively regulate PTPN6 expression. PTPN6 knockdown promoted osteoclast differentiation, and this effect was reversed by overexpressing HUR or YTHDC1. YTHDC1 was involved in regulating OP progression through inhibiting osteoclast differentiation by enhancing PTPN6 messenger RNA stability in an m6A-HUR-dependent manner.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Jiaxin Guan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Simiao Yu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Yimeng Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| |
Collapse
|
10
|
He D, Zheng S, Cao J, Deng J, Ding R, Xu Y, Cheng X. CircCOX6A1 suppresses osteogenic differentiation and aggravates osteoporosis via miR-512-3p/DYRK2 axis. Mol Biol Rep 2024; 51:636. [PMID: 38727863 DOI: 10.1007/s11033-024-09532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.
Collapse
Affiliation(s)
- Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Sikuan Zheng
- School of Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jian Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Jianjian Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Rui Ding
- School of Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China.
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Zhu N, Hou J, Si J, Yang N, Chen B, Wei X, Zhu L. SIRT1 and ZNF350 as novel biomarkers for osteoporosis: a bioinformatics analysis and experimental validation. Mol Biol Rep 2024; 51:530. [PMID: 38637425 DOI: 10.1007/s11033-024-09406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Osteoporosis (OP) is characterized by bone mass decrease and bone tissue microarchitectural deterioration in bone tissue. This study identified potential biomarkers for early diagnosis of OP and elucidated the mechanism of OP. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) for the GSE56814 dataset. A gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to identify key modules associated with healthy and OP samples. Functional enrichment analysis was conducted using the R clusterProfiler package for modules to construct the transcriptional regulatory factor networks. We used the "ggpubr" package in R to screen for differentially expressed genes between the two samples. Gene set variation analysis (GSVA) was employed to further validate hub gene expression levels between normal and OP samples using RT-PCR and immunofluorescence to evaluate the potential biological changes in various samples. RESULTS There was a distinction between the normal and OP conditions based on the preserved significant module. A total of 100 genes with the highest MM scores were considered key genes. Functional enrichment analysis suggested that the top 10 biological processes, cellular component and molecular functions were enriched. The Toll-like receptor signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, osteoclast differentiation, JAK-STAT signaling pathway, and chemokine signaling pathway were identified by Kyoto Encyclopedia of Genes and Genomes pathway analysis. SIRT1 and ZNF350 were identified by Wilcoxon algorithm as hub differentially expressed transcriptional regulatory factors that promote OP progression by affecting oxidative phosphorylation, apoptosis, PI3K-Akt-mTOR signaling, and p53 pathway. According to RT-PCR and immunostaining results, SIRT1 and ZNF350 levels were significantly higher in OP samples than in normal samples. CONCLUSION SIRT1 and ZNF350 are important transcriptional regulatory factors for the pathogenesis of OP and may be novel biomarkers for OP treatment.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Jingyi Hou
- Chengde Medical University, Chengde, 067000, China
| | - Jingyuan Si
- South Operation Department, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ning Yang
- Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Bin Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| |
Collapse
|
12
|
Liu X, Wang X, Ma X, Li H, Miao C, Tian Z, Hu Y. Genetic disruption of Ano5 leads to impaired osteoclastogenesis for gnathodiaphyseal dysplasia. Oral Dis 2024; 30:1403-1415. [PMID: 36989132 DOI: 10.1111/odi.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal genetic disorder characterized by sclerosis of tubular bones and cemento-osseous lesions in mandibles. TMEM16E/ANO5 gene mutations have been identified in patients with GDD. Here, Ano5 knockout (Ano5-/-) mice with enhanced osteoblastogenesis were used to investigate whether Ano5 disruption affects osteoclastogenesis. SUBJECTS AND METHODS The maturation of osteoclasts, formation of F-actin ring and bone resorption were detected by immunohistochemistry, TRAP, phalloidin staining and Coming Osteo assays. The expression of osteoclast-related factors was measured by qRT-PCR. Early signaling pathways were verified by western blot. RESULTS Ano5-/- mice exhibited inhibitory formation of multinucleated osteoclasts with a reduction of TRAP activity. The expression of Nfatc1, c-Fos, Trap, Ctsk, Mmp9, Rank and Dc-stamp was significantly decreased in bone tissues and bone marrow-derived macrophages (BMMs) of Ano5-/- mice. Ano5-/- osteoclasts manifested disrupted actin ring and less mineral resorption. RANKL-induced early signaling pathways were suppressed in Ano5-/- osteoclasts and Ano5 knockdown RAW264.7 cells. Moreover, the inhibitory effects of NF-κB signalling pathway on osteoclastogenesis were partially attenuated with NF-κB signalling activator. CONCLUSIONS Ano5 deficiency impairs osteoclastogenesis, which leads to enhanced osteogenic phenotypes mediated by bone homeostasis dysregulation.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchuan Tian
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
13
|
Zhang Y, Nong H, Bai Y, Zhou Q, Zhang Q, Liu M, Liu P, Zeng G, Zong S. Conditional knockout of PDK1 in osteoclasts suppressed osteoclastogenesis and ameliorated prostate cancer-induced osteolysis in murine model. Eur J Med Res 2023; 28:433. [PMID: 37828580 PMCID: PMC10571267 DOI: 10.1186/s40001-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The development and maintenance of normal bone tissue is maintained by balanced communication between osteoblasts and osteoclasts. The invasion of cancer cells disrupts this balance, leading to osteolysis. As the only bone resorbing cells in vivo, osteoclasts play important roles in cancer-induced osteolysis. However, the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in osteoclast resorption remains unclear. METHODS In our study, we used a receptor activator of nuclear factor-kappa B (RANK) promoter-driven Cre-LoxP system to conditionally delete the PDK1 gene in osteoclasts in mice. We observed the effect of osteoclast-specific knockout of PDK1 on prostate cancer-induced osteolysis. Bone marrow-derived macrophage cells (BMMs) were extracted and induced to differentiate osteoclasts in vitro to explore the role of PDK1 in osteoclasts. RESULTS In this study, we found that PDK1 conditional knockout (cKO) mice exhibited smaller body sizes when compared to the wild-type (WT) mice. Moreover, deletion of PDK1 in osteoclasts ameliorated osteolysis and rPDK1educed bone resorption markers in the murine model of prostate cancer-induced osteolysis. In vivo, we discovered that osteoclast-specific knockout of suppressed RANKL-induced osteoclastogenesis, bone resorption function, and osteoclast-specific gene expression (Ctsk, TRAP, MMP-9, NFATc1). Western blot analyses of RANKL-induced signaling pathways showed that conditional knockout of PDK1 in osteoclasts inhibited the early nuclear factor κB (NF-κB) activation, which consequently suppressed the downstream induction of NFATc1. CONCLUSION These findings demonstrated that PDK1 performs an important role in osteoclastogenesis and prostate cancer-induced osteolysis by modulating the PDK1/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Quan Zhou
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Qiong Zhang
- College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning, China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Liu ZW, Xi XL, Wu TR, Lu YY, Zhong PC, Hu YJ, Shen XL. Aikeqing, a kidney- and spleen-tonifying compound Chinese medicine granule, prevented ovariectomy-induced bone loss in rats via the suppression of osteoclastogenesis. Biomed Pharmacother 2023; 166:115339. [PMID: 37595429 DOI: 10.1016/j.biopha.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Postmenopausal women are prone to osteoporosis due to increased osteoclast activation and bone resorption caused by oestrogen deficiency. In Traditional Chinese Medicine theory, medicines with spleen- and kidney-nourishing effects are commonly used in postmenopausal osteoporosis (PMOP) treatment. Aikeqing (AKQ) is a compound Chinese medicinal granule with spleen- and kidney-nourishing effects. Herein, we investigate the in vitro and in vivo anti-osteoporotic effects of AKQ, its underlying mechanisms and pharmacodynamic basis. In vitro antiosteoporotic effects of AKQ were assessed by its ability to promote osteoblastogenesis in MC3T3-E1 and/or inhibit RANKL-induced osteoclastogenesis in murine bone marrow monocytes (BMMs). The protective effect of AKQ on bone loss induced by oestrogen deficiency was evaluated in ovariectomized rats. The underlying mechanisms were studied in BMMs by detecting the effects of AKQ on the RANKL-induced expression of genes and proteins involved in the regulation of osteoclastogenesis. The main chemical constituents of AKQ in the granule were analyzed by UPLC-QTOF-MS. Our findings show that AKQ did not affect osteoblastogenesis, but it inhibited RANKL-induced osteoclastogenesis. In the ovariectomized rats, oral administration of AKQ (4 g/kg/d) for 90 d effectively prevented oestrogen deficiency-induced bone loss. Mechanistic studies in BMMs revealed that AKQ inhibited RNAKL-induced activation of NF-κB (p65) and MAPKs (p38 and JNK) via blocking the RANK-TRAF6 interaction, subsequently suppressing the translocation and expression of NFATc1 and c-Fos. UPLC-QTOF-MS analysis quantified the 123 main components of AKQ. Taken together, AKQ was demonstrated for the first time as a novel alternative therapy for osteoclast-associated bone diseases.
