1
|
Maurya N, Meena A, Luqman S. Role of microRNAs in lung oncogenesis: Diagnostic implications, resistance mechanisms, and therapeutic strategies. Int J Biol Macromol 2025:144261. [PMID: 40381781 DOI: 10.1016/j.ijbiomac.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Lung cancer continues to pose a significant global health concern, presenting a formidable challenge on a worldwide scale, necessitating a deeper understanding of molecular mechanisms underlying its pathogenesis and treatment responses. microRNA (miRNA) modulation in the context of lung cancer therapeutics aims to unravel the complexities of miRNA-mediated regulatory networks. This comprehensive review elucidates microRNA's diverse roles in lung cancer, encompassing their involvement in key signaling pathways, cellular processes, the regulation of oncogenic or tumor-suppressive targets, and drug sensitivity. Moreover, this review critically examines the potential of miRNAs as diagnostic and prognostic biomarkers and their implications in therapeutic interventions for lung cancer. microRNAs are effective in making lung cancer therapy more efficient. They can make tumor cells more responsive to chemotherapy, radiation, and targeted therapies. microRNAs can target the drug efflux mechanism, increasing the effectiveness of chemotherapy agents and decreasing resistance. Furthermore, microRNAs play a crucial role in developing and inhibiting the resistance mechanisms against conventional treatments; improving the dysregulated expression of microRNAs enhances the therapeutic efficacy of existing therapies. By compiling knowledge on miRNA-mediated processes related to lung cancer, this review offers a comprehensive resource for researchers to understand and address the complexities of oncogenesis, diagnostics, resistance mechanisms, and therapeutic strategies.
Collapse
Affiliation(s)
- Nidhi Maurya
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Abha Meena
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India.
| |
Collapse
|
2
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Lu XY, Jin H. MiRNAs function in the development of resistance against doxorubicin in cancer cells: targeting ABC transporters. Front Pharmacol 2024; 15:1486783. [PMID: 39679367 PMCID: PMC11638538 DOI: 10.3389/fphar.2024.1486783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
Resistance to chemotherapeutic agents poses a significant challenge in cancer treatment, particularly with doxorubicin, a widely used drug for various cancers, including breast cancer, leukaemia, osteosarcoma, and gastrointestinal cancers. This review aims to elucidate the critical role of microRNAs (miRNAs) in the development of doxorubicin resistance, focusing on their interactions with ATP-binding cassette (ABC) transporters. Despite extensive research, the molecular mechanisms governing doxorubicin resistance still need to be completed, particularly regarding the regulatory influence of miRNAs on ABC transporter expression. By analyzing current literature, this review identifies a notable gap: the lack of comprehensive insight into how specific miRNAs modulate the expression and activity of ABC transporters in cancer cells, contributing to doxorubicin resistance. We systematically examine recent findings on the interplay between miRNAs and ABC transporters, providing a detailed assessment of potential therapeutic strategies that leverage miRNA modulation to overcome drug resistance. Ultimately, this review underscores the significance of integrating miRNA research into existing therapeutic frameworks to enhance the efficacy of doxorubicin in cancer treatment.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zhang P, Li H, Gong H, Tian Y, Chen F, Li X, Xie C, Tu C, Qian S, Tan Y, Liu Q, Zhang B. c-Myc-XRCC2-FOS axis promotes the proliferation and the resistance to Doxorubicin of NSCLC. Biomed Pharmacother 2024; 179:117315. [PMID: 39153434 DOI: 10.1016/j.biopha.2024.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.
