1
|
Zhong H, Yao L, An H, Fang L, Liu X, Wang Q, Li Q, Liu D, Fan C, Zhang M, Zhang C, Zhang Y, Hao P. MrgD as a Novel Modeling and Treatment Target for Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:e164-e183. [PMID: 40143817 DOI: 10.1161/atvbaha.124.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The hyperproliferation of smooth muscle cells and deposition of collagen in the pulmonary artery are among the primary characteristics of pulmonary hypertension (PH). These processes contribute to vascular remodeling, ultimately leading to elevated pulmonary artery pressure and right ventricular failure. The MrgD (Mas-related G-protein-coupled receptor member D) exhibits close associations with certain cardiovascular diseases; however, its role in PH remains unclear. METHODS The effects of the absence or activation of MrgD on PH were investigated using PH animal models induced by Sugen5416+hypoxia, monocrotaline, as well as global or smooth muscle-specific knockout of MrgD. Signaling pathways regulated by MrgD were investigated using high-throughput screening of data from single-cell sequencing of mouse lungs and RNA sequencing of human pulmonary artery smooth muscle cells, as well as other molecular biology experiments. RESULTS We observed decreased MrgD levels in animal models and patients with PH. Both global and conditional knockout of MrgD exacerbated hypoxia-induced PH in mice. MrgD activation attenuated the PH phenotypes in several established models, although these protective effects were reversed in MrgD-knockout mice. Transcriptome analysis revealed a significantly differentially expressed gene, PIM1 (proviral integration site for Moloney murine leukemia virus 1), as a potential MrgD target. Silencing MrgD increased pulmonary artery smooth muscle cell proliferation by facilitating the AKT (protein kinase B)-mediated interaction of MAZ (MYC-associated Zinc-finger protein) with PIM1. MrgD activation inhibited this pathway and was ineffective in PH mice with pulmonary artery smooth muscle cells overexpressing PIM1. CONCLUSIONS MrgD deficiency in pulmonary arterioles increases susceptibility to PH, particularly in a hypoxic environment. MrgD is a potential modeling and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Mice, Knockout
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Vascular Remodeling
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Cell Proliferation
- Mice, Inbred C57BL
- Male
- Hypoxia/complications
- Mice
- Cells, Cultured
- Monocrotaline
- Indoles
- Pyrroles
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lina Yao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huailong An
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijun Fang
- Department of Pulmonary and Critical Care Medicine (L.F.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianqian Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (Q.W.)
| | - Qimou Li
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Fan
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mei Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Panpan Hao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Kilic A, Ipek BE, Tatonyan S, Kilic K, Demirci H, Atalar F, Ustunova S, Dariyerli N. Alamandine enhanced spatial memory in rats by reducing neuroinflammation and altering BDNF levels in the hippocampus and prefrontal cortex. Sci Rep 2025; 15:12205. [PMID: 40204820 PMCID: PMC11982245 DOI: 10.1038/s41598-025-95683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Our study aims to determine the effects of alamandine, the newest component of the renin-angiotensin system, on cognitive functions, neuroinflammation, and oxidative stress in the pathophysiology of depression. 35 male Sprague dawley rats, three months old, weighing between 300 and 350 g, were used. The chronic, unpredictable mild stress model of depression was performed. Experimental animals were divided into five groups: control (C), depression (D), alamandine (50 µg/kg, ip) (D + ALA), A779 (300 µg/kg, ip) (D + A779), and both alamandine and A779 treatment groups (D + ALA + A779). After confirming the development of depression through behavioral tests, the animals' learning and memory performances were measured using the Morris water maze test. At the end of the experiment, the animals' prefrontal cortex, hippocampus, and blood samples were isolated for biochemical studies and gene expression analyses. The sucrose preference, open field, elevated plus maze, tail suspension, and forced swimming tests were performed to determine the animals' anxiety levels. There was a significant increase in anxiety-like behaviors in the D group and the A779-treated group, while alamandine exhibited an anxiolytic effect. Moreover, improvements in cognitive skills observed in the Morris water maze test were paralleled by molecular changes, including an increase in BDNF protein levels and NMDA receptor expression and a decrease in GABA levels. In addition, the levels of TNF-α, IL-1β, IL-6, and oxidative stress markers were increased in the depression groups while significantly decreased with alamandine treatment. It was concluded that alamandine has an anxiolytic effect and facilitates spatial memory by reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Aysu Kilic
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey.