Collapse
Affiliation(s)
- Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiu-Li Xi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao-Rui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan-Yuan Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng-Cheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Okçu M, Erden Y, Tuncay F, Koçak FA, Kaya SS, Doğru YG. Does osteoporosis cause pain even without a fracture? An observational study. Somatosens Mot Res 2023; 40:110-115. [PMID: 36939649 DOI: 10.1080/08990220.2023.2188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION/BACKGROUND Osteoporotic fractures are usually painful. However, data on whether osteoporosis without fracture causes pain are insufficient. This study aims to determine whether osteoporosis without fracture is the cause of pain. METHODOLOGY Patients aged over 18 years who visited the Physical Medicine and Rehabilitation outpatient clinic of a tertiary university hospital for dual-energy X-ray absorptiometry scan and were suitable for dual-energy X-ray absorptiometry scan without a history of fracture were included in the study. Patients with a history of fractures or those with fracture/fracture sequelae on X-rays were excluded. The cervical, lumbar, and thoracic spine and general body pains of the patients were questioned and dual-energy X-ray absorptiometry results were recorded. RESULTS The study was conducted with 139 patients. Lumbar bone mineral density and T score values of the patients were found to be negatively correlated with the numerical rating scale levels of the cervical, thoracic, lumbar spine, and general body pain. Hip total bone mineral density and T score values were also negatively correlated with numerical rating scale scores of the lumbar and thoracic spine and general body pain. When the patients were divided into two groups as those with and without osteoporosis, it was found that the cervical, lumbar, thoracic spine, and general body pain numerical rating scale levels of the patients with osteoporosis were significantly higher than the group without osteoporosis. CONCLUSION The results of this study showed that osteoporosis might be associated with pain even though there is no fracture.
Collapse
Affiliation(s)
- Mehmet Okçu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Yakup Erden
- Department of Physical Medicine and Rehabilitation, İzzet Baysal Physical Treatment Training and Research Hospital, Bolu, Turkey
| | - Figen Tuncay
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Fatmanur Aybala Koçak
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Samet Sancar Kaya
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Yıldız Gonca Doğru
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kırsehir Ahi Evran University, Kırsehir, Turkey
| |
Collapse
|
16
|
Zheng T, Lin Z, Jiang G, Chen H, Yang Y, Zeng X. Pogostone attenuates osteolysis in breast cancer by inhibiting the NF-kB and JNK signaling pathways of osteoclast. Life Sci 2023; 328:121611. [PMID: 37068706 DOI: 10.1016/j.lfs.2023.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023]
Abstract
AIMS Breast cancer is the most prevalent cancer in females, and approximately 70 % of all patients have evidence of metastatic bone disease, which substantially affects the quality of life and survival rate of breast cancer patients. Osteoporosis has become a global public health problem, and the abnormal activation of osteoclasts is the key to the progression of osteoporosis and the key to both diseases lies in the osteoclasts. Effective drug treatments are lacking and there is an urgent need to explore new drugs. MATERIALS AND METHODS We observed the effects of pogostone (PO) on osteoclast differentiation, bone resorption function and other indicators, and F-actin ring formation by using Trap staining, SEM and immunofluorescence, and further explored the targets of pogostone in regulating osteoclast differentiation and function using qPCR and Western Blot. In addition, we used CCK 8, Transwell, and flow cytometry to study the effects of pogostone on proliferation, invasion, migration, and apoptosis of MDA-MB-231 cells. Animal models were also constructed for in vivo validation. KEY FINDINGS Pogostone inhibits osteoclast differentiation, bone resorption, formation of F-actin ring, and the expression of specific genes by attenuated NF-kB degradation and phosphorylation of JNK. In vitro, pogostone suppresses invasion of breast cancer cells, migration, and promotes their apoptosis. In mouse models, pogostone attenuated osteoclast formation and bone resorption, blocked breast cancer cells migration, and supprsed breast cancer-induced osteolysis and ovariectomized (OVX)-mediated osteoporosis. SIGNIFICANCE These biological functions of pogostone make it a potential drug for treatment of breast cancer-associated bone metastasis in the future.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongxuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xiangbin Zeng
- Department of Orthopedics, The Second People's Hospital of Huaihua City, Huaihua, China.
| |
Collapse
|
17
|
Ran D, Zhou D, Liu G, Ma Y, Ali W, Yu R, Wang Q, Zhao H, Zhu J, Zou H, Liu Z. Reactive Oxygen Species Control Osteoblast Apoptosis through SIRT1/PGC-1α/P53 Lys382 Signaling, Mediating the Onset of Cd-Induced Osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023393 DOI: 10.1021/acs.jafc.2c08505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The imbalance between osteogenesis and osteoclastogenesis is a feature of bone metabolic disease. Cadmium (Cd) exposure causes human bone loss and osteoporosis (OP) through bioaccumulation of the food chain. However, the impact of Cd on bone tissues and the underlying molecular mechanisms are not well-characterized. In the current study, we found that the Cd concentration in bone tissues of OP patients was higher than normal subjects; meanwhile, the nuclear silent information regulator of transcription 1 (SIRT1) protein expression level was significantly decreased, which is a new star molecule to treat OP. It is further revealed that SIRT1 activation markedly reprograms bone metabolic and stress-response pathways that incline with osteoblast (OB) apoptosis. Suppressing reactive oxygen species (ROS) release with N-acetyl-l-cysteine (NAC) abolished Cd-induced reduction of SIRT1 protein, deacetylation of P53, OB apoptosis, and attenuated OP. Conversely, overexpression of SIRT1 suppressed Cd-induced ROS release. SIRT1 overexpression in vivo and in vitro dampened PGC-1α protein, acetylation of P53 at lysine 382, and caspase-dependent apoptosis. These results reveal that ROS/SIRT1 controls P53 acetylation and coordinates OB apoptosis involved in the onset of OP.
Collapse
Affiliation(s)
- Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Dehui Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Rui Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Qinghua Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
18
|
Toosendanin inhibits osteoclast formation and alleviate postmenopausal osteoporosis by regulating the p38 signaling pathway. Int Immunopharmacol 2023; 116:109745. [PMID: 36702075 DOI: 10.1016/j.intimp.2023.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Disruption of the balance between osteoclasts and osteoblasts could lead to bone diseases including osteoporosis. It's well known that RANKL-RANK signaling plays a vital role in activating osteoclasts. Herein, we explored the therapeutic effects of toosendanin (TSN) in osteoporosis, showing that TSN attenuated RANKL-stimulated osteoclastogenesis and osteoclast-specific gene expression in vitro. Bioinformatics predicted that TSN could interfere p38 subunits and regulate the MAPK cascade, and we further verified and demonstrated that TSN significantly inhibited RANKL-induced p38 signaling through western blot. In ovariectomized mouse model, TSN effectively inhibited the formation of TRAP-positive osteoclasts and exhibited protective effect against bone loss. Altogether, these data indicate that TSN targeted p38 activation to inhibit osteoclastogenesis, suggesting the possible therapeutic use of TSN in osteoporosis in the future.
Collapse
|
19
|
Xu Y, Song D, Su Y, Chen J, Wu L, Lian H, Hai N, Li J, Jiang J, Zhao J, Xu J, Liu Q. Pharmacology-based molecular docking of 4-methylcatechol and its role in RANKL-mediated ROS/Keap1/Nrf2 signalling axis and osteoclastogenesis. Biomed Pharmacother 2023; 159:114101. [PMID: 36640671 DOI: 10.1016/j.biopha.2022.114101] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023] Open
Abstract
4-Methylcatechol (4-MC) is an agonist of various neurotrophic factors, which can upregulate the expression of Heme oxygenase 1 (HO-1) protein by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby inhibiting oxidative stress-induced neural stem cell death. During RANKL-stimulated osteoclast differentiation, intracellular reactive oxygen species (ROS) levels were increased. Nonetheless, the effect of 4-MC on osteoclast formation and bone resorption function has not been researched. In this study, we investigated the effect of HO-1 upregulation by 4-MC on RANKL-induced osteoclastogenesis and explored the molecular mechanism of HO-1 upregulation by 4-MC. We found that the small molecule compound 4-MC could bind to Keap1 amino acid residue of glycine GLY 367, isoleucine ILE 559 and valine VAL 606, with a predicted binding energy of -4.99 kcal/mol. 4-MC was found to inhibit osteoclast differentiation in vitro by activating Nrf2 to scavenge ROS, inhibiting NF-κB phosphorylation, and alleviating osteoporosis in ovariectomized (OVX) mice. Taken together, 4-MC reduces ROS by inhibiting Keap1, thereby preventing OVX-induced bone loss.
Collapse
Affiliation(s)
- Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Na Hai
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jing Li
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jie Jiang
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; School of Biomedical Sciences, the University of Western Australia, Perth 6009, Australia.