Collapse
Affiliation(s)
- Peihe Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hui Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Han Gong
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiang Li
- Department of Pathology, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Chunbo Xie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Siyi Qian
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China; College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
Zhang F, Lei X, Yang X. Emerging roles of ncRNAs regulating ABCC1 on chemotherapy resistance of cancer - a review. J Chemother 2024; 36:1-10. [PMID: 38263773 DOI: 10.1080/1120009x.2023.2247202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 01/25/2024]
Abstract
In the process of chemotherapy, drug resistance of cancer cells is a common and difficult problem of chemotherapy failure, and it is also the main cause of cancer recurrence and metastasis. Non-coding RNAs (ncRNAs) refer to the RNA that does not encode proteins, including microRNA (miRNA), long non-coding RNA (lncRNA) and circularRNA (circRNA), etc. NcRNAs are involved in a series of important life processes and further regulate the expression of ABCC1 by directly or indirectly up-regulating or down-regulating the expression of targeted mRNAs, making cancer cells more susceptible to drug resistance. A growing number of studies have shown that ncRNAs have effects on cancer cell proliferation, invasion, metastasis, and drug sensitivity, by regulating the expression of ABCC1. In this review, we will discuss the emerging roles of ncRNAs regulating ABCC1 in chemotherapy resistance and mechanisms to reverse drug resistance as well as provide potential targets for future cancer treatment.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
6
|
Garnique ADMB, Machado-Santelli GM. Characterization of 3D NSCLC Cell Cultures with Fibroblasts or Macrophages for Tumor Microenvironment Studies and Chemotherapy Screening. Cells 2023; 12:2790. [PMID: 38132110 PMCID: PMC10742261 DOI: 10.3390/cells12242790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 12/23/2023] Open
Abstract
The study of 3D cell culture has increased in recent years as a model that mimics the tumor microenvironment (TME), which is characterized by exhibiting cellular heterogeneity, allowing the modulation of different signaling pathways that enrich this microenvironment. The TME exhibits two main cell populations: cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). The aim of this study was to investigate 3D cell cultures of non-small cell lung cancer (NSCLC) alone and in combination with short-term cultured dermal fibroblasts (FDH) and with differentiated macrophages of the THP-1 cell line. Homotypic and heterotypic spheroids were morphologically characterized using light microscopy, immunofluorescence and transmission electron microscopy. Cell viability, cycle profiling and migration assay were performed, followed by the evaluation of the effects of some chemotherapeutic and potential compounds on homotypic and heterotypic spheroids. Both homotypic and heterotypic spheroids of NSCLC were generated with fibroblasts or macrophages. Heterotypic spheroids with fibroblast formed faster, while homotypic ones reached larger sizes. Different cell populations were identified based on spheroid zoning, and drug effects varied between spheroid types. Interestingly, heterotypic spheroids with fibroblasts showed similar responses to the treatment with different compounds, despite being smaller. Cellular viability analysis required multiple methods, since the responses varied depending on the spheroid type. Because of this, the complexity of the spheroid should be considered when analyzing compound effects. Overall, this study contributes to our understanding of the behavior and response of NSCLC cells in 3D microenvironments, providing valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Ave., Prof, Lineu Prestes, 1524, Cidade Universitária, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
7
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
9
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
10
|
Kang Y, Zhang P, Xiong K, Wang Y. Bone Marrow Mesenchymal Stem Cells (BMSCs) Retard the Aggressive Migrating and Invading Activity of Non-Small Cell Lung Cancer Cells. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy worldwide. miR-119-3p is down regulated in many cancers. Nonetheless, the modulatory mechanism of bone marrow mesenchymal stem cells (BMSCs) in NSCLC is unclear. Our research aims to dissect the activity of BMSCs on NSCLC and
underlying mechanisms. After isolation and identification, BMSCs were co-cultured with NSCLC cells, which were transfected with miR-119-3p mimics followed by analysis of expression of miR-119-3p and tumor aggressiveness-related proteins, cell invasion/migration and survival. A significantly
reduced miR-119-3p level was found in NSCLC cell lines. miR-119-3p mimics inhibited the proliferative, migrating and invasive behaviors of NSCLC cells. Co-culture with BMSCs enhanced miR-119-3p expression in NSCLC cells, thereby suppressing NSCLC cell biological behaviors. Simultaneously,
the EMT process was markedly restrained, as indicated by an elevated level of E-cadherin but diminished levels of Vimetnin, N-cadherin and Snail. In conclusion, BMSCs can interfere with the EMT process of NSCLC via up-regulatingmiR-119-3p, thereby retarding the aggressive migration and invasive
capability of NSCLC cells.