| | - Betul Esra Ipek
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Suzin Tatonyan
- Department of Immunology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Rare Diseases Research Laboratory, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kubra Kilic
- School of Medicine, Istanbul University, Istanbul, Turkey
| | - Huri Demirci
- Department of Medical Biochemistry, School of Medicine, Biruni University, Istanbul, Turkey
| | - Fatmahan Atalar
- Department of Rare Diseases, Istanbul University, Child Health Institute, Istanbul, Turkey
| | - Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Nuran Dariyerli
- Department of Physiology, School of Medicine, Istanbul University - Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Li M, Cui M, Li G, Liu Y, Xu Y, Eftekhar SP, Ala M. The Pathophysiological Associations Between Obesity, NAFLD, and Atherosclerotic Cardiovascular Diseases. Horm Metab Res 2024; 56:683-696. [PMID: 38471571 DOI: 10.1055/a-2266-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Man Cui
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxia Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueqiu Liu
- Clinical Specialty of Integrated Chinese and Western Medicine, The First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Moein Ala
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
5
|
Azeredo PDS, Fan D, Murphy EA, Carver WE. Potential of Plant-Derived Compounds in Preventing and Reversing Organ Fibrosis and the Underlying Mechanisms. Cells 2024; 13:421. [PMID: 38474385 PMCID: PMC10930795 DOI: 10.3390/cells13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Increased production of extracellular matrix is a necessary response to tissue damage and stress. In a normal healing process, the increase in extracellular matrix is transient. In some instances; however, the increase in extracellular matrix can persist as fibrosis, leading to deleterious alterations in organ structure, biomechanical properties, and function. Indeed, fibrosis is now appreciated to be an important cause of mortality and morbidity. Extensive research has illustrated that fibrosis can be slowed, arrested or even reversed; however, few drugs have been approved specifically for anti-fibrotic treatment. This is in part due to the complex pathways responsible for fibrogenesis and the undesirable side effects of drugs targeting these pathways. Natural products have been utilized for thousands of years as a major component of traditional medicine and currently account for almost one-third of drugs used clinically worldwide. A variety of plant-derived compounds have been demonstrated to have preventative or even reversal effects on fibrosis. This review will discuss the effects and the underlying mechanisms of some of the major plant-derived compounds that have been identified to impact fibrosis.
Collapse
Affiliation(s)
- Patrícia dos Santos Azeredo
- Laboratory of Atherosclerosis, Thrombosis and Cell Therapy, Institute of Biology, State University of Campinas—UNICAMP Campinas, Campinas 13083-970, Brazil;
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - E. Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Wayne E. Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Hamash SM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM. The classical and non-classical axes of renin-angiotensin system in Parkinson disease: The bright and dark side of the moon. Ageing Res Rev 2024; 94:102200. [PMID: 38237699 DOI: 10.1016/j.arr.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Sadiq M Al-Hamash
- Department of Pediatric Cardiology, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | |
Collapse
|
7
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
8
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Songür HS, Kaya SA, Altınışık YC, Abanoz R, Özçelebi E, Özmen F, Kösemehmetoğlu K, Soydan G. Alamandine treatment prevents LPS-induced acute renal and systemic dysfunction with multi-organ injury in rats via inhibiting iNOS expression. Eur J Pharmacol 2023; 960:176160. [PMID: 37923157 DOI: 10.1016/j.ejphar.2023.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Sepsis is defined as the dysregulated immune response leading to multi-organ dysfunction and injury. Sepsis-induced acute kidney injury is a significant contributor to morbidity and mortality. Alamandine (ALA) is a novel endogenous peptide of the renin-angiotensin-aldosterone system. It is known for its anti-inflammatory and anti-apoptotic effects, but its functional and vascular effects on sepsis remain unclear. We aimed to investigate the effects of ALA, as a pre- and post-treatment agent, on lipopolysaccharide (LPS)-induced systemic and renal dysfunction and injury in the LPS-induced endotoxemia model in rats via functional, hemodynamic, vascular, molecular, biochemical, and histopathological evaluation. 10 mg/kg intraperitoneal LPS injection caused both hepatic and renal injury, decreased blood flow in several organs, and renal dysfunction at 20 h in Sprague-Dawley rats. Our results showed that ALA treatment ameliorated systemic and renal inflammation, reduced inflammatory cytokines, prevented the enhancement of the mortality rate, reversed vascular dysfunction, corrected decreased blood flows in several organs, and reduced renal and hepatic injury via inhibiting iNOS (inducible nitric oxide synthase) and caspase expressions in the kidney. In addition, expressions of different ALA-related receptors showed alterations in this model, and ALA treatment reversed these alterations. These data suggest that ALA's systemic and renal protective effects are achieved through its anti-inflammatory, anti-pyroptotic, and anti-apoptotic effects on hemodynamic and vascular functions via reduced iNOS expression.
Collapse
Affiliation(s)
- H Saltuk Songür
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Sinan Alperen Kaya
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | | | - Rukiye Abanoz
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Esin Özçelebi
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | | | - Güray Soydan
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Jesus ICG, Mesquita T, Santos RAS, Guatimosim S. An overview of alamadine/MrgD signaling and its role in cardiomyocytes. Am J Physiol Cell Physiol 2023; 324:C606-C613. [PMID: 36571443 PMCID: PMC11033694 DOI: 10.1152/ajpcell.00399.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system (RAS) is a classical hormonal system involved in a myriad of cardiovascular functions. This system is composed of many different peptides that act in the heart through different receptors. One of the most important of these peptides is angiotensin II, which in pathological conditions triggers a set of actions that lead to heart failure. On the other hand, another RAS peptide, angiotensin-(1-7) is well known to develop powerful therapeutic effects in many forms of cardiac diseases. In the last decade, two new components of RAS were described, the heptapeptide alamandine and its receptor, the Mas-related G protein-coupled receptor member D (MrgD). Since then, great effort was made to characterize their physiological and pathological function in the heart. In this review, we summarize the latest insights about the actions of alamandine/MrgD axis in the heart, with particular emphasis in the cardiomyocyte. More specifically, we focused on their antihypertrophic and contractility effects, and the related molecular events activated in the cardiomyocyte.