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
20
|
Network Pharmacological Analysis and Animal Experimental Study on Osteoporosis Treatment with GuBen-ZengGu Granules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9317557. [PMID: 36686973 PMCID: PMC9851784 DOI: 10.1155/2023/9317557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Aim We explored the molecular pathway and material basis of GuBen-ZengGu granules (GBZGG) in treating osteoporosis using network pharmacology and animal experiments. Methods The effective active components and potential targets of GBZGG were obtained from the TCMSP database and BATMAN-TCM database. Disease-related genes were obtained from GeneCard, NCBI, and DisGeNET. Next, a protein interaction network was established using the STRING database, and core genes were screened using the MCODE module. Cytoscape 3.8.0 was used to construct the network of component-disease-pathway-target, and KEGG pathway enrichment analyses were performed using the clusterProfiler R package to predict the mechanism of GBZGG in treating osteoporosis. An osteoporosis rat model was established by ovarian excision (OVX), and the partial results of network pharmacology were experimentally verified. Results Pharmacodynamic results showed that GBZGG increased bone mineral density (BMD) and significantly improved the indexes of femur microstructure in model rats. The network pharmacology results showed that quercetin, luteolin, stigmasterol, angelicin, kaempferol, bakuchiol, bakuchiol, 7-O-methylisomucronulatum, isorhamnetin, formononetin, and beta-sitosterol are the major components of GBZGG, with MAPK1, AKT1, JUN, HSP90AA1, RELA, MAPK14, ESR1, RXRA, FOS, MAPK8, NCOA1, MYC, and IL-6 as its core targets for treating osteoporosis. Biological effects could be exerted by regulating the signaling pathways of fluid shear stress and the signaling pathways of atherosclerosis, advanced glycation end products (AGE-RAGE) of diabetic complications, prostate cancer, interleukin (IL-17), tumor necrosis factor (TNF), hepatitis B, mitogen-activated protein kinase (MAPK), etc. The results of animal experiments showed that GBZGG could reduce the serum levels of IL-6 and TNF-α, increase the expression of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2) protein, and inhibit the activity of extracellular-regulated protein kinases (ERK1/2) and phosphorylation ERK1/2 (p-ERK1/2) protein. Conclusion GBZGG reduces the expression of ERK1/2 and p-ERK1/2 proteins and mRNAs through the inhibitory effects on IL-6 and TNF-α and negatively regulates the MAPK/ERK signaling pathway. The osteoporosis model showed that it effectively improved the loss of bone mass and destruction of bone microstructure in rats and maintained a positive balance for bone metabolism.
Collapse
|
21
|
Zhan W, Ruan B, Dong H, Wang C, Wu S, Yu H, Xu X, Sun H, Cai J. Isopsoralen suppresses receptor activator of nuclear factor kappa- β ligand-induced osteoclastogenesis by inhibiting the NF- κB signaling. PeerJ 2023; 11:e14560. [PMID: 36643647 PMCID: PMC9838210 DOI: 10.7717/peerj.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis is a serious systemic metabolic bone system disease.This study aimed to identify the target genes of isopsoralen and the signaling pathways involved in the differential expression of the genes involved in osteoclast differentiation. We hypothesized that isopsoralen may inhibit osteoclast differentiation by blocking the nuclear factor kappa-B (NF-κB) signaling pathway and verified our hypothesis through basic experiments. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the effect of isopsoralen on the proliferation and viability of primary mouse bone marrow monocytes (BMMCs). The effect of isopsoralen on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was determined by using tartrate-resistant acid phosphatase (TRAP) staining. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of the related genes and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of isopsoralen target genes were obtained through comprehensive analysis using the STITCH database, Cytoscape 3.8.2, and R-Studio software. Differentially expressed genes (DEGs) were found in osteoclasts induced by RANKL before and after 3 days using R-Studio, following which KEGG analysis was performed. Next, enrichment analysis was performed on the KEGG pathway shared by the target genes of isopsoralen and the differentially expressed genes during osteoclast differentiation to predict the signaling pathway underlying the inhibition of osteoclast differentiation by isopsoralen. Finally, Western blot was used to detect the effect of isopsoralen on the activation of signaling pathways to verify the results of our bioinformatics analysis. Based on the enrichment analysis of isopsoralen target genes and differentially expressed genes during osteoclastogenesis, we believe that isopsoralen can inhibit RANKL-induced osteoclastogenesis by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanda Zhan
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binjia Ruan
- Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Dong
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chaoyong Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuangshi Wu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hang Yu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohang Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Sun
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Cai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Chang GH, Yang PR, Cheng YC, Hsu KH, Wu CY, Yang YH, Lin YS, Hsu CM, Tsai MS, Tsai YT, Chang PJ. Nasal irrigation with licorice extract (Glycyrrhiza glabra) in treating nasal polyps by reducing fibroblast differentiation and extracellular matrix production in TGF-β1-stimulated nasal polyp-derived fibroblasts by inhibiting the MAPK/ERK-1/2 pathway - an in vitro and in clinic study. BMC Complement Med Ther 2022; 22:313. [PMID: 36447209 PMCID: PMC9706886 DOI: 10.1186/s12906-022-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To date, treating nasal polyps (NPs) is still a medical challenge. However, we have developed an innovative therapy using licorice extract (LE: Glycyrrhiza glabra) to treat rhinitis and sinusitis via nasal irrigation and have discovered that it significantly affects treatment of NPs. HYPOTHESIS/PURPOSE This study investigated the mechanism of LE on NPs. STUDY DESIGN NPs were collected from three patients using tissue biopsies before and 2 weeks after nasal irrigation with licorice for histopathological analysis. Additionally, NPs from two patients were collected, and nasal polyp-derived fibroblasts (NPDF) were isolated and cultured. METHODS The TGF-β1-stimulated NPDF model was used to examine the effect of LE on fibroblast differentiation (biomarker: α-SMA), the consequent production of extracellular matrix (ECM; biomarkers: fibronectin, FBN), and the functional signaling pathway. RESULTS Immunohistochemistry (IHC) revealed that the number of eosinophils and the expression of α-SMA and interstitial collagen of polyps after licorice treatment significantly decreased. Additionally, RT-PCR, western blotting, and immunofluorescence (IF) showed that α-SMA and FBN expressions were significantly increased in the NPDF, which was stimulated by TGF-β1, and LE dose-dependently could effectively reduce this effect. Furthermore, western blotting showed that LE could attenuate α-SMA and FBN expressions by preventing the signaling pathway of MAPK/ERK-1/2, which IHC and IF further confirmed. In addition, LE effectively suppressed the cell migration of NPDF, which is related to polyp expansion. CONCLUSION LE is clinically used to treat sinusitis with NPs through nasal irrigation, which significantly reduces the size of NPs. This effect could attenuate fibroblast differentiation, ECM production and cell migration, and one of the functional mechanisms may be through inhibition of the MAPK/ERK-1/2 signaling pathway. TRIAL REGISTRATION ISRCTN (No. 51425529) registered on 17/04/2020 (retrospectively registered) - http://www.isrctn.com/ISRCTN51425529.
Collapse
Affiliation(s)
- Geng-He Chang
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454212.40000 0004 1756 1410Head and Neck Infection Treatment Center, Chang Gung memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- grid.454212.40000 0004 1756 1410Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Cheng
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ke-Hsin Hsu
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- grid.454212.40000 0004 1756 1410Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- grid.454212.40000 0004 1756 1410Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shih Lin
- grid.454212.40000 0004 1756 1410Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shao Tsai
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Te Tsai
- grid.454212.40000 0004 1756 1410Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan ,grid.145695.a0000 0004 1798 0922Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- grid.145695.a0000 0004 1798 0922Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Chen L, Hu B, Wang X, Chen Y, Zhou B. Functional role of cyanidin-3-O-glucoside in osteogenesis: A pilot study based on RNA-seq analysis. Front Nutr 2022; 9:995643. [PMID: 36245484 PMCID: PMC9562617 DOI: 10.3389/fnut.2022.995643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is the most widely distributed anthocyanin and it can reportedly reduce the risk of osteoporosis, but the molecular mechanism by which C3G promotes bone formation is poorly understood. In the current study, RNA sequencing (RNA-seq) was used to investigate the mechanism of action of C3G in osteogenesis. MC3T3-E1 mouse osteoblasts were divided into a C3G (100 μmol/L)-treated group and a vehicle-treated control group, and differentially expressed genes (DEGs) in groups were evaluated via RNA-seq analysis. The functions of the DEGs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the genes were validated by quantitative real-time PCR. The RNA-seq analysis identified 34 genes that were upregulated in C3G-treated cells compared to vehicle-treated cells, and 17 that were downregulated GO and KEGG pathway analyses indicated that these genes were highly enriched in functions related to lysosomes and glycolipid biosynthesis, among others. The differential expression of ATPase H+-transporting V0 subunit C (Atp6v0c), chemokine (C-X3-C motif) ligand 1 (Cx3cl1), and lymphocyte antigen 6 complex, locus A (Ly6a) genes was validated by quantitative real-time-PCR. Because these genes have been previously implicated in osteoporosis, they are potential target genes of C3G action in MC3T3-E1 cells. These results provide molecular level evidence for the therapeutic potential of C3G in the treatment of osteoporosis and other disorders of bone metabolism.