Collapse
Affiliation(s)
- Ying Kang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kai Xiong
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
11
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
12
|
Circular RNA circ_0007841 participates in progression of nonsmall cell lung cancer via miR-199a-5p/SphK2 axis. Anticancer Drugs 2022; 33:1035-1046. [PMID: 36066393 DOI: 10.1097/cad.0000000000001348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CircRNAs have been found to be participated in the development of numerous cancers. Nevertheless, the role of circRNAs in the progression of nonsmall cell lung cancer (NSCLC) has not been fully made clear. The purpose of our study was to study and understand the mechanism of circ_0007841 regulating the progression of NSCLC. NSCLC tissue samples and adjacent normal tissue samples used were obtained from 53 NSCLC patients. The expressions of circ_0007841, miR-199a-5p and SphK2 in all samples were detected by the real-time quantitative PCR. Then luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to analyze the relevance between circ_0007841, miR-199a-5p and SphK2. Cell Counting Kit-8, colony-forming, thymidine analog 5-ethynyl-2'-deoxyuridine assays, and transwell assay detect the effects of these three biomolecules on NSCLC carcinogenesis by western blot. We evaluate the effect of circ_0007841 on the growth of NSCLC by establishing the xenograft mice model. Experimental studies have shown that the higher expression of circ_0007841 in NSCLC tissues, and circ_0007841 strengthen cell viability, cell proliferation and cell adhesion. In addition, miR-199a-5p exerts an inhibitory effect in NSCLC cells by inhibiting SphK2. And Sphk2 regulates cell proliferation and adhesion. In addition, in-vivo silencing of circ_0007841 was found to inhibit the growth of NSCLC tumors. This research demonstrated that circ_0007841 had a positive influence in improving NSCLC development by targeting miR-199a-5p and upregulating oncogene SphK2.
Collapse
|
13
|
Meng W, Li Y, Chai B, Liu X, Ma Z. miR-199a: A Tumor Suppressor with Noncoding RNA Network and Therapeutic Candidate in Lung Cancer. Int J Mol Sci 2022; 23:8518. [PMID: 35955652 PMCID: PMC9369015 DOI: 10.3390/ijms23158518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. miR-199a, which has two mature molecules: miR-199a-3p and miR-199a-5p, plays an important biological role in the genesis and development of tumors. We collected recent research results on lung cancer and miR-199a from Google Scholar and PubMed databases. The biological functions of miR-199a in lung cancer are reviewed in detail, and its potential roles in lung cancer diagnosis and treatment are discussed. With miR-199a as the core point and a divergence outward, the interplay between miR-199a and other ncRNAs is reviewed, and a regulatory network covering various cancers is depicted, which can help us to better understand the mechanism of cancer occurrence and provide a means for developing novel therapeutic strategies. In addition, the current methods of diagnosis and treatment of lung cancer are reviewed. Finally, a conclusion was drawn: miR-199a inhibits the development of lung cancer, especially by inhibiting the proliferation, infiltration, and migration of lung cancer cells, inhibiting tumor angiogenesis, increasing the apoptosis of lung cancer cells, and affecting the drug resistance of lung cancer cells. This review aims to provide new insights into lung cancer therapy and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai 200444, China; (W.M.); (Y.L.); (B.C.); (X.L.)
