1
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Xu M, Zhong S, Zhu N, Wang S, Wang J, Li X, Ren X, Kong H. Oxidative and endoplasmic reticulum stress in diabetes-related hearing loss: Protective effects of thioredoxin. Life Sci 2024; 359:123223. [PMID: 39515416 DOI: 10.1016/j.lfs.2024.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) induces complex physiological changes in the inner ear environment. This study investigates the roles of oxidative stress (OS) and endoplasmic reticulum stress (ERS) in diabetes-related hearing loss (DRHL) and explores the potential of thioredoxin (Trx) in regulating OS, ERS, and apoptosis-related factors to mitigate the progression of hearing impairment. We conducted auditory and serological assessments in 63 patients with type 2 diabetes and 30 healthy controls. Type 2 diabetes models were induced in wild-type and Trx transgenic (Tg) mice, with auditory brainstem response (ABR) used to evaluate hearing changes. Cochlear tissues were isolated to analyse markers of apoptosis, OS, and ERS. Both patients with diabetes and mouse models exhibited hearing loss, alongside increased serum levels of Trx1, TXNIP, and AOPP, indicating oxidative damage. H&E and succinate dehydrogenase (SDH) staining revealed varying degrees of hair cell loss from the base to the apex of the cochlea in diabetic mice, with decreased expression of the hair cell protein prestin gene. Notably, Tg mice showed significant delay in hearing loss progression. In vitro, advanced glycation end-products (AGEs) induced OS and ERS in cochlear-like HEI-OC1 cells, while Trx overexpression enhanced Nrf2 activity, alleviating AGE-induced cellular stress. In conclusion, Trx exhibits protective effects against DRHL, potentially by enhancing Nrf2/HO-1/SOD2 function to reduce OS and ERS.
Collapse
Affiliation(s)
- Meng Xu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Shiwen Zhong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Na Zhu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Sifan Wang
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Jingyi Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiang Li
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| | - Hui Kong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| |
Collapse
|
3
|
Hua Y, Wang H, Chen T, Zhou Y, Chen Z, Zhao X, Mo S, Mao H, Li M, Wang L, Hong M. Antioxidant 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors. Molecules 2024; 29:5110. [PMID: 39519751 PMCID: PMC11547736 DOI: 10.3390/molecules29215110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP.
Collapse
Affiliation(s)
- Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yeru Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyuan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyue Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaoqin Mo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyun Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Miao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linxia Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
4
|
Zhang D, Lu M, Liu X, Wei X, Lv G, Shi J, Battino M, Chen K, Zou X. Effect of Phenol and Alkylamide Interaction on α-Glucosidase Inhibition and Cellular Antioxidant Activity during In Vitro Digestion: Using Szechuan Pepper ( Zanthoxylum genus) as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11531-11548. [PMID: 38700894 DOI: 10.1021/acs.jafc.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.
Collapse
Affiliation(s)
- Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minmin Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuhao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona 60100, Italy
| | - Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Yen PL, Lin TA, Chuah WL, Chang CY, Tseng YH, Huang CY, Yang JC, Hsu FL, Liao VHC. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules 2023; 28:6923. [PMID: 37836767 PMCID: PMC10574689 DOI: 10.3390/molecules28196923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cirsium japonicum DC. var. australe Kitam. has been used as an herbal remedy and often involves using the whole plant or roots. However, the bioactivities of different parts of the plant have been far less explored. This study aimed to evaluate the antioxidative ability of methanol extracts from the flowers, leaves, stems, and roots of the Cirsium plant and their possible active components against juglone-induced oxidative stress in the nematode Caenorhabditis elegans. The results showed that the highest dry weight (12.3 g per plant) was observed in leaves, which was followed by stems (8.0 g). The methanol extract yields from the flowers, leaves, and roots were all similar (13.0-13.8%), while the yield from stems was the lowest (8.6%). The analysis of the silymarin contents in the extracts indicated that the flowers, leaves, stems, and roots contained silychristin and taxifolin; however, silydianin was only found in the leaves, stems, and roots. The flower, leaf, and stem extracts, at a concentration of 10 mg/L, significantly reduced juglone-induced oxidative stress in C. elegans, which was potentially due to the presence of silychristin and taxifolin. Overall, C. japonicum DC. var. australe Kitam. contains a significant amount of silymarin and exhibits in vivo antioxidative activity, suggesting that the prospects for the plant in terms of health supplements or as a source of silymarin are promising.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Wei Lin Chuah
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Chih-Yi Chang
- Department of Forestry, National Chung Hsing University, No. 145, Xingda Rd., Taichung 402, Taiwan;
| | - Yen-Hsueh Tseng
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Chia-Yin Huang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Jeng-Chuann Yang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Fu-Lan Hsu
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| |
Collapse
|
6
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
7
|
Pei Y, Zhang J, Qu J, Rao Y, Li D, Gai X, Chen Y, Liang Y, Sun Y. Complement component 3 protects human bronchial epithelial cells from cigarette smoke-induced oxidative stress and prevents incessant apoptosis. Front Immunol 2022; 13:1035930. [PMID: 36605203 PMCID: PMC9807617 DOI: 10.3389/fimmu.2022.1035930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The complement component 3 (C3) is a pivotal element of the complement system and plays an important role in innate immunity. A previous study showed that intracellular C3 was upregulated in airway epithelial cells (AECs) from individuals with end-stage chronic obstructive pulmonary disease (COPD). Accumulating evidence has shown that cigarette smoke extract (CSE) induces oxidative stress and apoptosis in AECs. Therefore, we investigated whether C3 modulated cigarette smoke-induced oxidative stress and apoptosis in AECs and participated in the pathogenesis of COPD. We found increased C3 expression, together with increased oxidative stress and apoptosis, in a cigarette smoke-induced mouse model of COPD and in AECs from patients with COPD. Different concentrations of CSEinduced C3 expression in 16HBE cells in vitro. Interestingly, C3 knockdown (KD) exacerbated oxidative stress and apoptosis in 16HBE cells exposed to CSE. Furthermore, C3 exerted its pro-survival effects through JNK inhibition, while exogenous C3 partially rescued CSE-induced cell death and oxidative stress in C3 KD cells. These data indicate that locally produced C3 is an important pro-survival molecule in AECs under cigarette smoke exposure, revealing a potentially novel mechanism in the pathogenesis of COPD.