Collapse
Affiliation(s)
- Lin Chen
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Bosen Hu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaohong Wang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Zhou
- School of Public Health, Shenyang Medical College, Shenyang, China
- *Correspondence: Bo Zhou
| |
Collapse
|
24
|
Resveratrol Ameliorates High Altitude Hypoxia-Induced Osteoporosis by Suppressing the ROS/HIF Signaling Pathway. Molecules 2022; 27:molecules27175538. [PMID: 36080305 PMCID: PMC9458036 DOI: 10.3390/molecules27175538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxia at high-altitude leads to osteoporosis. Resveratrol (RES), as an antioxidant, has been reported to promote osteoblastogenesis and suppress osteoclastogenesis. However, the therapeutic effect of RES against osteoporosis induced by high-altitude hypoxia remains unclear. Thus, this study was intended to investigate the potential effects of RES on high-altitude hypoxia-induced osteoporosis both in vivo and in vitro. Male Wistar rats were given RES (400 mg/kg) once daily for nine weeks under hypoxia, while the control was allowed to grow under normoxia. Bone mineral density (BMD), the levels of bone metabolism-related markers, and the changes on a histological level were measured. Bone marrow-derived mesenchymal stem cells (BMSCs) and RAW264.7 were incubated with RES under hypoxia, with a control growing under normoxia, followed by the evaluation of proliferation and differentiation. The results showed that RES inhibited high-altitude hypoxia-induced reduction in BMD, enhanced alkaline phosphatase (ALP), osteocalcin (OCN), calcitonin (CT) and runt-related transcription factor 2 (RUNX2) levels, whereas it reduced cross-linked carboxy-terminal telopeptide of type I collagen (CTX-I) levels and tartrate-resistant acid phosphatase (TRAP) activity in vivo. In addition, RES attenuated histological deteriorations in the femurs. In vitro, RES promoted osteoblastogenesis and mineralization in hypoxia-exposed BMSCs, along with promotion in RUNX2, ALP, OCN and osteopontin (OPN) levels, and inhibited the proliferation and osteoclastogenesis of RAW264.7. The promotion effects of RES on osteoblastogenesis were accompanied by the down-regulation of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α) induced by hypoxia. These results demonstrate that RES can alleviate high-altitude hypoxia-induced osteoporosis via promoting osteoblastogenesis by suppressing the ROS/HIF-1α signaling pathway. Thus, we suggest that RES might be a potential treatment with minimal side effects to protect against high-altitude hypoxia-induced osteoporosis.
Collapse
|
25
|
Wei R, Zhang L, Hu W, Wu J, Zhang W. CSTA plays a role in osteoclast formation and bone resorption by mediating the DAP12/TREM2 pathway. Biochem Biophys Res Commun 2022; 627:12-20. [PMID: 36007331 DOI: 10.1016/j.bbrc.2022.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022]
Abstract
Cystatin A (CSTA) is a cysteine protease inhibitor that is expressed highly during osteoporosis. However, the exact role of CSTA in osteoporosis remains unknown. In this study, we examined the role of CSTA in the formation, differentiation, and bone resorption of osteoclasts. We extracted bone marrow cells from 8-week-old wildtype mice to obtain RANKL and M-CSF-induced osteoclasts. We performed CSTA overexpression and knockdown experiments in the cells. We analyzed the role of CSTA in the process of osteoclasts by trap staining. In addition, we studied the contribution of CSTA to osteogenesis through the DAP12/TREM2 (DNAX-activating protein of 12 kDa/Triggering receptor expressed on myeloid cells-2) complex. We analyzed the role of CSTA in postmenopausal osteoporosis using OVX mouse models. We found that the silencing of CSTA inhibited the differentiation and formation of osteoclasts. The loss of CSTA weakened the expression of osteoclast marker genes. In contrast, overexpression of CSTA significantly increased differentiation and formation of osteoclasts and enhanced bone resorption. Immunofluorescence staining indicated that CSTA and DAP12 are co-expressed in osteoclasts, and the loss of either DAP12 or TREM2 inhibited osteoclast differentiation and bone resorption. Suppression of CSTA decreased DAP12 and TREM2 expression, whereas overexpression of CSTA rescued the loss of TREM2 expression caused by DAP12 knockdown. Co-immunoprecipitation and co-localization experiments indicated that CSTA interacted with DAP12. In addition, we found that injection of si-CSTA into OVX mice significantly improved bone parameters. Our research indicates that CSTA interacts with the DAP12/TREM2 complex and could be a potential targeted therapy for osteoporosis management.
Collapse
Affiliation(s)
- Rui Wei
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wu Hua District, Kunming, 650032, Yunnan Province, China
| | - Lin Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wu Hua District, Kunming, 650032, Yunnan Province, China
| | - Wei Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wu Hua District, Kunming, 650032, Yunnan Province, China
| | - Jie Wu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wu Hua District, Kunming, 650032, Yunnan Province, China
| | - Wei Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wu Hua District, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
26
|
Liu L, Zhang L, Li Y, Wang Y, He L, Song L, Shi X. The relationship between FOSB and SOCS3 gene polymorphisms and the susceptibility to periodontitis and osteopenia in the Chinese population. Odontology 2022; 110:747-758. [PMID: 35661052 DOI: 10.1007/s10266-022-00718-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022]
Abstract
The aim is to analyze the relationship and significance of the FOS, FOSB, Suppressors of cytokine signaling (SOCS), and hypoxia-inducible factor 1 (HIF1) gene loci and their polymorphisms with periodontitis and osteopenia in the Chinese population. In this case-control study, data on questionnaires, periodontal examination, bone mineral density, and FOS, FOSB, SOCS3, and HIF1 gene loci and their polymorphisms were obtained from 474 participants. The data were analyzed using the analysis of variance, Kruskal-Wallis test, χ2 test, and logistic regression. The incidence of osteopenia was significantly increased in patients with periodontitis compared to controls (58.6 vs. 34.4%, P < 0.001). Accordingly, the risk was increased 2.21-fold compared with controls (95% CI 2.09-4.95). Osteopenia patients had a significantly higher risk of periodontitis than patients with normal bone density (OR = 3.22, 95% CI 2.09-4.94). There were significant positive associations between FOSB and SOCS3 polymorphisms and periodontitis and osteopenia susceptibility. Individuals carrying the G/G genotype of the FOSB gene rs708905 locus had an increased risk of periodontitis (OR = 5.06, 95% CI 2.36-10.86) and osteopenia (OR = 3.26, 95% CI 1.34-7.96). Compared with the C/C genotype, the A/A genotype of the FOSB rs8105114 locus was associated with a significantly higher risk of periodontitis (OR = 2.14, 95% CI 1.02-4.53) and osteopenia (OR = 2.85, 95% CI 1.12-7.22). Compared with the A/A genotype, the risk of periodontitis in the G/G genotype of the SOCS3 rs7207782 locus was increased 3.10-fold (P < 0.001), and the risk of osteopenia was increased 2.01-fold (P = 0.023). There was a bidirectional relationship between periodontitis and osteopenia. The rs708905 G/G and rs8105114 A/A genotypes of FOSB and the rs7207782 G/G genotype of SOCS3 were risk factors for both periodontitis and osteopenia in the Chinese population, which could increase knowledge about disease‑specific and cross‑disease genetic pattern.
Collapse
Affiliation(s)
- Liuhui Liu
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Limin Zhang
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Yinghua Li
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Yanhua Wang
- Clinical Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Liu He
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Liang Song
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China.
| | - Xiaojun Shi
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
27
|
Medication Rules in Herbal Medicine for Mild Cognitive Impairment: A Network Pharmacology and Data Mining Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2478940. [PMID: 35646138 PMCID: PMC9132671 DOI: 10.1155/2022/2478940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Background Although traditional Chinese medicine (TCM) has good efficacy in the treatment of mild cognitive impairment (MCI), especially memory improvement and safety, its substance basis and intervention mechanism are particularly complex and unknown. Therefore, based on network pharmacology and data mining, this study aims to explore the rules, active ingredients and mechanism of TCM in the treatment of MCI. Methods By searching the GeneCard, OMIM, DisGeNET and DrugBank databases, we obtained the critical targets associated with MCI. We matched the components and herbs corresponding to the important targets in the TCMSP platform. Using Cytoscape 3.7.2 software, we constructed a target-component-herb network and conducted a network topology analysis to obtain the core components and herbs. Molecular docking was used to preliminarily analyze and predict the binding activities and main binding combinations of the core targets and components. Based on the analysis of the properties, flavor and meridian distribution of herbs, the rules of herbal therapy for MCI were summarized. Results Twenty-eight critical targets were obtained after the screening. Using the TCMSP platform, 492 components were obtained. After standardization, we obtained 387 herbs. Based on the target-composition-herb network analysis, the core targets were ADRB2, ADRA1B, DPP4, ACHE and ADRA1D. According to the screening, the core ingredients were beta-sitosterol, quercetin, kaempferol, stigmasterol and luteolin. The core herbs were matched to Danshen, Yanhusuo, Gancao, Gouteng and Jiangxiang. It was found that the herbs were mainly warm in nature, pungent in taste and liver and lung in meridian. The molecular docking results showed that most core components exhibited strong binding activity to the target combination regardless of the in or out of network combination. Conclusion The results of this study indicate that herbs have great potential in the treatment of MCI. This study provides a reference and basis for clinical application, experimental research and new drug development of herbal therapy for MCI.