| |
Collapse
|
14
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Zhang W, Zhang Q, Che L, Xie Z, Cai X, Gong L, Li Z, Liu D, Liu S. Using biological information to analyze potential miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer. BMC Cancer 2022; 22:299. [PMID: 35313857 PMCID: PMC8939143 DOI: 10.1186/s12885-022-09281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is the most common malignant tumor, and it has a high mortality rate. However, the study of miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer (NSCLC) is insufficient. Therefore, this study explored the differential expression of mRNA and miRNA in the plasma of NSCLC patients. Methods The Gene Expression Omnibus (GEO) database was used to download microarray datasets, and the differentially expressed miRNAs (DEMs) were analyzed. We predicted transcription factors and target genes of the DEMs by using FunRich software and the TargetScanHuman database, respectively. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for GO annotation and KEGG enrichment analysis of downstream target genes. We constructed protein-protein interaction (PPI) and DEM-hub gene networks using the STRING database and Cytoscape software. The GSE20189 dataset was used to screen out the key hub gene. Using The Cancer Genome Atlas (TCGA) and UALCAN databases to analyze the expression and prognosis of the key hub gene and DEMs. Then, GSE17681 and GSE137140 datasets were used to validate DEMs expression. Finally, the receiver operating characteristic (ROC) curve was used to verify the ability of the DEMs to distinguish lung cancer patients from healthy patients. Results Four upregulated candidate DEMs (hsa-miR199a-5p, hsa-miR-186-5p, hsa-miR-328-3p, and hsa-let-7d-3p) were screened from 3 databases, and 6 upstream transcription factors and 2253 downstream target genes were predicted. These genes were mainly enriched in cancer pathways and PI3k-Akt pathways. Among the top 30 hub genes, the expression of KLHL3 was consistent with the GSE20189 dataset. Except for let-7d-3p, the expression of other DEMs and KLHL3 in tissues were consistent with those in plasma. LUSC patients with high let-7d-3p expression had poor overall survival rates (OS). External validation demonstrated that the expression of hsa-miR-199a-5p and hsa-miR-186-5p in peripheral blood of NSCLC patients was higher than the healthy controls. The ROC curve confirmed that the DEMs could better distinguish lung cancer patients from healthy people. Conclusion The results showed that miR-199a-5p and miR-186-5p may be noninvasive diagnostic biomarkers for NSCLC patients. MiR-199a-5p-KLHL3 may be involved in the occurrence and development of NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09281-1.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China.,Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road North, Zunyi, 563000, Guizhou, China
| | - Qian Zhang
- Department of Renal Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China
| | - Li Che
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China
| | - Zhefan Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China
| | - Xingdong Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China
| | - Ling Gong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China.,Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road North, Zunyi, 563000, Guizhou, China
| | - Zhu Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road North, Zunyi, 563000, Guizhou, China
| | - Daishun Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road North, Zunyi, 563000, Guizhou, China.
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Chen J, Hou SF, Tang FJ, Liu DS, Chen ZZ, Zhang HL, Wang SH. HOTAIR/Sp1/miR-199a critically regulates cancer stemness and malignant progression of cutaneous squamous cell carcinoma. Oncogene 2022; 41:99-111. [PMID: 34697449 DOI: 10.1038/s41388-021-02014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
The long non-coding RNA (lncRNA), HOX antisense intergenic RNA (HOTAIR) is a well-characterized oncogene in multiple human cancers, but not in cutaneous squamous cell carcinoma (CSCC). In this study, we focused on investigating the potential role of HOTAIR in stemness of CSCC. By measuring its expression using RT-qPCR in CSCC vs. normal tissues, as well as in CSCC cell lines A431 or SCC13, A431- or SCC13-derived CSCC stem cells (CSCSCs), and normal skin fibroblasts (HSFs), we detected higher expression of HOTAIR in CSCC than in normal tissues, in recurrent than in non-recurrent CSCC tissues, in CSCCs and CSCSCs than in HSFs, and particularly, in CSCSCs than in CSCCs. Kaplan-Meier analysis suggested that higher expression of HOTAIR was positively correlated with worse overall survival of CSCC patients. Functional assays on colony formation, EdU incorporation, sphere formation, western blot on stem-cell biomarkers, and in vivo models showed that HOTAIR was essential in maintaining multiple stem cell phenotypes of CSCSCs in vitro and in vivo xenograft growth as well as metastasis. Mechanistically, HOTAIR directly interacted with and up-regulated Sp1. Sp1 then induced DNMT1-mediated promoter methylation and direct transcriptional repression of miR-199a-5p. Targeting Sp1 or DNMT1 further boosted the in vivo anti-tumor and anti-metastasis activities of targeting HOTAIR. In conclusion, HOTAIR, by up-regulating Sp1 and targeting miR-199a, promotes stemness and progression of CSCC. Targeting HOTAIR, Sp1 or the underlying mechanisms may thus benefit CSCC treatment.
