1
|
Gan X, Li J, Jiang Y, Wang X, Zeng Y, Chen X, Huang H, Min J, Li G, Nie M, Kang H. Vaccarin ameliorates osteoarthritis by suppressing the c-Jun N-terminal kinase (JNK)-serum amyloid A2 (SAA2) pathway mediating chondrocyte senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156697. [PMID: 40215820 DOI: 10.1016/j.phymed.2025.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Osteoarthritis is a chronic degenerative joint disease marked by chondrocyte senescence and extracellular matrix degradation. Vaccarin, a flavonoid with anti-inflammatory and antioxidant properties, has not been previously investigated for its therapeutic potential in osteoarthritis. PURPOSE To evaluate the therapeutic potential of Vaccarin in osteoarthritis and elucidate its underlying mechanisms. DESIGN AND METHOD This study utilized in vitro chondrocyte cultures and RNA sequencing to identify relevant pathways, followed by validation at the genetic, protein, and metabolic levels using multiple approaches. Additionally, the therapeutic effects of Vaccarin were assessed in vivo using a destabilization of the medial meniscus (DMM)-induced osteoarthritis mouse model and human cartilage samples from osteoarthritis patients. RESULTS Vaccarin effectively ameliorated osteoarthritis both in vivo and in vitro. Transcriptomic sequencing indicated a significant downregulation of serum amyloid A2 (SAA2) expression following Vaccarin treatment. Multi-omics analysis, validated by human specimens, indicated that SAA2 is minimally secreted in healthy articular cartilage but serves as a crucial osteoarthritis biomarker in Asian populations. Mechanistically, Vaccarin inhibits c-Jun N-terminal kinase (JNK) phosphorylation, thereby reducing SAA2 expression and mitigating chondrocyte inflammation and senescence. Notably, inflammatory conditions upregulate SAA2 expression in chondrocytes via the JNK pathway. Elevated SAA2 levels contribute to mitochondrial dysfunction in chondrocytes, leading to increased reactive oxygen species (ROS) production and exacerbating osteoarthritis progression. CONCLUSION This study identifies SAA2 as a potential therapeutic target for osteoarthritis and suggests that Vaccarin presents a promising treatment avenue.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongqiao Jiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Juan Min
- Institutional Center for Shared Technologies and Facilities of Wuhan, Institute of Virology, Chinese Academy of Sciences, Wuhan 430010, PR China
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Xue Q, Li H, Liu G, Xiong Y, Zhou G, Xu P, He J, Wang X, Miao C. Vaccarin treats lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119898. [PMID: 40311715 DOI: 10.1016/j.jep.2025.119898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Vaccarin, a natural small molecule extracted from Gypsophila vaccaria (L.) Sm., is an active flavonoid glycoside. BACKGROUND Lactation insufficiency refers to insufficient milk secretion in women after childbirth, which affects the feeding of infants and even their development. Our preliminary experiments showed that alkylation repair homolog protein 5 (ALKBH5) was abnormally overexpressed in mammary tissue of lactation deficiency model rats, which played an important role in regulating milk secretion, but the mechanism was not clear, and no research reports were reported in this aspect. PURPOSE The aim of this study was to investigate whether Vaccarin (Vac) treated lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway. METHODS The lactation insufficiency model rats and primary cultured rat mammary epithelial cells (RMECs) were used as experimental subjects. RT-qPCR, Western blot, RNA Immunoprecipitation, immunofluorescence and related methods were used to study the mechanism of Vac treatment for lactation insufficiency. RESULTS Vac effectively increased the milk production, significantly improved the thickness and density of mammary ducts and follicles, and promoted the prolactin (PRL) secretion and the prolactin receptor (PRLR) expression in lactation insufficiency model rats. Vac significantly promoted the expression of FASN, CSN2, and GLUT1. ALKBH5 was upregulated in the mammary gland of model mice, promoting SFRP2 expression and inhibiting the Wnt/β-catenin signaling pathway and the expression of FASN, CSN2 and GLUT1. Furthermore, Vac inhibited the expression of SFRP2 by targeting the ALKBH5, and subsequently activated the Wnt/β-catenin signaling pathway to promote milk secretion in the lactation insufficiency model rats. CONCLUSION Vac promoted milk secretion and improved lactation insufficiency through the ALKBH5-SFRP2-Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Guosheng Liu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China
| | - Youyi Xiong
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui Science and Technology University, Chuzhou City, Anhui Province, China
| | - Guoliang Zhou
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui Science and Technology University, Chuzhou City, Anhui Province, China
| | - Pengfei Xu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Anhui Public Health Clinical Center, Hefei City, Anhui Province, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei City, Anhui Province, China
| | - Xiaomei Wang
- Department of Nursing Management and Education, School of Nursing, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei City, Anhui Province, China.
| |
Collapse
|
3
|
Zhang M, Zha X, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak ( Bos grunniens). Foods 2024; 13:1613. [PMID: 38890842 PMCID: PMC11172211 DOI: 10.3390/foods13111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.