Collapse
|
28
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Yu H, Zhou W, Zhong Z, Qiu R, Chen G, Zhang P. High-mobility group box chromosomal protein-1 deletion alleviates osteoporosis in OVX rat model via suppressing the osteoclastogenesis and inflammation. J Orthop Surg Res 2022; 17:232. [PMID: 35414033 PMCID: PMC9004163 DOI: 10.1186/s13018-022-03110-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Osteoporosis is a skeletal metabolic disease that constitutes a great threaten to human health. However, there is currently no gold standard for its treatment. High-mobility group box chromosomal protein-1 (HMGB-1) has been reported to play an important role in various orthopedic diseases. Till now, its role in osteoporosis remains elusive. METHODS Rats underwent ovariectomy (OVX) were used to construct a postmenopausal model of osteoporosis. Then, rats were divided into sham groups without OVX surgery, OVX model group, HMGB-1 knockdown (HMGB-1 KD) OVX model groups. The expression of HMGB1 was evaluated by qRT-PCR and western blotting. Subsequently, the changes of trabeculae were evaluated by micro-computed tomography (CT) assay. Skeletal necrosis and metabolism were further analyzed by hematoxylin-eosin (HE) staining, Alcian blue staining and Masson's trichrome staining. The contents of serum alkaline phosphatase (ALP) and osteocalcin were detected by ELISA assay. Expression of osteoclast-associated receptor (OSCAR) and tartrate-resistant acid phosphatase (TRAP) were determined to investigate the effects of HMGB-1 loss on osteoclastogenesis. RESULTS Single HMGB-1 deletion exerted no significant effect on rat trabeculae, serum ALP and osteocalcin. Noticeably, HMGB1 knockdown dramatically ameliorated OVX-induced changes in above indexes. Trabeculae structures of OVX rats were sparse with disorder arrangement, which were greatly recovered after HMGB-1 deletion. Enhanced osteoclastogenesis was observed in OVX rats by increasing number of TRAP + cells and expression of TRAP and OSCAR, and loss of HMGB1 ameliorated osteoclastogenesis in OVA rats. Moreover, HMGB-1 deletion antagonized OVX-evoked downregulation of osteoblast activity markers osterix (OSX), collagen type I alpha 1(COL1A1) and distal-less homeobox 2 (DLX2) protein. Furthermore, loss of HMGB-1 attenuated fluctuation of inflammatory factors in OVX rats. Additionally, HMGB-1 deficiency inhibited OVX-evoked activation of the Toll-like receptor (TLR) 4/NF-κB signaling pathway. Moreover, reactivating the TLR4 signaling further aggravated OVX-induced osteoporosis, which was reversed by HMGB1 knockdown. CONCLUSION HMGB-1 deletion alleviated OVX-triggered osteoporosis by suppressing osteoclastogenesis and inflammatory disorder via the inhibition of the TLR4 signaling. Therefore, HMGB-1 may be a promising therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haotao Yu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Wei Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Zhihong Zhong
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ruixin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Guoquan Chen
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ping Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
30
|
Association between NF- κB Signal Pathway-Related Gene Polymorphisms and Response to Alendronate Treatment in Postmenopausal Chinese Women with Low Bone Mineral Density. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2461716. [PMID: 35368772 PMCID: PMC8970858 DOI: 10.1155/2022/2461716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/22/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Background Osteoporosis is a systemic bone disease characterized by reduction of bone content. Bisphosphonates are first-line treatments for osteoporosis, but they have variable effectiveness. Genetic factors may explain these differences. The NF-κB signaling pathway plays a key role in the regulation of bone metabolism. We aimed to determine whether genetic variations in the NF-κB signaling pathway affect the effectiveness of alendronate in postmenopausal Chinese women with low bone mass. Methods We recruited 455 postmenopausal Han Chinese women with primary osteoporosis or osteopenia aged 48–90 yrs who had experienced no spontaneous menses for at least 1 yr. All participants had dual X-ray absorptiometry (DEXA) bone mineral density (BMD) measurement at baseline and 1 yr after treatment. Treatment involved 1 yr administration of 70 mg oral alendronate weekly and 600 mg calcium and 125 IU of vitamin D daily. Thirteen tagSNPs in NF-κB1 (rs28362491, rs3774937, rs230521, rs230510, and rs4648068), RELA (rs7119750, rs11820062), and NLRC5 (rs289747, rs1566439, rs1684575, rs289726, rs289723, and rs41383) were chosen from the NCBI Locus Link and HapMap and genotyped individually. Genetic variation in these genes and the corresponding therapeutic response to alendronate treatment were analyzed. Results Among the 13 tagSNPs, rs289747 was significantly correlated with the BMD change rate at the femoral neck (P=0.048). This significance no longer existed after Bonferroni correction. We then performed principal component analysis (PCA) and found NLRC5 (rs289747 and rs1566439) were strongly correlated with alendronate efficacy in femoral phenotypes and were major components of BMD change values, particularly total hip and intertrochanteric phenotypes. Furthermore, the PLINK linear regression GLM model revealed that haplotype TT of RELA (rs7119750 and rs11820062) and ICCTA of NF-κB1 (rs28362491, rs3774937, rs230521, rs230510, and rs4648068) were associated with BMD of the total hip among each haplotype after 1 yr of treatment. Conclusion The NF-κB1, RELA, and NLRC5 genetic variations affect the therapeutic response of alendronate treatment for postmenopausal osteoporosis.
Collapse
|
31
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Effects and Mechanisms of Rhus chinensis Mill. Fruits on Suppressing RANKL-Induced Osteoclastogenesis by Network Pharmacology and Validation in RAW264.7 Cells. Nutrients 2022; 14:nu14051020. [PMID: 35267996 PMCID: PMC8912277 DOI: 10.3390/nu14051020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Rhus chinensis Mill. fruits are a kind of widely distributed edible seasoning, which have been documented to possess a variety of biological activities. However, its inhibitory effect on osteoclast formation has not been determined. The objective of this study was to evaluate the effect of the fruits on osteoclast differentiation of RAW264.7 cells, induced by receptor activator of nuclear factor-κB ligand (RANKL) and to illuminate the potential mechanisms using network pharmacology and western blots. Results showed that the extract containing two organic acids and twelve phenolic substances could effectively inhibit osteoclast differentiation in RANKL-induced RAW264.7 cells. Network pharmacology examination and western blot investigation showed that the concentrate essentially decreased the expression levels of osteoclast-specific proteins, chiefly through nuclear factor kappa-B, protein kinase B, and mitogen-activated protein kinase signaling pathways, particularly protein kinase B α and mitogen-activated protein kinase 1 targets. Moreover, the extract likewise directly down regulated the expression of cellular oncogene Fos and nuclear factor of activated T-cells cytoplasmic 1 proteins. Citric acid, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside were considered as the predominant bioactive ingredients. Results of this work may provide a scientific basis for the development and utilization of R. chinensis fruits as a natural edible material to prevent and/or alleviate osteoporosis-related diseases.
Collapse
|
33
|
Wang H, Shi X, Guo Z, Zhao F, He W, Kang M, Lv Z. microRNA-211-5p predicts the progression of postmenopausal osteoporosis and attenuates osteogenesis by targeting dual specific phosphatase 6. Bioengineered 2022; 13:5709-5723. [PMID: 35188450 PMCID: PMC8973771 DOI: 10.1080/21655979.2021.2017626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is known as one of the prevalent diseases among middle-aged and elderly women. This paper revolves around the alteration of miR-211-5p in PMOP patients and its function in osteogenic differentiation. Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented to check the miR-211-5p level in the plasma of PMOP patients. Knockdown and overexpression experiments were done to verify the influence of miR-211-5p on human-derived mesenchymal stem cell (hMSC) osteogenic differentiation and osteogenesis. The alkaline phosphatase (ALP) assay kit was taken to test ALP activity. Alizarin red staining monitored osteogenic differentiation, while oil red O staining examined adipogenesis. Western blot confirmed the profiles of osteoclastogenesis-concerned factors (TRAP, NFAT2, c-FOS, Runx2, OCN, CTSK), dual specific phosphatase 6 (DUSP6), ERK, SMAD, and β-catenin. Dual-luciferase reporter and RNA immunoprecipitation assays were implemented to identify the association between miR-211-5p and DUSP6. Our data displayed that miR-211-5p was down-regulated in the PMOP patients’ plasma (in contrast with the healthy controls), and it was positively correlated with Vit-D and BMD levels. miR-211-5p overexpression vigorously facilitated hMSC osteogenic differentiation, while miR-211-5p inhibition contributed to the opposite situation. miR-211-5p initiated the ERK/SMAD/β-catenin pathway and repressed DUSP6’s expression. Overexpression of DUSP6 counteracted the miR-211-5p-mediated function to a great extent and inactivated ERK/SMAD/β-catenin, whereas enhancing ERK phosphorylation weakened the DUSP6 overexpression-induced function. Consequently, this research unveiled that miR-211-5p promotes osteogenic differentiation by interfering with the DUSP6-mediated ERK/SMAD/β-catenin pathway.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Shi
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenye Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Zhao
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weifu He
- Department of Orthopaedics, West Hospital of Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingming Kang
- Department of Orthopaedics, West Hospital of Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi Lv
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
34
|
Han J, Ren G, Xu Z, Qi W, Shang Y, Wen S, Luo Y. Exploring the relationship between systemic lupus erythematosus and osteoporosis based on bioinformatics. Lupus 2022; 31:163-177. [PMID: 35067074 DOI: 10.1177/09612033211073909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to explore the relationship between systemic lupus erythematosus (SLE) and osteoporosis (OP) based on bioinformatics. METHODS The expression profiles of SLE and OP gene chips were searched through the GEO database, and the differentially expressed genes (DEGs) were screened out to obtain the intersection. Then, the Funrich software was used to predict the upstream miRNAs of the intersection genes, and the miRNA-mRNA relationship network was constructed. Afterward, the String database and Cytoscape software were used to construct the protein interaction network of the intersection genes to screen out the key genes. Finally, the functions and related pathways of key genes were analyzed by using the DAVID database. RESULTS ①A total of 140 intersection genes of SLE and OP were obtained; ②There were 217 miRNAs regulating the intersection genes; ③IL-4, FOS, TLR1, TLR6, CD40LG, CCR1 were the key genes in the protein interaction network; ④The DAVID enrichment analysis mainly covered the positive regulation of cytokine production, the regulation of osteoclast differentiation, macrophage activation and other biological processes, involving Toll-like receptor signaling pathway, T cell receptor signaling pathway, Th1, Th2, and Th17 cells Differentiation, IL-17 signaling pathway. CONCLUSIONS SLE and OP still have some highly overlapping differential gene expressions under the background of complex gene networks. The gene functions and signaling pathways involved can simultaneously regulate the two diseases, suggesting that there is a close relationship between the molecular mechanisms of the two diseases, and that it may be a target of drugs that interfere with two diseases at the same time.