Collapse
Affiliation(s)
| | - Jing Zhang
- *Correspondence: Jing Zhang, ; Yongchang Sun,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
9
|
Wang J, Zhang L, Cao H, Shi X, Zhang X, Gao Z, Ikeda K, Yan T, Jia Y, Xu F. Silibinin improves L-cell mass and function through an estrogen receptor-mediated antioxidative mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154022. [PMID: 35255283 DOI: 10.1016/j.phymed.2022.154022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Silibinin, a major component of milk thistle extract silymarin, promotes hypoglycemia by activating estrogen receptor (ER) α and β-mediated pathways in pancreatic β-cells. Glucagon-like peptide-1 (GLP-1) is the enteroendocrine peptide produced in L-cells, and it controls glucose homeostasis through multiple pathways. The effect of silibinin on L-cell mass and function is still unknown. PURPOSE The protective effect of silibinin on palmitate (PA)-treated intestinal L-cell line GLUTag cells and the SHRSP•Z-Leprfa/Izm-Dmcr (SP•ZF) diabetic rat model was investigated in current study. METHODS After pre-incubation with 50 μM silibinin for 4 h, GLUTag cells were treated with 0.125 mM PA. MTT, Annexin V/PI apoptosis, Hoechst 33342 staining, western blot, DCFH-DA, GLP-1 ELISA, qRT-PCR and immunofluorescence analyses were undertaken to determine ER-dependent protection of silibinin against PA-induced cellular damage. The differential protein expression of GLUTag cells under different treatments was examined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The SP•ZF diabetic rat model was chosen for in vivo study. After 4 weeks of gastric gavage with 100 or 300 mg kg-1 of silibinin, the physiological indexes of the rats were measured. Cells expressing GLP-1, 8‑hydroxy-2'-deoxyguanosine (8-OHdG), ERα, and/or ERβ in duodenum tissues were detected by immunofluorescence. RESULTS The current study showed that the GLUTag cells preincubated with silibinin activated the transcription factor nuclear erythroid-2 like factor-2 (Nrf2)-antioxidant pathway, reduced reactive oxygen species (ROS) generation, and improved cell survival and GLP-1 content, while the antioxidative effect of silibinin was blocked by the selective ERα antagonist MPP or ERβ antagonist PHTPP in GLUTag cells. Our proteomics data further revealed that ERα or β inactivation reduced glutathione peroxide and proteins associated with endocytosis and reproduction, thus at least partially reversing the protective effect of silibinin. SP•ZF rats received silibinin treatment showed increased serum GLP-1 content and improved glucose homeostasis. Furthermore, silibinin upregulated ERα and β levels and reduced the level of 8-OHdG in GLP-1-positive cells. CONCLUSIONS Our study showed that silibinin improved L-cell mass and function through an ER-mediated antioxidant pathway, and the proteomics analysis revealed for the first time the differential regulation of proteins by PA and silibinin in GLUTag cells.