Collapse
Affiliation(s)
- Jia Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Shu-Fen Hou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Feng-Jie Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Dai-Song Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zi-Zi Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Hong-Lian Zhang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Shao-Hua Wang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
17
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Ding D, Hong L, Shu C. MicroRNA-5100 Modulates Lung Cancer Cell Proliferation and Apoptosis via Inhibiting X-Linked Inhibitor of Apoptosis Protein (XIAP) Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the miR-5100 expression and its function in human lung cancer. The expression of miR-5100 was analyzed by miScript miRNA method. Cancer cells were transfected with miR-5100 mimics (miR-5100), miR-5100 inhibitors (ASO-miR-5100), XIAP inhibitors (si-XIAP), negative
controls (NC) followed by analysis of cell proliferation by MTT and apoptosis by flow cytometry, the expression of XIAP related proteins by Western blot. miR-5100’ target was predicted by bioinformatics website and verified by dual luciferase assay. Finally, a xenogeneic tumor inhibition
model was established to detect tumor progression after treatments. Lung cancer cells and tissues exhibited significantly reduced miR-5100 level. Dual luciferase assay showed that miR-5100 bound XIAP 3′-UTR and reduced XIAP mRNA and protein level. Further, miR-5100 inhibited cell proliferation,
increased apoptosis and the expression of cleaved-capsase-3 and cleaved-capsase-9, the XIAP downstream factor. Finally, miR-5100 inhibited tumor growth, decreased cellular proliferation and promoted apoptosis, accompanied by reduced XIAP expression in vivo. miR-5100 inhibits lung cancer
cell proliferation and enhances apoptosis through inhibiting XIAP expression in vitro and in vivo.
Collapse
Affiliation(s)
- Dongshen Ding
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| | - Liang Hong
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| | - Chang Shu
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| |
Collapse
|
19
|
Wang X, Yan J, Shen B, Wei G. Integrated Chromatin Accessibility and Transcriptome Landscapes of Doxorubicin-Resistant Breast Cancer Cells. Front Cell Dev Biol 2021; 9:708066. [PMID: 34395436 PMCID: PMC8363264 DOI: 10.3389/fcell.2021.708066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Doxorubicin is one of the most effective chemotherapeutic drugs for breast cancer while its common drug resistance leads to poor patient prognosis and survival. Growing evidence indicate dynamically reorganized chromatin allows rapid access of the gene regulatory machinery to open genomic regions facilitating subsequent gene expression through direct transcription factor (TF) activation and regulatory element binding. METHODS To better understand the regulatory network underlying doxorubicin resistance in breast cancer cells, we explored the systematic alterations of chromatin accessibility and gene expression by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) in combination with RNA sequencing, followed by integrative analysis to identify potential regulators and their targets associated with differentially accessible regions (DARs) in doxorubicin-resistant MCF7 (MCF7-DR) cells. RESULTS A total of 3,963 differentially expressed genes (DEGs) related to doxorubicin resistance were identified, including dramatically up-regulated MT1E, GSTP1, LDHB, significantly down-regulated TFF1, UBB, DSCAM-AS1, and histone-modifying enzyme coding genes HDAC2, EZH2, PRMT5, etc. By integrating with transcriptomic datasets, we identified 18,228 DARs in MCF7-DR cells compared to control, which were positively correlated with their nearest DEGs (r = 0.6). There were 11,686 increased chromatin-accessible regions, which were enriched in up-regulated genes related to diverse KEGG pathways, such as the cell cycle, regulation of actin cytoskeleton, signaling pathways of MAPK, PI3K/Akt and Hippo, which play essential roles in regulating cell apoptosis, proliferation, metabolism, and inflammatory responses. The 6,542 decreased chromatin-accessible regions were identified for the declined doxorubicin-associated biological processes, for instance, endocrine and insulin resistance, central carbon metabolism, signaling pathways of TGF-beta and P53. Combining data from TCGA, analyses of the DAR sequences associated with the DNA-binding motifs of significantly enriched TF families including AP-1, TEAD and FOX, indicated that the loss-function of FOXA1 might play a critical role in doxorubicin-resistant breast cancer cells (DOX-R BCCs). CONCLUSION These data exhibit the non-genetic landscape of chromatin accessibility and transcript levels in the DOX-R BCCs, and provide clear insights and resources for the detection of critical TFs and potential cis-regulatory elements-based putative therapeutic targets.