Collapse
Affiliation(s)
- Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thássio Mesquita
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, California, USA
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
The context-dependent role of transforming growth factor-β/miR-378a-3p/connective tissue growth factor in vascular calcification: a translational study. Aging (Albany NY) 2023; 15:830-845. [PMID: 36787443 PMCID: PMC9970315 DOI: 10.18632/aging.204518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Vascular calcification (VC) constitutes an important vascular pathology with prognostic importance. The pathogenic role of transforming growth factor-β (TGF-β) in VC remains unclear, with heterogeneous findings that we aimed to evaluate using experimental models and clinical specimens. METHODS Two approaches, exogenous administration and endogenous expression upon osteogenic media (OM) exposure, were adopted. Aortic smooth muscle cells (ASMCs) were subjected to TGF-β1 alone, OM alone, or both, with calcification severity determined. We evaluated miR-378a-3p and TGF-β1 effectors (connective tissue growth factor; CTGF) at different periods of calcification. Results were validated in an ex vivo model and further in sera from older adults without or with severe aortic arch calcification. RESULTS TGF-β1 treatment induced a significant dose-responsive increase in ASMC calcification without or with OM at the mature but not early or mid-term VC period. On the other hand, OM alone induced VC accompanied by suppressed TGF-β1 expressions over time; this phenomenon paralleled the declining miR-378a-3p and CTGF expressions since early VC. TGF-β1 treatment led to an upregulation of CTGF since early VC but not miR-378a-3p until mid-term VC, while miR-378a-3p overexpression suppressed CTGF expressions without altering TGF-β1 levels. The OM-induced down-regulation of TGF-β1 and CTGF was also observed in the ex vivo models, with compatible results identified from human sera. CONCLUSIONS We showed that TGF-β1 played a context-dependent role in VC, involving a time-dependent self-regulatory loop of TGF-β1/miR-378a-3p/CTGF signaling. Our findings may assist subsequent studies in devising potential therapeutics against VC.
Collapse
|
12
|
Tanrıverdi LH, Özhan O, Ulu A, Yıldız A, Ateş B, Vardı N, Acet HA, Parlakpinar H. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam Clin Pharmacol 2023; 37:60-74. [PMID: 36117326 DOI: 10.1111/fcp.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The MrgD receptor agonist, alamandine (ALA) and Mas receptor agonist, AVE0991 have recently been identified as protective components of the renin-angiotensin system. We evaluated the effects of ALA and AVE0991 on cardiovascular function and remodeling in angiotensin (Ang) II-induced hypertension in rats. Sprague Dawley rats were subject to 4-week subcutaneous infusions of Ang II (80 ng/kg/min) or saline after which they were treated with ALA (50 μg/kg), AVE0991 (576 μg/kg), or ALA+AVE0991 during the last 2 weeks. Systolic blood pressure (SBP) and heart rate (HR) values were recorded with tail-cuff plethysmography at 1, 15, and 29 days post-treatment. After euthanization, the heart and thoracic aorta were removed for further analysis and vascular responses. SBP significantly increased in the Ang II group when compared to the control group. Furthermore, Ang II also caused an increase in cardiac and aortic cyclophilin-A (CYP-A), monocyte chemoattractant protein-1 (MCP-1), and cardiomyocyte degeneration but produced a decrease in vascular relaxation. HR, matrix metalloproteinase-2 and -9, NADPH oxidase-4, and lysyl oxidase levels were comparable among groups. ALA, AVE0991, and the drug combination produced antihypertensive effects and alleviated vascular responses. The inflammatory and oxidative stress related to cardiac MCP-1 and CYP-A levels decreased in the Ang II+ALA+AVE0991 group. Vascular but not cardiac angiotensin-converting enzyme-2 levels decreased with Ang II administration but were similar to the Ang II+ALA+AVE0991 group. Our experimental data showed the combination of ALA and AVE0991 was found beneficial in Ang II-induced hypertension in rats by reducing SBP, oxidative stress, inflammation, and improving vascular responses.