Collapse
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Province Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China;
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
4
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
5
|
Chen S, Long M, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int J Biol Macromol 2024; 259:129114. [PMID: 38181915 DOI: 10.1016/j.ijbiomac.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.
Collapse
Affiliation(s)
- Shun Chen
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Miao Long
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
6
|
Li Z, Yuan X, Wang Y, Sun Z, Ao J. DNAJA1 positively regulates amino acid-stimulated milk protein and fat synthesis in bovine mammary epithelial cells. Cell Biochem Funct 2024; 42:e3918. [PMID: 38269516 DOI: 10.1002/cbf.3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.
Collapse
Affiliation(s)
- Zhuolin Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Yuanhao Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Zheya Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jinxia Ao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Xu C, Xie J, Ji F, Peng W, Song Y, Diao X, Wu H. Supplementation of dietary semen vaccariae extracts to lactating sow diets: effects on the production performance, milk components, and gene expression related to mammogenesis. Front Vet Sci 2023; 10:1284552. [PMID: 38026663 PMCID: PMC10666067 DOI: 10.3389/fvets.2023.1284552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to investigate the effects of dietary semen vaccariae extracts (SVE) on the production performance, colostrum components, and relative gene expression related to mammogenesis of lactating sows. 48 pregnant sows were selected and randomly allocated into four groups, with six replicates and two sows per replicate. The first group was the control (CON), while the other groups received the same diet further supplemented with 1.5, 3.0 and 4.5 g SVE per kg (SV1, SV2 and SV3, respectively). Compared with the control group, (1) the average daily gain was increased (p < 0.05) in SV1, SV2, and SV3 during the 11-21 days and 1-21 days of lactation; (2) the serum insulin-like growth factor-1, insulin, prolactin, and estrogen contents in SV1, SV2, and SV3 were increased (p < 0.05) on the 1st and 21st day of lactation; (3) The plasma Lysine, Threonine, and Tryptophan concentrations were also higher (p < 0.05) in SV1, SV2, and SV3 on the 1st and 21st day of lactation; (4) The milk Lysine, Methionine, Threonine, and Tryptophan concentrations were higher (p < 0.05) in SV1, SV2, and SV3 on the 1st and 21st day of lactation; (5) The milk lactose ratio and milk protein content were increased (p < 0.05) in the groups treated with semen vaccariae on the 1st day of lactation, while the milkfat ratio and milk protein content were increased (p < 0.05) in SV2 and SV3 on the 21st day of lactation; (6) the immunoglobulin M, A, and G contents were increased (p < 0.05) in the groups treated with the semen vaccariae on the first day of lactation; and (7) the relative PRLR, STAT5a, FcRn, CSN2, and LALBA expressions were higher (p < 0.05) in the groups treated with the semen vaccariae on the 1st and 21st day of lactation. In this study, the optimum dosage was 3.0 g/kg semen vaccariae, which increased the average daily gain of piglets, total lactation yield, and serum hormone levels, improved the amino acid levels in plasma, and facilitated the milk quality, up-regulated the relative gene expressions in the mammogenesis.
Collapse
Affiliation(s)
- Chaohua Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiajun Xie
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yuzhuo Song
- Department of Animal Husbandry and Veterinary Medicine, Shijiazhuang Information Engineering Vocational College, Shijiazhuang, China
| | - Xinping Diao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
8
|
Xu YX, Chen YM, Zhang MJ, Ren YY, Wu P, Chen L, Zhang HM, Zhou JL, Xie T. Screening of anti-cancer compounds from Vaccariae Semen by lung cancer A549 cell fishing and UHPLC-LTQ Orbitrap MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123851. [PMID: 37619519 DOI: 10.1016/j.jchromb.2023.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.