Collapse
Affiliation(s)
- Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jizhou Yan
- Department of Developmental Biology, Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Yang N, Liang Y, Zhu T, Long Y, Chen Z, Zhang X, Jiang L. Epigenetic silencing of microRNA-199a-5p promotes the proliferation of non-small cell lung cancer cells by increasing AKAP1 expression. Oncol Lett 2021; 21:434. [PMID: 33868472 PMCID: PMC8045157 DOI: 10.3892/ol.2021.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-199a-5p expression is downregulated in a variety of malignancies, including non-small cell lung cancer (NSCLC), and its low expression is associated with a poor prognosis. However, to the best of our knowledge, the mechanism underlying miR-199a-5p downregulation in NSCLC and its target effectors remain to be elucidated. The present study revealed the downregulation of miR-199a-5p expression in NSCLC tissues and cell lines compared with in para-carcinoma tissues and a lung epithelial cell line. Further experiments indicated that the methylation levels of the miR-199a promoter were markedly higher in NSCLC tissues compared with in para-carcinoma tissues. The DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine markedly increased the expression levels of miR-199a-5p in NSCLC cells. Furthermore, it was identified that miR-199a-5p mimics transfection decreased the expression levels of A-kinase anchoring protein 1 (AKAP1) at both the mRNA and protein levels by targeting the 3′ untranslated region of AKAP1 mRNA. The in vitro experiments demonstrated that miR-199a-5p overexpression inhibited the proliferation and tumorigenicity of NSCLC cells, whereas overexpression of AKAP1 partially recovered the malignant phenotypes, suggesting that AKAP1 may be a downstream effector targeted by miR-199a-5p. Collectively, the present findings indicated that miR-199a-5p may be a novel regulator of AKAP1, and that miR-199a-5p may be a potential tumor suppressor in NSCLC.
Collapse
Affiliation(s)
- Nengli Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianqi Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yanxiao Long
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhe Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuezheng Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liuming Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
21
|
Yang X, Zheng Y, Tan J, Tian R, Shen P, Cai W, Liao H. MiR-199a-5p-HIF-1α-STAT3 Positive Feedback Loop Contributes to the Progression of Non-Small Cell Lung Cancer. Front Cell Dev Biol 2021; 8:620615. [PMID: 33681184 PMCID: PMC7929999 DOI: 10.3389/fcell.2020.620615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/31/2020] [Indexed: 01/27/2023] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common malignancy worldwide. MiR-199a-5p has been reported to play important roles in multiple tumors, inclusive of NSCLC. However, little is definitively known pertaining to its explicit mechanism of action in NSCLC. Methods: The expressions of miR-199a-5p and hypoxia-inducible factor-1α (HIF-1α) mRNA were quantified employing qRT-PCR. H1299 and A549 cells were transiently transfected with miR-199a-5p mimics or inhibitors. Then, CCK-8 assays, flow cytometry analysis, and Transwell assay were performed for detecting cell proliferation, cell cycle, apoptosis, migration, and invasion of NSCLC cells, respectively. HIF-1α, signal transducer and activator of transcription 3 (STAT3), and p-STAT3 expressions were detected via Western blotting. Bioinformatic analysis and dual-luciferase assay were performed to investigate the interactions among miR-199a-5p, HIF-1α, and STAT3. Xenograft models were established with nude mice for further analyzing the bevacizumab resistance of NSCLC cells. Results: MiR-199a-5p expression was markedly attenuated in NSCLC tissues and cell lines. Overexpression of miR-199a-5p repressed the proliferation, migration, and invasion but induced the apoptosis of NSCLC cells. HIF-1α was identified as a direct target of miR-199a-5p. There was a positive feedback loop among miR-199a-5p, HIF-1α, and STAT3. Co-transfection of HIF-1α or STAT3 overexpression plasmids counteracted the effects of miR-199a-5p. In vivo experiments indicated that the feedback loop was in association with the bevacizumab resistance of NSCLC cells. Conclusion: MiR-199a-5p blocked the progression of NSCLC and sensitized NSCLC cells to bevacizumab by suppressing HIF-1α and STAT3, while the HIF-1α/STAT3 axis suppressed the expression of miR-199a-5p, which forms a positive feedback loop to promote the sustaining progression of NSCLC.
Collapse
Affiliation(s)
- Xingping Yang
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Tan
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renjiang Tian
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Piao Shen
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Weijie Cai
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongying Liao
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
23
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|