Collapse
Affiliation(s)
| | - Onural Özhan
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hacı Ahmet Acet
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
13
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
14
|
Audzeyenka I, Szrejder M, Rogacka D, Angielski S, Saleem MA, Piwkowska A. β-Aminoisobutyric acid (L-BAIBA) is a novel regulator of mitochondrial biogenesis and respiratory function in human podocytes. Sci Rep 2023; 13:766. [PMID: 36641502 PMCID: PMC9840613 DOI: 10.1038/s41598-023-27914-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Podocytes constitute an external layer of the glomerular filtration barrier, injury to which is a hallmark of renal disease. Mitochondrial dysfunction often accompanies podocyte damage and is associated with an increase in oxidative stress and apoptosis. β-Aminoisobutyric acid (BAIBA) belongs to natural β-amino acids and is known to exert anti-inflammatory and antioxidant effects. BAIBA has been reported to be involved in regulating mitochondrial dynamics, but unknown is whether BAIBA influences podocyte bioenergetics. The present study showed that human podocytes express the BAIBA receptor, Mas-related G protein-coupled receptor type D (MRGPRD), which is sensitive to BAIBA stimulation. The treatment of podocytes with L-BAIBA significantly increased their respiratory parameters, such as basal and maximal respiration, adenosine triphosphate (ATP) production, and spare respiratory capacity. We also found that L-BAIBA altered mitochondrial quantity, size, and shape, promoting organelle elongation and branching. L-BAIBA significantly upregulated peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) and transcription factor A mitochondrial (TFAM), indicating an increase in mitochondrial biogenesis. Our results demonstrate a novel regulatory mechanism of mitochondrial dynamics in podocytes, which may be important for maintaining their functions in the renal filtration barrier and prompting further investigations of preventing or ameliorating mitochondrial damage in podocytes in pathological states.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland. .,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | | | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
15
|
Wang W, Zhang Y, Huang W, Yuan Y, Hong Q, Xie Z, Li L, Chen Y, Li X, Meng Y. Alamandine/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy. J Transl Med 2023; 21:24. [PMID: 36635651 PMCID: PMC9838062 DOI: 10.1186/s12967-022-03837-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a chronic progressive, lethal disease in which ectopic lung fibroblast (LF) activation plays a vital part. We have previously shown that alamandine (ALA) exerts anti-fibrosis effects via the MAS-related G-protein coupled receptor D (MrgD). Here, we further investigate how it moderates transforming growth factor β1 (TGF-β1)-induced LF activation by regulating glucose metabolism and mitochondria autophagy (mitophagy). METHODS In vitro, we examined glycolysis-related protein hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and lactic acid in cells treated with TGF-β1. The oxygen consumption rate and the extracellular acidification rate were detected using Seahorse assays. Then, mitophagy was evaluated using transmission electron microscopy, mt-Keima, and the co-localization of Parkin and COX IV with LC3 and LAMP1, respectively. The autophagic degradation of HK2 and PFKFB3 was detected by 3MA and bafilomycin A1 and assessed by their co-localization with LC3 and LAMP1, respectively. The effects of ALA on LF activation markers collagen I and α-SMA were detected. The effects of ALA on glucose metabolism, mitophagy, and the activation of LF were also investigated in vivo. RESULTS We found that the ALA/MrgD axis improved TGF-β1-mediated LF activation by repressing glycolysis by downregulating HK2 and PFKFB3 expression. Lactic acid sustained positive feedback between glycolysis and LF activation by maintaining the expression of HK2 and PFKFB3. We also showed that glycolysis enhancement resulted from blocking the autophagic degradation of HK2 and PFKFB3 while upregulated mRNA levels by TGF-β1, while all of those improved by ALA adding. Importantly, we determined that moderation of Parkin/LC3-mediated mitophagy by TGF-β1 also promotes glycolysis but is reversed by ALA. Furthermore, we proved that ALA counteracts the effects of bleomycin on HK2, PFKFB3, LC3, Parkin, and LF activation in vivo. CONCLUSION In this study, we show that the ALA/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy.
Collapse
Affiliation(s)
- Wei Wang
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Yue Zhang
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Wenhui Huang
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Yafei Yuan
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Qiaohui Hong
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Zhanzhan Xie
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Lijuan Li
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Yixin Chen
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Xu Li
- grid.284723.80000 0000 8877 7471Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China ,grid.443397.e0000 0004 0368 7493Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199 China
| | - Ying Meng
- grid.284723.80000 0000 8877 7471Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 China
| |
Collapse
|
16
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
17
|
Fernandes RS, Netto MRT, Carvalho FB, Rigatto K. Alamandine: A promising treatment for fibrosis. Peptides 2022; 157:170848. [PMID: 35931236 DOI: 10.1016/j.peptides.2022.170848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
Angiotensin (Ang) II, the main active member of the renin angiotensin system (RAS), is essential for the maintenance of cardiovascular homeostasis. However, hyperactivation of the RAS causes fibrotic diseases. Ang II has pro-inflammatory actions, and moreover activates interstitial fibroblasts and/or dysregulates extracellular matrix degradation. The discovery of new RAS pathways has revealed the complexity of this system. Among the RAS peptides, alamandine (ALA, Ala1 Ang 1-7) has been identified in humans, rats, and mice, with protective actions in different pathological conditions. ALA has similar effects to its well-known congener, Ang-(1-7), as a vasodilator, anti-inflammatory, and antifibrotic. Its protective role against cardiovascular diseases is well-reviewed in the literature. However, the protective actions of ALA in fibrotic conditions have been little explored. Therefore, in this article, we review the ability of ALA to modulate the inflammatory process and collagen deposition, to serve as an antioxidant, and to mediate protection against functional disorders. In this scenario, we also explore ALA as a promising therapy for pulmonary fibrosis after COVID-19 infection.
Collapse
Affiliation(s)
- Renata Streck Fernandes
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Brazil
| | | | | | - Katya Rigatto
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Brazil.