Collapse
Affiliation(s)
- Jie Han
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Guowu Ren
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Zhiwei Xu
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Wen Qi
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Yuzhi Shang
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Shuaibo Wen
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| | - Yehao Luo
- Guangxi University of Traditional Chinese Medicine, Nanning City, China
| |
Collapse
|
35
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
36
|
Zeng Q, Xu R, Ling H, Zhao S, Wang X, Yuan W, Gu M, Xu T, Wang P, Ruan H, Jin H, Qu H, Ye F, Chen J. N-Butanol Extract of Modified You-Gui-Yin Attenuates Osteoclastogenesis and Ameliorates Osteoporosis by Inhibiting RANKL-Mediated NF-κB Signaling. Front Endocrinol (Lausanne) 2022; 13:925848. [PMID: 35813633 PMCID: PMC9263119 DOI: 10.3389/fendo.2022.925848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Postmenopausal Osteoporosis (PMOP) is the most prevalent primary osteoporosis, attributable to an imbalance in osteoblast and osteoclast activity. Modified You-Gui-Yin (MYGY), a traditional Chinese herbal formula, is able to effectively treat PMOP, while the critical components and pharmacological mechanisms of MYGY are still unclear. In this study, we aimed to investigate the therapeutic effects and underlying mechanisms of N-butanol extract of MYGY (MYGY-Nb) in ovariectomized (OVX)-induced osteoporosis mice. Histological staining and micro-computed tomography (μCT) analysis showed that MYGY-Nb was more effective in the suppression of OVX-induced bone loss than MYGY original formula. Subsequently, liquid chromatography and mass spectrometry analysis identified 16 critical compounds of MYGY-Nb and some of them are reported to affect osteoclast functions. Furthermore, in vivo and in vitro experiments demonstrated that MYGY-Nb significantly attenuated osteoclastogenesis by down-regulating RANKL-mediated NF-κB signaling. In conclusion, our study indicated that MYGY-Nb suppresses NF-κB signaling and osteoclast formation to mitigate bone loss in PMOP, implying that MYGY-Nb and its compounds are potential candidates for development of anti-PMOP drugs.
Collapse
Affiliation(s)
- Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Houfu Ling
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shan Zhao
- The College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mancang Gu
- The College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbo Qu
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| | - Fusheng Ye
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| |
Collapse
|
37
|
Chen H, Li S, Yin H, Hua Z, Shao Y, Wei J, Wang J. MYC-mediated miR-320a affects receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast formation by regulating phosphatase and tensin homolog (PTEN). Bioengineered 2021; 12:12677-12687. [PMID: 34933640 PMCID: PMC8810188 DOI: 10.1080/21655979.2021.2008666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Osteoporosis is a serious bone metabolism disease. Recent studies have shown that MYC could promote the formation of osteoclasts. Evidence has also shown that miR-320a could injure osteoblasts by inducing oxidative stress. By querying the database, we found that MYC has the potential to target and affect the expression of miR-320a. However, the effects of MYC and miR-320a on the the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclasts are unclear. In this study, we examined the relationship between MYC and miR-320a with luciferase reporter assay. To investigate the role of MYC and miR320a in osteoporosis, MYC or miR-320a expression were knocked down in RAW 264.7 cells. Meanwhile, the expression of markers of osteoclasts was detected with Western blotting. Finally, we inhibited the expression of PTEN in RAW 264.7 cells with miR-320a depletion and detected the expression of abovementioned proteins. MYC promoted the expression of miR-320a in RAW 264.7 cells by binding to the promoter of miR-320a. Inhibition of MYC and miR-320a suppressed the formation of RANKL-induced osteoclasts by inhibiting the expression of c-Fos, NFATc1, TRAP and CTSK. Moreover, the expression of c-Fos, NFATc1, TRAP and CTSK was rescued and the RANKL-induced osteoclasts was promoted after the repressing the expression of PTEN. In conclusion, MYC enhanced the formation of RANKL-induced osteoclasts by modulating the miR-320a/PTEN pathway.
Collapse
Affiliation(s)
- Hao Chen
- Traditional Chinese Medicine Orthopedics, Nanjing University of Chinese Medicine, Nanjing, JiangSu, China.,Department of Orthopedics and Traumatology, Yancheng Dafeng Hospital of Traditional Chinese Medicine, Yancheng, Jiangsu, China
| | - Shaoshuo Li
- Traditional Chinese Medicine Orthopedics, Nanjing University of Chinese Medicine, Nanjing, JiangSu, China
| | - Heng Yin
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu,China
| | - Zhen Hua
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu,China
| | - Yang Shao
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu,China
| | - Jie Wei
- PICU, Yancheng Children's Hospital, Yancheng, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu,China
| |
Collapse
|
38
|
The Potential Mechanism of Exercise Combined with Natural Extracts to Prevent and Treat Postmenopausal Osteoporosis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2852661. [PMID: 34956564 PMCID: PMC8709765 DOI: 10.1155/2021/2852661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic chronic bone metabolic disease caused by the imbalance between bone formation and bone resorption mediated by estrogen deficiency. Both exercise and natural extracts are safe and effective means to prevent and control PMOP. The additive effect of exercise synergy extract against PMOP may be no less than that of traditional medicine. However, the mechanism of action of this method has not been clarified in detail. A large number of studies have shown that the pathogenesis of PMOP mainly involves the OPG-RANKL-RANK system, inflammation, and oxidative stress. Based on the abovementioned approaches, the present study reviews the anti-PMOP effects and mechanisms of exercise and natural extracts. Finally, it aims to explore the possibility of the target of the two combined anti-PMOP through this approach, thereby providing a new perspective for joint intervention research and providing a new direction for the treatment strategy of PMOP.