Collapse
Affiliation(s)
- Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Meng-Jiao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hua-Min Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
9
|
Anti-Inflammatory and Antibacterial Potential of Qicao Rukang Powder in Bovine Subclinical Mastitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2148186. [PMID: 34484387 PMCID: PMC8416365 DOI: 10.1155/2021/2148186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Background Subclinical mastitis is one of the most common reproductive diseases in dairy cows. Qicao Rukang powder is a Chinese herbal compound mixture developed to treat subclinical mastitis in dairy cows by clearing heat, tonifying qi, and improving blood and milk circulation. The study aimed to determine the anti-inflammatory and antimicrobial efficacy of Qicao Rukang powder in treating subclinical mastitis in dairy cows at the manufacturer's recommended dose. Methods Forty (40) Holstein dairy cows with milk somatic cell count (SCC) ≥ 500,000 cellml−1 were randomly assigned to treatment (n = 20) and control (n = 20) groups. Cows in the treatment group were administered with 150 grams of Qicao Rukang powder orally for five days, while the control group received no treatment. The authors analyzed the milk SCC, milk composition, bacteriological cure rate of the drug, blood serum levels of interleukins (IL-6, IL-1β, and IL-8), tumor necrosis factor (TNF-α), and interferon gamma (INF-γ) quantified by using ELISA kits on day 0 and day 6. Results SCC of the treated group reduced very significantly (P < 0.001) compared with the control group. Milk fat, protein, and total solids increased significantly (P < 0.05) after treatment, whereas lactose and milk urea nitrogen levels showed a nonsubstantial rise. The bacteriological cure percentage of Qicao Rukang powder therapy was 77.8% for Aeromonas spp. (14 of 18), 75% for Pseudomonas spp. (6 of 8), and 100% for Acinetobacter spp. and Enterococcus spp. giving 81.8% cured for all isolates (27 of 33). Only 26.7% (8 of 30) of untreated cows recovered spontaneously. Analysis of IL-1β, IL-6, and INF-γ in the blood serum of the treated group revealed a significant decrease (P < 0.01) with nonsignificant rises in TNF-α and IL-8 levels. Conclusions This research demonstrates that Qicao Rukang powder has potent antibacterial and anti-inflammatory actions, supporting its use as an alternative to conventional treatment for subclinical dairy cow mastitis. However, further investigations will be required to explain the role of the active ingredients and the mechanisms involved in the pharmacological activities of the Qicao Rukang powder.
Collapse
|
10
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
11
|
Tian M, Huang Y, Wang X, Cao M, Zhao Z, Chen T, Yuan C, Wang N, Zhang B, Li C, Zhou X. Vaccaria segetalis: A Review of Ethnomedicinal, Phytochemical, Pharmacological, and Toxicological Findings. Front Chem 2021; 9:666280. [PMID: 33996757 PMCID: PMC8117358 DOI: 10.3389/fchem.2021.666280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vaccaria segetalis is a dry mature seed of Vaccaria hispanica (Mill.) Rauschert, which belongs to the genus V. segetalis (Neck.) Garcke. There are multiple medicinal parts of V. segetalis, according to the records, including roots, stems, leaves, flowers, and seeds, which should be used together. Currently, V. segetalis is most frequently used in the treatment of menstruation, dysmenorrhea, breast milk stoppages, and chylorrhea. Numerous studies present historical evidence of the use of V. segetalis to treat several diseases and describe its beneficial effects including prolactin- (PRL-) like, estrogen-like, antitumor, antiangiogenesis, and antioxidant activity. We summarized the period from January 1980 to December 2019 regarding V. segetalis. This review paper indicates that V. segetalis has promising clinical applications. The main active ingredients of the plant have been elucidated in recent years. We summarized the previously and newly discovered pharmacological effects of V. segetalis in addition to its active ingredients, ethnopharmacological uses, and toxicological properties, and provided a focus for future research.