| |
Collapse
|
18
|
Ding W, Miao Z, Feng X, Luo A, Tan W, Li P, Wang F. Alamandine, a new member of the renin-angiotensin system (RAS), attenuates collagen-induced arthritis in mice via inhibiting cytokine secretion in synovial fibroblasts. Peptides 2022; 154:170816. [PMID: 35609788 DOI: 10.1016/j.peptides.2022.170816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022]
Abstract
Alamandine is a novel component of the renin-angiotensin system (RAS) as well as an important biologically active peptide. It has predominantly been studied in cardiovascular context. However, its role in rheumatoid arthritis (RA) remains unknown. Here we illustrated its effects on inflammatory cytokines production by synovial fibroblasts from RA and pathological changes in collagen-induced arthritis (CIA) mice. Alamandine (0.1, 1 and 10 µg/ml) did not affect the survival of the synovial fibroblasts, but decreased the migration and proinflammatory cytokines expression in TNF-α (10 ng/ml) stimulated cells in vitro. Additionally, alamandine selectively decreased phosphorylated-JNK expression induced by TNF-a stimulation in RA FLS. DBA/1 J mice were induced arthritis by a primary injection with an emulsion of bovine type II collagen (CII) and complete Freund's adjuvant (day 0) and a booster injection of CII in incomplete Freund's adjuvant (day 21). Mice were then given alamandine intraperitoneally in saline (50 μg/kg/day) from days 21-42. Histology and multiplex immunobead assay showed that alamandine treatment inhibited the development of arthritis and reduced the joint damage. This effect was accompanied by the reduced inflammatory cytokines (IL-6, IL-23, IFN-γ) mRNA expression in local joints, the decreased TNF-α, IL-6, IL-17 and the increased IL-10 levels in the serum from alamandine administrated CIA mice. In conclusion, alamandine attenuates the development of arthritis by suppressing inflammatory cytokines expression in RA synovial fibroblasts via MAPK signaling pathway, suggesting a potential therapeutic role for RA.
Collapse
Affiliation(s)
- Wei Ding
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Aishu Luo
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wenfeng Tan
- Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
19
|
Balakumar P, Handa S, Alqahtani A, Alqahtani T, Khan NA, LakshmiRaj RS, Thangathirupathi A, Sundram K, Shenoy V. Unraveling the Differentially Articulated Axes of the Century-Old Renin-Angiotensin-Aldosterone System: Potential Therapeutic Implications. Cardiovasc Toxicol 2022; 22:246-253. [PMID: 35143015 DOI: 10.1007/s12012-022-09724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Among numerous choices in cardiovascular therapies used for the management of hypertension and heart failure, drugs affecting the renin-angiotensin-aldosterone system (RAAS) hold substantial therapeutic roles. Therapies aimed at modifying the RAAS and its overactivation are employed for the management of various insidious disorders. In the pharmacologic perspective, RAAS is one of the frequently manipulated systems for the management of hypertension, heart failure, myocardial infarction, and renal disease. The RAAS pharmacologic interventions principally include the ACE inhibitors, the angiotensin II-AT1 receptor blockers, the mineralocorticoid receptor antagonists, and the direct renin inhibitors. In addition, therapeutic implication of ACE2/angiotensin (1-7)/Mas receptor activation using various ligands is being explored owing to their anti-inflammatory, anti-fibrotic, vasodilatory, and cardiovascular defensive roles. Moreover, being considered as the counter-regulatory arm of AT1 receptor, the potential role of AT2 receptor activation using selective AT2 receptor agonist is currently investigated for its efficacy in pulmonary complications. As an important regulator of fluid volume, blood pressure, and cardiovascular-renal function, the RAAS has been documented as a diversified intricate system with several therapeutic possibilities coupled with their fundamental structural and functional modulatory roles in cardiovascular, renal, and other systems. The RAAS possesses a number of regulatory, deregulatory, and counter-regulatory axes of physiopathologic importance in health and disease. The counter-regulatory arms of the RAAS might play an essential role in mitigating cardiovascular, renal, and pulmonary pathologies. In light of this background, we sought to explore the classical and counter-regulatory axes/arms of the RAAS and their imperative roles in physiologic functions and disease pathogenesis.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India.
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - R Sulochana LakshmiRaj
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India
| | - A Thangathirupathi
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India
| | - Karupiah Sundram
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Malaysia
| | - Vinayak Shenoy
- College of Pharmacy, California Health Sciences University, Clovis, CA, 93612, USA
| |
Collapse
|
20
|
Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats. Cell Death Dis 2022; 8:22. [PMID: 35022384 PMCID: PMC8755846 DOI: 10.1038/s41420-022-00822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Alamandine (Ala) is a novel member of the renin-angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells' damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.
Collapse
|
21
|
Arora R, Van Theemsche KM, Van Remoortel S, Snyders DJ, Labro AJ, Timmermans JP. Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling. Int J Mol Sci 2021; 22:ijms222413254. [PMID: 34948051 PMCID: PMC8703779 DOI: 10.3390/ijms222413254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist β-alanine, we observed a release of IL-6. β-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for β-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.
Collapse
Affiliation(s)
- Rohit Arora
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Kenny M. Van Theemsche
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
| | - Dirk J. Snyders
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
| | - Alain J. Labro
- Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.M.V.T.); (D.J.S.)
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
- Correspondence: (A.J.L.); (J.-P.T.); Tel.: +32-9-3320034 (A.J.L.); +32-3-2653327 (J.-P.T.)
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (R.A.); (S.V.R.)