Collapse
|
39
|
Li J, Zhao M, Xiang X, He Q, Gui R. A novel biomimetic nanomedicine system with anti-inflammatory and anti-osteoporosis effects improves the therapy efficacy of steroid-resistant nephrotic syndrome. J Nanobiotechnology 2021; 19:417. [PMID: 34903236 PMCID: PMC8670287 DOI: 10.1186/s12951-021-01165-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 01/28/2023] Open
Abstract
Clinically, steroid-resistant nephrotic syndrome (SRNS) is always prolonged and difficult to treat and easily develops into end-stage renal disease, resulting in a low survival rate. Strategies to reverse steroid resistance and reduce the long-term use of high doses of steroid medicines are urgently needed. In this study, a novel nanoparticle drug system (Pm-GCH) with a core–shell structure was designed. Metal–organic frameworks, synthesized by glycyrrhizic acid (G) and calcium ions (Ca2+) loaded with hydrocortisone (H) were the core of the nanoparticles. Platelet membrane vesicles were the shells. The natural platelet membrane endows Pm-GCH with good biocompatibility and the ability to promote immune escape. In addition, under the chemotaxis of inflammatory factors, platelet membranes assist Pm-GCH in nonspecific targeting of the inflammatory sites of the kidney. Under an inflammatory acid environment, GCH slowly degrades and releases glycyrrhizic acid and hydrocortisone. Glycyrrhizic acid inhibits the inactivation of hydrocortisone, jointly inhibits the activity of phospholipase A2 (PLA2) and the classic activation pathway of complement C2, blocks the production of inflammatory factors, plays an anti-inflammatory role, and enhances the efficacy of hydrocortisone in the treatment of SRNS. Moreover, glycyrrhizic acid alleviates osteoporosis induced by long-term use of glucocorticoids. These results indicate that Pm-GCH is a promising treatment strategy for SRNS. ![]()
Collapse
Affiliation(s)
- Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
40
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Gentile C, Alessandro R, Fini M, Giavaresi G. Terpenoid treatment in osteoporosis: this is where we have come in research. Trends Endocrinol Metab 2021; 32:846-861. [PMID: 34481733 DOI: 10.1016/j.tem.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/30/2023]
Abstract
Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Riccardo Alessandro
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
41
|
Jin M, Nie J, Zhu J, Li J, Fang T, Xu J, Jiang X, Chen Z, Li J, Wu F. Acacetin inhibits RANKL-induced osteoclastogenesis and LPS-induced bone loss by modulating NFATc1 transcription. Biochem Biophys Res Commun 2021; 583:146-153. [PMID: 34763194 DOI: 10.1016/j.bbrc.2021.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023]
Abstract
Osteolytic disorders are characterized by impaired bone volume and trabecular structure that leads to severe fragility fractures. Studies have shown that excessive osteoclast activity causes impaired bone microstructure, a sign of osteolytic diseases such as osteoporosis. Approaches of inhibiting osteoclastogenesis and bone resorption specifically could prevent osteoporosis and other osteolytic disorders. Acacetin is a potent molecule extracted from plants with anti-cancer and anti-inflammatory bioactivities. Here, we demonstrated, for the first time, that acacetin repressed osteoclastogenesis, formation of F-actin rings, bone resorption activity, and osteoclast-related gene expression in vitro through modulating ERK, P38, and NF-κB signaling pathways and preventing expression of NFATc1. Micro-CT and H & E staining results indicated that acacetin alleviated LPS-induced osteolysis in vivo. Overall, our findings suggested that acacetin could help to prevent osteoporosis and other osteoclast-related osteolytic disorders.
Collapse
Affiliation(s)
- Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China
| | - Jiangbo Nie
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China.
| | - Juli Zhu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, NO.315, South Street, Huzhou, 313000, Zhejiang, China
| | - Jing Li
- Department of Physiology, Huzhou University, NO.759, Second Ring East Road, Huzhou, 313000, Zhejiang, China
| | - Tianshun Fang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China
| | - Juntao Xu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, NO.315, South Street, Huzhou, 313000, Zhejiang, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China
| | - Zhuo Chen
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China.
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, NO.1558, Third Ring North Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
42
|
Zhu M, Shan J, Xu H, Xia G, Xu Q, Quan K, Liu X, Dai M. Glaucocalyxin A suppresses osteoclastogenesis induced by RANKL and osteoporosis induced by ovariectomy by inhibiting the NF-κB and Akt pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114176. [PMID: 33933570 DOI: 10.1016/j.jep.2021.114176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glaucocalyxin A (GLA), the most abundant active component of the aboveground sections of Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, possesses various pharmacological activities, such as antioxidant, antithrombosis, anticoagulation, antibacterial, antitumor, anti-inflammatory activities. According to previous studies, inflammation is closely associated with osteoclast differentiation and activity. Although GLA has demonstrated effective anti-inflammatory properties, its effects on osteoclast differentiation remain unclear. AIM OF THE STUDY To examine the possible inhibitory effects of GLA and its molecular mechanisms in osteogenesis induced by RANKL as well as ovariectomy (OVX)-induced osteoporosis (OP) in mice. MATERIALS AND METHODS Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and a bone resorption pit assay were applied for identifying the effects of GLA on the differentiation of osteoclasts and the function of bone resorption. The mRNA expression of the genes related to osteoclast differentiation was measured by quantitative PCR. Protein expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-fos and phosphorylation of inhibitor of nuclear factor kappa B (IκBα), protein kinase B (AKT), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 in RANKL-induced osteoclasts was determined using western blotting. The effect of GLA on OP was studied using a mouse model of OVX. RESULTS At nontoxic concentrations ≤0.5 μM in vitro, GLA suppressed the formation of osteoclasts induced by RANKL with the decreased number and area size of TRAP-positive multinuclear osteoclasts, and the resorption of bone function by reducing F-actin ring number and bone resorption pit areas. It also reduced the expression of the genes specific for osteoclasts, which included genes encoding NFATc1, cathepsin K, c-fos, TRAP, vacuolar-type ATPase d2, and dendritic cell-specific transmembrane protein. Moreover, GLA repressed NF-κB and Akt pathway activation induced by RANKL. Micro-CT analysis of femur samples indicated decreased bone loss and greater trabecular bone density after GLA treatment, which showed that GLA played a protective role by inhibiting bone loss in OVX-induced OP mice in vivo. CONCLUSIONS Our study is the first to show that GLA has significant therapeutic potential in OP, which is the disease of osteoclast increase caused by estrogen deficiency.
Collapse
Affiliation(s)
- Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Jing Shan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Huaen Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Guoming Xia
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
43
|
Wang D, Zhang Z, Yang L, Tian S, Liu Y. ARPI, β-AS, and UGE regulate glycyrrhizin biosynthesis in Glycyrrhiza uralensis hairy roots. PLANT CELL REPORTS 2021; 40:1285-1296. [PMID: 34002270 DOI: 10.1007/s00299-021-02712-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
ARPI, β-AS, and UGE were cloned from G. uralensis and their regulatory effects on glycyrrhizin biosynthesis were investigated. β-AS and UGE but not ARPI positively regulate the biosynthesis of glycyrrhizin. Glycyrrhiza uralensis Fisch. has been used to treat respiratory, gastric, and liver diseases since ancient China. The most important and widely studied active component in G. uralensis is glycyrrhizin (GC). Our pervious RNA-Seq study shows that GC biosynthesis is regulated by multiple biosynthetic pathways. In this study, three target genes, ARPI, β-AS, and UGE from different pathways were selected and their regulatory effects on GC biosynthesis were investigated using G. uralensis hairy roots. Our data show that hairy roots knocking out ARPI or UGE died soon after induction, indicating that the genes are essential for the growth of G. uralensis hairy roots. Hairy roots with β-AS knocked out grew healthily. However, they failed to produce GC, suggesting that β-AS is required for triterpenoid skeleton formation. Conversely, overexpression of UGE or β-AS significantly increased the GC content, whereas overexpression of ARPI had no obvious effects on GC accumulation in G. uralensis hairy roots. Our findings demonstrate that β-AS and UGE positively regulate the biosynthesis of GC.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
44
|
Zhang L, Zhang L, You H, Sun S, Liao Z, Zhao G, Chen J. Inhibition of osteoclastogenesis by histone deacetylase inhibitor Quisinostat protects mice against titanium particle-induced bone loss. Eur J Pharmacol 2021; 904:174176. [PMID: 34004213 DOI: 10.1016/j.ejphar.2021.174176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are major long-term complications after total joint arthroplasty and have become the first causes for further revision surgery. Since PPO is primarily caused by excessive bone resorption stimulated by released wear particles, osteoclast-targeted therapy is considered to be of great potential for PPO prevention and treatment. Accumulating evidences indicated that inhibition of histone deacetylases (HDACs) may represent a novel approach to suppress osteoclast differentiation. However, different inhibitors of HDACs were shown to exhibit distinct safety profiles and efficacy in inhibiting osteoclastogenesis. Quisinostat (Qst) is a hydroxamate-based histone deacetylase inhibitor, and exerts potent anti-cancer activity. However, its effect on osteoclastogenesis and its therapeutic potential in preventing PPO are still unclear. In this study, we found that Qst suppressed RANKL-induced production of TRAP-positive mature osteoclasts, expression of osteoclast-specific genes, formation of F-actin rings, and bone resorption activity at a nanomolar concentration as low as 2 nM in vitro. Furthermore, we found that as low as 30 μg/kg of Qst was sufficient to exert preventive effect on titanium particle-induced osteolysis in the murine calvarial osteolysis model. Mechanistically, we found that Qst suppressed osteoclastogenesis by interfering with NF-κB and c-Fos/NFATc1 pathways. Thus, our study revealed that Qst may serve as a potential therapeutic agent for prevention and treatment of PPO and other osteoclast-mediated diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hongji You
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shengxuan Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China.