Collapse
Affiliation(s)
- Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Luxin Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Cao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China; School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xiaorong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zihao Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Katsumi Ikeda
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
10
|
Yang HL, Shi XW. Silybin Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Dendritic Cell Activation and Th17 Cell Differentiation. Front Neurol 2021; 12:659678. [PMID: 34557140 PMCID: PMC8452861 DOI: 10.3389/fneur.2021.659678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Silybin, a peculiar flavonoid compound derived from the fruit and seeds of Silybum marianum, exhibits strong anti-inflammatory activities. In the present study, we found that silybin effectively alleviated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), via inhibition of dendritic cell (DC) activation and Th17 cell differentiation. Silybin treatment greatly ameliorated the disease severity and significantly declined inflammation and demyelination of the central nervous system (CNS) of EAE mice. Consistent with the disease development, silybin-treated bone marrow-derived DCs (BM-DCs) exhibited reduced costimulatory molecules (e.g., CD80 and CD86) and MHC II expression. These results demonstrated the distinguished bioactivity of silybin for suppressing DC activation, inhibiting pathogenic Th17 inflammatory cell responses, and, eventually, alleviating EAE severity. Taken together, our results show that silybin has high potential for the development of a novel therapeutic agent for the treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
| | - Xiao-Wu Shi
- Xian Yang Central Blood Station, Xianyang, China
| |
Collapse
|
11
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Role of HO-1 against Saturated Fatty Acid-Induced Oxidative Stress in Hepatocytes. Nutrients 2021; 13:nu13030993. [PMID: 33808635 PMCID: PMC8003531 DOI: 10.3390/nu13030993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Increased circulating levels of free fatty acids, especially saturated ones, are involved in disease progression in the non-alcoholic fatty liver. Although the mechanism of saturated fatty acid-induced toxicity in the liver is not fully understood, oxidative stress may be deeply involved. We examined the effect of increased palmitic acid, the most common saturated fatty acid in the blood, on the liver of BALB/c mice via tail vein injection with palmitate. After 24 h, among several anti-oxidative stress response genes, only heme oxygenase-1 (HO-1) was significantly upregulated in palmitate-injected mice compared with that in vehicle-injected mice. Elevation of HO-1 mRNA was also observed in the fatty liver of high-fat-diet-fed mice. To further investigate the role of HO-1 on palmitic acid-induced oxidative stress, in vitro experiments were performed to expose palmitate to HepG2 cells. SiRNA-mediated knockdown of HO-1 significantly increased the oxidative stress induced by palmitate, whereas pre-treatment with SnCl2, a well-known HO-1 inducer, significantly decreased it. Moreover, SB203580, a selective p38 inhibitor, reduced HO-1 mRNA expression and increased palmitate-induced oxidative stress in HepG2 cells. These results suggest that the HO-1-mediated anti-oxidative stress compensatory reaction plays an essential role against saturated fatty acid-induced lipotoxicity in the liver.
Collapse
|
13
|
Model JFA, Lima MV, Ohlweiler R, Lopes Vogt É, Rocha DS, Souza SKD, Türck P, Araújo ASDR, Vinagre AS. Liraglutide improves lipid and carbohydrate metabolism of ovariectomized rats. Mol Cell Endocrinol 2021; 524:111158. [PMID: 33444670 DOI: 10.1016/j.mce.2021.111158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Considering that post-menopausal women and ovariectomized rodents develop obesity associated with increased visceral fat, this study was developed to investigate if liraglutide, a glucagon-like peptide 1 (GLP1) analogue, could improve the metabolism of estrogen (E2) deficient females. Wistar rats were ovariectomized (OVX), and subdivided in four groups: sham saline, sham liraglutide, OVX saline, and OVX liraglutide. After sixty days, metabolic parameters of blood, heart, liver, brown (BAT) and white adipose tissue (WAT) visceral depots, and, heart oxidative homeostasis, were evaluated. Castration increased the animals' body weight, the relative weight of the WAT depots, hepatic triglycerides and cardiac glycogen content. Liraglutide treatment reversed these effects, decreased WAT depots weight and increased glucose oxidation and lipogenesis in BAT and WAT. In addition, liraglutide enhanced adrenalin (A) lipolytic effect. These results indicate that liraglutide may be a promising treatment to restore lipid homeostasis and prevent weight gain associated with E2 deficiency.
Collapse
Affiliation(s)
| | - Matheus Vieira Lima
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Ohlweiler
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Samir Khal de Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patrick Türck
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Anapaula Sommer Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Furue M. Regulation of Skin Barrier Function via Competition between AHR Axis versus IL-13/IL-4‒JAK‒STAT6/STAT3 Axis: Pathogenic and Therapeutic Implications in Atopic Dermatitis. J Clin Med 2020; 9:E3741. [PMID: 33233866 PMCID: PMC7700181 DOI: 10.3390/jcm9113741] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction, and chronic pruritus. As the anti-interleukin-4 (IL-4) receptor α antibody dupilumab improves all three cardinal features of AD, the type 2 cytokines IL-4 and especially IL-13 have been indicated to have pathogenic significance in AD. Accumulating evidence has shown that the skin barrier function is regulated via competition between the aryl hydrocarbon receptor (AHR) axis (up-regulation of barrier) and the IL-13/IL-4‒JAK‒STAT6/STAT3 axis (down-regulation of barrier). This latter axis also induces oxidative stress, which exacerbates inflammation. Conventional and recently developed agents for treating AD such as steroid, calcineurin inhibitors, cyclosporine, dupilumab, and JAK inhibitors inhibit the IL-13/IL-4‒JAK‒STAT6/STAT3 axis, while older remedies such as coal tar and glyteer are antioxidative AHR agonists. In this article, I summarize the pathogenic and therapeutic implications of the IL-13/IL-4‒JAK‒STAT6/STAT3 axis and the AHR axis in AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|