- Correspondence: (A.J.L.); (J.-P.T.); Tel.: +32-9-3320034 (A.J.L.); +32-3-2653327 (J.-P.T.)
| |
Collapse
|
22
|
Hu W, Gao W, Miao J, Xu Z, Sun L. Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways. Peptides 2021; 146:170627. [PMID: 34400214 DOI: 10.1016/j.peptides.2021.170627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a frequent cause of kidney injury. The present study investigated whether Alamandine (Ala) could alleviate sepsis-associated renal injury by reducing inflammation and apoptosis. In addition, we investigated downstream signaling pathways modulated by Ala. Studies were performed in mice treated with lipopolysaccharide (LPS) and in the human proximal tubular epithelial cell line HK-2. The increase in serum creatinine, blood urea nitrogen, cystatin C and Fg, and neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the kidneys of mice treated with LPS were reduced after administration of Ala. Exposure to LPS increased interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in mice and HK-2 cells, but were reduced after Ala treatment. Furthermore, increased levels of cleaved caspase 3, cleaved caspase 7, cleaved caspase 9, cleaved poly (ADP-ribose) polymerase (PARP) and Bax and reduced levels of Bcl2 in LPS-treated mice and HK-2 cells were reversed after Ala administration. In addition, LPS increased the levels of p-PI3K/PI3K, p-Akt/Akt, p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-FoxO1 in HK-2 cells, and all were reversed after Ala administration. These results indicate that Ala could improve renal function and inhibit inflammation and apoptosis in LPS induced sepsis mouse models. We demonstrated that Ala attenuated LPS induced sepsis by inhibiting the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Wenchuang Gao
- Department of Thoracic Surgery, Lian Shui People's Hospital, Huaian, China
| | - Jiayi Miao
- Department of Nephrology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ziheng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.
| |
Collapse
|
23
|
Zhu J, Qiu JG, Xu WT, Ma HX, Jiang K. Alamandine protects against renal ischaemia-reperfusion injury in rats via inhibiting oxidative stress. J Pharm Pharmacol 2021; 73:1491-1502. [PMID: 34244746 DOI: 10.1093/jpp/rgab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study was to determine whether alamandine (Ala) could reduce ischaemia and reperfusion (I/R) injury of kidney in rats. METHODS Renal I/R was induced by an occlusion of bilateral renal arteries for 70 min and a 24-h reperfusion in vivo, and rat kidney proximal tubular epithelial cells NRK52E were exposed to 24 h of hypoxia and followed by 3-h reoxygenation (H/R) in vitro. RESULTS The elevated serum creatinine (Cr), blood cystatin C (CysC) and blood urea nitrogen (BUN) levels in I/R rats were inhibited by Ala treatment. Tumour necrosis factor alpha (TNF)-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax were increased, and Bcl2 was reduced in the kidney of I/R rats, which were reversed by Ala administration. Ala reversed the increase of TNF-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax and the decrease of Bcl2 in the H/R NRK52E cells. Ala could also inhibit the increase of oxidative stress levels in the kidney of I/R rats. NADPH oxidase 1 (Nox1) overexpression reversed the improving effects of Ala on renal function, inflammation and apoptosis of I/R rats. CONCLUSION These results indicated that Ala could improve renal function, attenuate inflammation and apoptosis in the kidney of I/R rats via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jue Zhu
- Department of Nephrology, People's Hospital of Liyang, Changzhou, China
| | - Jian-Guo Qiu
- Department of Urology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, China
| | - Wei-Tao Xu
- Department of Nephrology, Zaozhuang Mining Group Central Hospital, Zaozhuang, China
| | - Hong-Xiang Ma
- Department of Urology, People's Hospital of Liyang, Changzhou, China
| | - Ke Jiang
- Department of Urology, People's Hospital of Liyang, Changzhou, China
| |
Collapse
|
24
|
Xu H, An X, Tian J, Fu M, Wang Q, Li C, He X, Niu L. Angiotensin-(1-7) protects against sepsis-associated left ventricular dysfunction induced by lipopolysaccharide. Peptides 2021; 144:170612. [PMID: 34298021 DOI: 10.1016/j.peptides.2021.170612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Sepsis-induced myocardial dysfunction is a major cause of death. The present study explored whether angiotensin (Ang)-(1-7), an important biologically active peptide of the renin-angiotensin system, could improve cardiac dysfunction and attenuate inflammation and apoptosis. Experiments were carried out in mice and in neonatal rat cardiomyocytes (NRCMs) treated with lipopolysaccharide (LPS) or Ang-(1-7). Angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and Mas receptor (MasR) expressions were reduced in the mouse left ventricular and NRCM treated with LPS. Ang-(1-7) increased the ejection fraction and fractional shortening of left ventricular, which were reduced upon LPS injection in mice. Ang-(1-7) pre-treatment reversed LPS-induced decreases of α-myosin heavy chain (MHC) and β-MHC, and increases of S100 calcium binding protein A8 (S100A8) and S100A9 in the mouse left ventricular. The LPS-induced increases of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the mouse left ventricular and NRCMs were inhibited by Ang-(1-7) administration. Ang-(1-7) treatment reversed the increases of cleaved-caspase 3, cleaved-caspase 8 and Bax, and the decrease of Bcl2 induced by LPS in the mouse left ventricular and NRCMs. The increases of MAPKs pathway induced by LPS in NRCMs were inhibited by Ang-(1-7). These results indicate that Ang-(1-7) protects against sepsis-associated left ventricular dysfunction induced by LPS, and increases cardiac contractility via attenuating inflammation and apoptosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Fu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingwen Wang