Collapse
Affiliation(s)
- Meng Tian
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuwen Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang Z, Wei Q, Zeng Y, Jia X, Su H, Lin W, Xing N, Bai H, He Y, Wang Q. Effect of Hordei Fructus Germinatus on differential gene expression in the prolactin signaling pathway in the mammary gland of lactating rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113589. [PMID: 33217517 DOI: 10.1016/j.jep.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, Hordei Fructus Germinatus (HFG) is the germinated and dried fruit of Hordeum vulgare L, which is commonly used in clinical Chinese medicine. Traditional Chinese Medicine (TCM) theory holds that HFG can be both medicinal and edible, which means that it is derived from food medicine. Raw HFG and roasted HFG are used to treat hypogalactia, hyperprolactinemia and indigestion. In recent years, the lactogenic and galactophygous effects of HFG have attracted increasing attention. Nevertheless, there is much confusion over the use of raw and processed HFG, and the mechanism of its lactogenic effect seems remains poorly understood. AIM OF THE STUDY This study aimed to explore the lactogenic effect of raw HFG and roasted HFG on rats with overloaded lactation and to reveal the underlying molecular mechanism. MATERIALS AND METHODS Raw and processed HFG water decoctions were given to overloaded lactation model rats at a dose of 1.7800 g kg-1·d-1, and the control group was given the same volume of water. The lactogenic effect of raw and processed HFG was evaluated by measuring daily lactation, body weight and pup body weight, serum PRL, E2, and GH contents after parturition, and the pathological characteristics of mammary tissue sections. cDNA microarrays can be used to screen diverse gene expression patterns and signaling pathways related to prolactin. The expression of relevant differentially expressed genes was verified by real-time PCR and western blotting. RESULTS In vivo experiments demonstrated that the raw HFG water decoction stimulated mammogenesis, accelerated the transformation of the lobular acinar system, resulted in denser mammary epithelial cells and thicker glandular ducts that were full of milk and facilitated the secretion of milk. Moreover, HFG increased PRL, E2, and GH levels, pup body weight, daily lactation and the body weight of lactating rats. Following gene chip identification, KEGG pathway enrichment analysis revealed genes that were highly related to prolactin in the prolactin signaling pathway and JAK-STAT signaling pathway, and the main differentially expressed genes were Jak2 (down), Stat5α (up), cyclin D1 (up), SOCS1 (up), CISH (down) and PRLR (up). Compared with the control group, RT-PCR results indicated that Jak2 and CISH were downregulated and that Stat5α, cyclin D1, SOCS1 and PRLR were upregulated. Western blot assays showed that PRLR, STAT5α and cyclin D1 levels in the mammary glands of the raw HFG water decoction group were significantly increased, which was consistent with the results of cDNA microarray screening. CONCLUSION The present study reveals that raw HFG effectively enhances lactation in rats, possibly by influencing the prolactin/JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Zidong Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qing Wei
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yuanning Zeng
- College of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaozhou Jia
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huilin Su
- College of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanna Lin
- College of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haodong Bai
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yanshan He
- College of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040, China; College of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Chao J, Ko CY, Lin CY, Tomoji M, Huang CH, Chiang HC, Yang JJ, Huang SS, Su SY. Ethnobotanical Survey of Natural Galactagogues Prescribed in Traditional Chinese Medicine Pharmacies in Taiwan. Front Pharmacol 2021; 11:625869. [PMID: 33679390 PMCID: PMC7928277 DOI: 10.3389/fphar.2020.625869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Natural medicinal materials have been used to promote breast milk secretion. Here, we investigated the natural medicinal materials prescribed in traditional Chinese medicine (TCM) pharmacies across Taiwan to induce lactation. We collected medicinal materials from 87 TCM pharmacies, identified them in the prescriptions, and analyzed their drug contents. We examined their botanical origins, biological classifications, traditional usage, and modern pharmacological properties. We used the TCM Inheritance Support System to identify core medicinal materials in galactogenous prescriptions. We collected 81 medicinal materials from 90 galactogenous prescriptions. Leguminosae accounted for 12%, whereas Apiaceae accounted for 7% of all materials examined. The primary medicinal plant parts used were roots and seeds. Nineteen frequently used medicinal materials had a relative frequency of citation of greater than or equal to 0.2. According to their efficacy, 58% were warm, 54% were sweet, and 63% were tonifying; 74% of the frequently used medicinal materials have been showed efficacy against breast cancer. The primary core medicinal material was Angelica sinensis (Oliv.) Diels, whereas the secondary core medicinal materials were Tetrapanax papyrifer (Hook.) K. Koch and Hedysarum polybotrys Hand.-Mazz. Most galactogenous prescriptions consisted of multiple materials from Leguminosae and Apiaceae. The mechanisms underlying galactogenous efficacy warrant further investigations.
Collapse
Affiliation(s)
- Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Maeda Tomoji
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | | | - Hung-Che Chiang
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Jeng-Jer Yang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|