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
45
|
Ho MW, Li TM, Li JP, Chiou JS, Chiu ML, Chen CJ, Cheng CF, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Chou CH, Liang WM, Lin YJ. Chinese Herbal Medicine Usage Reduces Overall Mortality in HIV-Infected Patients With Osteoporosis or Fractures. Front Pharmacol 2021; 12:593434. [PMID: 33935696 PMCID: PMC8085888 DOI: 10.3389/fphar.2021.593434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
The survival of patients with HIV has greatly improved, due to Anti-Retroviral Therapy (ART). However, long-term HIV survivors often develop serious bone abnormalities, possibly due to the interplay of osteoblasts, osteoclasts, HIV ad ART. We evaluated in a nation-wide study in Taiwan the effect of Chinese herbal medicine (CHM) on overall mortality in HIV patients with osteoporosis or fractures. Enrollment period was between 1998 and 2011. Patients with osteoporosis or fractures before the HIV infection, and those with less than 14 days CHM use, were excluded. This left 498 patients, 160 CHM users, 338 without CHM. Univariate Kaplan-Meier and multivariate Cox regression analysis were used to compare the overall mortality in these 2 groups. Due to the nature of Chinese medicine, CHMs inevitably varied. We therefore also used rule mining and network analysis to determine which major CHM clusters were prescribed to the patients. CHM users had a much Lower mortality (hazard ratio (HR) = 0.43, 95% confidence interval (CI): 0.24–0.77, p < 0.005) and higher survival (p = 0.004, log-rank test). Although the CHMs greatly varied, network analysis identified one main cluster of strongly related CHM combinations (Chuan-Xiong-Cha-Tiao-San (CXCTS), Gan-Cao (GC; Glycyrrhiza uralensis Fisch.), Liu-He-Tang (LHT), Huang-Qin-Tang (HQT), Jia-Wei-Ping-Wei-San (JWPWS), and Dang-Gui-Long-Hui-Wan (DGLHuiW)). CHM as an additional treatment strongly improves overall survival in HIV-infected patients with osteoporosis and fractures.
Collapse
Affiliation(s)
- Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Fung Cheng
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Hsing Chou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Bai J, Xu J, Hang K, Kuang Z, Ying L, Zhou C, Ni L, Wang Y, Xue D. Glycyrrhizic Acid Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells by Activating the Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2021; 12:607635. [PMID: 33935702 PMCID: PMC8085383 DOI: 10.3389/fphar.2021.607635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Glycyrrhizic acid (GA) is a major triterpene glycoside isolated from liquorice root that has been shown to inhibit osteoclastogenesis. However, there have been no reports regarding the effect of GA on osteogenic differentiation. Therefore, this study was performed to explore the effects and mechanism of action of GA on osteogenesis. A CCK-8 array was used to assess cell viability. The osteogenic capability was investigated by real-time quantitative PCR, western blotting and immunofluorescence analyses. ALP staining and ARS were used to evaluate ALP activity and mineralization, respectively. GA-GelMA hydrogels were designed to verify the therapeutic effects of GA in vivo by radiographic analysis and histological evaluation. Our results show that GA had no significant influence on the viability or proliferation of human bone marrow stromal cells (hBMSCs). GA promoted osteogenic differentiation and enhanced calcium deposition. Furthermore, ratio of active β-catenin and total β-catenin protein increased after treatment with GA. Wnt/catenin signaling inhibitor partially attenuated the effects of GA on osteogenic differentiation. In a mouse femoral fracture model, GA-GelMA hydrogels accelerated bone healing. Our results show that GA promotes the osteogenic differentiation of hBMSCs by modulating the Wnt/β-catenin signaling pathway. GA-GelMA hydrogels promoted bone fracture healing. GA has potential as a cost-effective treatment of bone defects.
Collapse
Affiliation(s)
- Jinwu Bai
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Zhihui Kuang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Li Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Chenwei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Licheng Ni
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Huang Y, Yang Y, Wang J, Yao S, Yao T, Xu Y, Chen Z, Yuan P, Gao J, Shen S, Ma J. miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem 2021; 296:100617. [PMID: 33811860 PMCID: PMC8095171 DOI: 10.1016/j.jbc.2021.100617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis results from an imbalance between bone formation and bone resorption. Traditional drugs for treating osteoporosis are associated with serious side effects, and thus, new treatment methods are required. This study investigated the role of differentially expressed microRNAs during osteoclast differentiation and osteoclast activity during osteoarthritis as well as the associated underlying mechanisms. We used a microarray to screen microRNAs that decreased in the process of osteoclast differentiation and verified miR-21-5p to decrease significantly using RT-qPCR. In follow-up experiments, we found that miR-21-5p targets SKP2 to regulate osteoclast differentiation. In vivo, ovariectomized mice were used to simulate perimenopausal osteoporosis induced by estrogen deficiency, and miR-21-5p treatment inhibited bone resorption and maintained bone cortex and trabecular structure. These results suggest that miR-21-5p is a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yining Xu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
48
|
Yamada C, Ho A, Akkaoui J, Garcia C, Duarte C, Movila A. Glycyrrhizin mitigates inflammatory bone loss and promotes expression of senescence-protective sirtuins in an aging mouse model of periprosthetic osteolysis. Biomed Pharmacother 2021; 138:111503. [PMID: 33770668 PMCID: PMC8653540 DOI: 10.1016/j.biopha.2021.111503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Although periprosthetic osteolysis induced by wear debris particles is significantly elevated in senior (65+ years old) patients, most of the published pre-clinical studies were performed using young (less than three-month old) mice indicating the critical need to employ experimental models of particle-induced osteolysis involving mice with advanced age. Emerging evidence indicates that currently available antiresorptive bone therapies have serious age-dependent side effects. However, a resurgence of healthcare interest has occurred in glycyrrhizin (GLY), a natural extract from the licorice roots, as alternative sources of drugs for treating inflammatory bone lytic diseases and prevention of cellular senescence. This study investigated the effects of GLY on inflammatory bone loss as well as expression patterns of senescence-associated secretory phenotype and senescence-protective markers using an experimental calvarium osteolytic model induced in aged (twenty-four-month-old) mice by polymethylmethacrylate (PMMA) particles. Our results indicate that local treatment with GLY significantly diminished the size of inflammatory osteolytic lesions in aged mice via the number of CXCR4+OCPs and Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts. Furthermore, GLY dramatically decreased the amounts of senescence-associated secretory phenotype markers, including pro-inflammatory macrophage migration inhibitory factor (MIF) chemokine, and cathepsins B and K in the bone lesions of aged mice. By contrast, GLY significantly elevated expression patterns of senescence-protective markers, including homeostatic stromal derived factor-1 (SDF-1) chemokine, and sirtuin-1, and sirtuin-6, in the PMMA particle-induced calvarial lesions of aged mice. Collectively, these data suggest that GLY can be used for the development of novel therapies to control bone loss and tissue aging in senior patients with periprosthetic osteolysis.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Anny Ho
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Juliet Akkaoui
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States.
| |
Collapse
|
49
|
Inagaki Y, Kido JI, Nishikawa Y, Kido R, Sakamoto E, Bando M, Naruishi K, Nagata T, Yumoto H. Gan-Lu-Yin (Kanroin), Traditional Chinese Herbal Extracts, Reduces Osteoclast Differentiation In Vitro and Prevents Alveolar Bone Resorption in Rat Experimental Periodontitis. J Clin Med 2021; 10:jcm10030386. [PMID: 33498415 PMCID: PMC7926381 DOI: 10.3390/jcm10030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Gan-Lu-Yin (GLY), a traditional Chinese herbal medicine, shows therapeutic effects on periodontitis, but that mechanism is not well known. This study aims to clarify the precise mechanism by investigating the inhibitory effects of GLY extracts on osteoclastogenesis in vitro and on bone resorption in periodontitis in vivo. RAW264.7 cells are cultured with soluble receptor activator of nuclear factor-kappa B (sRANKL) and GLY extracts (0.01–1.0 mg/mL), and stained for tartrate-resistant acid phosphatase (TRAP) to evaluate osteoclast differentiation. Experimental periodontitis is induced by placing a nylon ligature around the second maxillary molar in rats, and rats are administered GLY extracts (60 mg/kg) daily for 20 days. Their maxillae are collected on day 4 and 20, and the levels of alveolar bone resorption and osteoclast differentiation are estimated using micro-computed tomography (CT) and histological analysis, respectively. In RAW264.7 cells, GLY extracts significantly inhibit sRANKL-induced osteoclast differentiation at a concentration of more than 0.05 mg/mL. In experimental periodontitis, administering GLY extracts significantly decreases the number of TRAP-positive osteoclasts in the alveolar bone on day 4, and significantly inhibits the ligature-induced bone resorption on day 20. These results show that GLY extracts suppress bone resorption by inhibiting osteoclast differentiation in experimental periodontitis, suggesting that GLY extracts are potentially useful for oral care in periodontitis.
Collapse
|
50
|
Chen K, Yang R, Shen FQ, Zhu HL. Advances in Pharmacological Activities and Mechanisms of Glycyrrhizic Acid. Curr Med Chem 2021; 27:6219-6243. [PMID: 31612817 DOI: 10.2174/0929867325666191011115407] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Licorice (Glycyrrhiza glabra L.) is widely regarded as an important medicinal plant and has been used for centuries in traditional medicine because of its therapeutic properties. Studies have shown that metabolites isolated from licorice have many pharmacological activities, such as antiinflammatory, anti-viral, participation in immune regulation, anti-tumor and other activities. This article gives an overview of the pharmacological activities and mechanisms of licorice metabolites and the adverse reactions that need attention. This review helps to further investigate the possibility of licorice as a potential drug for various diseases. It is hoped that this review can provide a relevant theoretical basis for relevant scholars' research and their own learning.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Rong Yang
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Fa-Qian Shen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| |
Collapse
|