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunli Li
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuhua He
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
25
|
Zhang Y, Shang Z, Liu A. Angiotensin-(3-7) alleviates isoprenaline-induced cardiac remodeling via attenuating cAMP-PKA and PI3K/Akt signaling pathways. Amino Acids 2021; 53:1533-1543. [PMID: 34494132 DOI: 10.1007/s00726-021-03074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system is involved in the regulation of various heart diseases. The present study aimed to determine the effects of angiotensin (Ang)-(3-7) on cardiac remodeling and its downstream signaling pathways in neonatal rat cardiomyocytes (NRCMs) and neonatal rat cardiac fibroblasts (NRCFs). The administration of Ang-(3-7) alleviated isoprenaline (ISO)-induced cardiac hypertrophy and fibrosis of mice. ISO treatment increased the levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (β-MHC) in NRCMs, and reduced the levels of collagen I, collagen III, fibronectin, and alpha-smooth muscle actin (α-SMA) in NRCFs. These changes were inhibited by Ang-(3-7) administration. The levels of protein kinase A (PKA), phosphorylated phosphatidylinositol-3-kinase (p-PI3K), and phosphorylated protein kinase B (p-Akt) were increased in NRCMs and NRCFs treated with ISO. The increase of PKA, but not p-PI3K or p-Akt was attenuated by Ang-(3-7) treatment in NRCMs. The increases of p-PI3K and p-Akt, but not PKA were reversed by Ang-(3-7) treatment in NRCFs. Treatment with cAMP or PKA overexpression reversed the attenuating effects of Ang-(3-7) on ISO-induced hypertrophy of NRCMs. The administration of PI3K inhibitor or Akt inhibitor alleviated ISO-induced fibrosis of NRCFs. These results indicated that Ang-(3-7) could alleviate cardiac remodeling. The administration of Ang-(3-7) attenuated hypertrophy of NRCMs via inhibiting the cAMP/PKA signaling pathway, and alleviated fibrosis of NRCFs via inhibiting PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yonglin Zhang
- Department of Cardiology, Binhai County People's Hospital, 188 Fudong Middle Road, Yancheng, 224500, Jiangsu, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Aijun Liu
- Department of Cardiology, Binhai County People's Hospital, 188 Fudong Middle Road, Yancheng, 224500, Jiangsu, China.
| |
Collapse
|
26
|
Deng N, Jiang H, Wu P, Yang Q, Li S, Li J, Wang X, Han B, Han B, Lv Z, Zhang Z. Inhibition of the Nrf2/p38MAPK pathway involved in deltamethrin-induced apoptosis and fibrosis in quail kidney. Food Chem Toxicol 2021; 155:112382. [PMID: 34216712 DOI: 10.1016/j.fct.2021.112382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Deltamethrin (DLM) is a broad-spectrum and effective pyrethroid insecticide. However, DLM has good residual activity on most surfaces and many insects, so it poses a threat to the environment and health of animals and human. Exposure to DLM can cause kidney injury, but the mechanism is not well understood. Therefore, we investigated the possible mechanism of quail kidney injury induced by chronic exposure to different doses of DLM for 12 weeks. The results showed that chronic exposure to DLM induced apoptosis and fibrosis of quail kidney through the promotion of oxidative stress by down-regulating nuclear factor erythroid 2 related factor 2 (Nrf2), up-regulating the phosphorylation of p38 mitogen-activated protein kinases (p38MAPK). Furthermore, DLM-induced kidney apoptosis in quails as evidenced by increased expression of B-cell lymphoma gene 2-associated X while decreased expression of B-cell lymphoma-extra large. Simultaneously, DLM-induced kidney fibrosis in quails as evidenced by increased expression of fibrosis maker proteins. Overall, the results demonstrate that chronic DLM exposure induces kidney apoptosis and fibrosis via inhibition of the Nrf2/p38MAPK pathway. This study provides a new understanding for the mechanism of DLM-induced quail kidney injury and also provides a theoretical basis for treatment of the DLM poisoning.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
27
|
Li J, Ding H, Li Y, Zhou H, Wang W, Mei Y, Zhang R. Alarin alleviated cardiac fibrosis via attenuating oxidative stress in heart failure rats. Amino Acids 2021; 53:1079-1089. [PMID: 34089389 PMCID: PMC8241797 DOI: 10.1007/s00726-021-03005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
The present study was to explore whether alarin could alleviate heart failure (HF) and attenuate cardia fibrosis via inhibiting oxidative stress. The fibrosis of cardiac fibroblasts (CFs) was induced by angiotensin (Ang) II. HF models were induced by ligation of the left anterior descending artery to cause ischemia myocardial infarction (MI) in Sprague–Dawley rats. Alarin (1.0 nM/kg/d) was administrated by intraperitoneal injection for 28 days. The decreases of left ventricular (LV) ejection fraction (EF), fractional shortening (FS), the maximum of the first differentiation of LV pressure (LV ± dp/dtmax) and LV systolic pressure (LVSP), and the increases of LV volume in systole (LVVS), LV volume in diastole (LVVD), LV end-systolic diameter (LVESD) and LV end-diastolic diameter (LVEDD) in MI rats were improved by alarin treatment. The increases in the expression levels of collagen I, collagen III, and transforming growth factor (TGF)-β were inhibited by alarin treatment in CFs and in the hearts of MI rats. The levels of NADPH oxidase (Nox) activity, superoxide anions and malondialdehyde (MDA) levels were increased, and the level of superoxide dismutase (SOD) activity was reduced in Ang II-treated CFs, which were reversed by alarin. Nox1 overexpression reversed the effects of alarin on attenuating the increases of collagen I, collagen III and TGF-β expression levels induced by Ang II in CFs. These results indicated that alarin improved HF and cardiac fibrosis via inhibiting oxidative stress in HF rats. Nox1 played important roles in the regulation of alarin effects on attenuating CFs fibrosis induced by Ang II.
Collapse
Affiliation(s)
- Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Hao Ding
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hao Zhou
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Wanhong Wang
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Ronglin Zhang
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, 380 Huanghe South Road, Suqian, 223800, Jiangsu, China. .,Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
28
|
Khajehpour S, Aghazadeh-Habashi A. Targeting the Protective Arm of the Renin-Angiotensin System: Focused on Angiotensin-(1-7). J Pharmacol Exp Ther 2021; 377:64-74. [PMID: 33495248 DOI: 10.1124/jpet.120.000397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
The in vivo application and efficacy of many therapeutic peptides is limited because of their instability and proteolytic degradation. Novel strategies for developing therapeutic peptides with higher stability toward proteolytic degradation would be extremely valuable. Such approaches could improve systemic bioavailability and enhance therapeutic effects. The renin-angiotensin system (RAS) is a hormonal system within the body essential for the regulation of blood pressure and fluid balance. The RAS is composed of two opposing classic and protective arms. The balance between these two arms is critical for the homeostasis of the body's physiologic function. Activation of the RAS results in the suppression of its protective arm, which has been reported in inflammatory and pathologic conditions such as arthritis, cardiovascular diseases, diabetes, and cancer. Clinical application of angiotensin-(1-7) [Ang-(1-7)], a RAS critical regulatory peptide, augments the protective arm and restores balance hampered by its enzymatic and chemical instability. Several attempts to increase the half-life and efficacy of this heptapeptide using more stable analogs and different drug delivery approaches have been made. This review article provides an overview of efforts targeting the RAS protective arm. It provides a critical analysis of Ang-(1-7) or its homologs' novel drug delivery systems using different administration routes, their pharmacological characterization, and therapeutic potential in various clinical settings. SIGNIFICANCE STATEMENT: Ang-(1-7) is a unique peptide component of the renin-angiotensin system with vast potential for clinical applications that modulate various inflammatory diseases. Novel Ang-(1-7) peptide drug delivery could compensate its lack of stability for effective clinical application.
Collapse
Affiliation(s)
- Sana Khajehpour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID
| |
Collapse
|
29
|
Chen S, Chen H, Zhong Y, Ge Y, Li C, Qiao Z, Zhu J. Insulin-like growth factor-binding protein 3 inhibits angiotensin II-induced aortic smooth muscle cell phenotypic switch and matrix metalloproteinase expression. Exp Physiol 2020; 105:1827-1839. [PMID: 32936966 DOI: 10.1113/ep088927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? Insulin-like growth factor 1 and its major binding protein insulin-like growth factor binding protein 3 (IGFBP3) are involved in collagen deregulation in several cardiovascular diseases: what is the role of IGFBP3 in thoracic aortic dissection and does it regulate aortic smooth muscle cells' phenotypic switch? What is the main finding and its importance? IGFBP3 inhibits aortic smooth muscle cells' phenotypic switch from a contractile to a synthetic phenotype, decreases matrix metalloproteinase 9 activation and suppresses elastin degradation. These findings provide a better understanding of the pathogenesis of thoracic aortic dissection. ABSTRACT Thoracic aortic dissection (TAD) is characterized by aortic media degeneration and is a highly lethal disease. An aortic smooth muscle cell (AoSMC) phenotypic switch is considered a key pathophysiological change in TAD. Insulin-like growth factor binding protein 3 (IGFBP3) was found to be downregulated in aortic tissues of TAD patients. The present work aimed to study the function of IGFBP3 in AoSMCs' phenotypic switch and matrix metalloproteinase (MMP) expression. We established a mouse model of TAD by angiotensin (Ang) II infusion to β-aminopropionitrile-administrated mice, and found decreased IGFBP3 expression accompanied by aortic dilatation and elastin degradation in vivo. Further, mouse (m)AoSMCs were isolated from mouse thoracic aorta and treated with Ang II. Ang II induced downregulation of IGFBP3 in vitro. To further study the function of IGFBP3, primary mAoSMCs were infected with adenovirus expressing IGFBP3 followed by Ang II induction. Enforced upregulation of IGFBP3 decreased MMP9 expression and activation as well as increasing tissue inhibitor of metalloproteinase (TIMP) 1 expression in Ang II-induced mAoSMCs. No difference was observed in MMP2 and TIMP3 expression. IGFBP3 suppressed subsequent Ang II-induced elastin degradation in vitro. IGFBP3 inhibited Ang II-induced mAoSMCs' phenotypic switch as evidenced by increased smooth muscle actin α-2 (ACTA2) and myosin heavy chain 11 (MYH11) expression and decreased secreted phosphoprotein 1 (SPP1) and vimentin expression. Taken together, the present study demonstrates the role of IGFBP3 in preserving AoSMCs' contractile state and reducing MMP9 activation and thus promoting elastic fibre synthesis, which provides a better understanding of the pathogenesis of TAD.
Collapse
Affiliation(s)
- Suwei Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongliang Zhong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|