1
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Duan H, Wang W, Li S, Li H, Khan GJ, Ma Y, Liu F, Zhai K, Hu H, Wei Z. The potential mechanism of
Isodon suzhouensis against COVID-19 via EGFR/TLR4 pathways. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3245-3255. [DOI: 10.26599/fshw.2023.9250011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
4
|
Gheban-Roșca IA, Gheban BA, Pop B, Mironescu DC, Siserman VC, Jianu EM, Drugan T, Bolboacă SD. Immunohistochemical and Morphometric Analysis of Lung Tissue in Fatal COVID-19. Diagnostics (Basel) 2024; 14:914. [PMID: 38732328 PMCID: PMC11082993 DOI: 10.3390/diagnostics14090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The primary targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the lungs are type I pneumocytes, macrophages, and endothelial cells. We aimed to identify lung cells targeted by SARS-CoV-2 using viral nucleocapsid protein staining and morphometric features on patients with fatal COVID-19. We conducted a retrospective analysis of fifty-one autopsy cases of individuals who tested positive for SARS-CoV-2. Demographic and clinical information were collected from forensic reports, and lung tissue was examined for microscopic lesions and the presence of specific cell types. Half of the evaluated cohort were older than 71 years, and the majority were male (74.5%). In total, 24 patients presented diffuse alveolar damage (DAD), and 50.9% had comorbidities (56.9% obesity, 33.3% hypertension, 15.7% diabetes mellitus). Immunohistochemical analysis showed a similar pattern of infected macrophages, infected type I pneumocytes, and endothelial cells, regardless of the presence of DAD (p > 0.5). The immunohistochemical reactivity score (IRS) was predominantly moderate but without significant differences between patients with and without DAD (p = 0.633 IRS for type I pneumocytes, p = 0.773 IRS for macrophage, and p = 0.737 for IRS endothelium). The nucleus/cytoplasm ratio shows lower values in patients with DAD (median: 0.29 vs. 0.35), but the difference only reaches a tendency for statistical significance (p = 0.083). Our study confirms the presence of infected macrophages, type I pneumocytes, and endothelial cells with a similar pattern in patients with and without diffuse alveolar damage.
Collapse
Affiliation(s)
- Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
- Clinical Hospital for Infectious Diseases, 400348 Cluj-Napoca, Romania
| | - Bogdan-Alexandru Gheban
- County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Bogdan Pop
- The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
- Department of Anatomic Pathology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Daniela-Cristina Mironescu
- Forensic Institute, 400006 Cluj-Napoca, Romania; (D.-C.M.); (V.C.S.)
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Vasile Costel Siserman
- Forensic Institute, 400006 Cluj-Napoca, Romania; (D.-C.M.); (V.C.S.)
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Elena Mihaela Jianu
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
| |
Collapse
|
5
|
Spadera L, Lugarà M, Spadera M, Conticelli M, Oliva G, Bassi V, Apuzzi V, Calderaro F, Fattoruso O, Guzzi P, D'Amora M, Catapano O, Marra R, Galdo M, Zappalà M, Inui T, Mette M, Vitiello G, Corvino M, Tortoriello G. Adjunctive use of oral MAF is associated with no disease progression or mortality in hospitalized patients with COVID-19 pneumonia: The single-arm COral-MAF1 prospective trial. Biomed Pharmacother 2023; 169:115894. [PMID: 37988850 DOI: 10.1016/j.biopha.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
Based on a growing body of evidence that a dysregulated innate immune response mediated by monocytes/macrophages plays a key role in the pathogenesis of COVID-19, a clinical trial was conducted to investigate the therapeutic potential and safety of oral macrophage activating factor (MAF) plus standard of care (SoC) in the treatment of hospitalized patients with COVID-19 pneumonia. Ninety-seven hospitalized patients with confirmed COVID-19 pneumonia were treated with oral MAF and a vitamin D3 supplement, in combination with SoC, in a single-arm, open label, multicentre, phase II clinical trial. The primary outcome measure was a reduction in an intensive care unit transfer rate below 13% after MAF administration. At the end of the study, an additional propensity score matching (PSM) analysis was performed to compare the MAF group with a control group treated with SoC alone. Out of 97 patients treated with MAF, none needed care in the ICU and/or intubation with mechanical ventilation or died during hospitalization. Oxygen therapy was discontinued after a median of nine days of MAF treatment. The median length of viral shedding and hospital stay was 14 days and 18 days, respectively. After PSM, statistically significant differences were found in all of the in-hospital outcomes between the two groups. No mild to serious adverse events were recorded during the study. Notwithstanding the limitations of a single-arm study, which prevented definitive conclusions, a 21-day course of MAF treatment plus SoC was found to be safe and promising in the treatment of hospitalized adult patients with COVID-19 pneumonia. Further research will be needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lucrezia Spadera
- Department of Otolaryngology-Head and Neck Surgery, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy.
| | - Marina Lugarà
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Spadera
- Department of Anesthesiology and Intensive Care, San Giovanni Bosco hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Mariano Conticelli
- Department of Clinical Pathology, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Gabriella Oliva
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Vincenzo Bassi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Valentina Apuzzi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Francesco Calderaro
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Olimpia Fattoruso
- Department of Clinical Pathology, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Pietro Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Universitario, Germaneto, 88100 Catanzaro, Italy
| | - Maurizio D'Amora
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Oriana Catapano
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Roberta Marra
- Department of Pharmacy, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Galdo
- Department of Pharmacy, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| | - Michele Zappalà
- Department of Medicine, Vesuvio Clinic, ASL Napoli 1 Centro, Naples, Italy
| | - Toshio Inui
- Department of Life System, Institute of Technology and Science, Graduate School, Tokushima University, Tokushima, Japan; Saisei Mirai Cell Processing Center, Osaka, Japan; Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Martin Mette
- Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Giuseppe Vitiello
- Department of Health Management, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Corvino
- Department of Health Management, ASL Napoli 1 Centro, Naples, Italy
| | - Giuseppe Tortoriello
- Department of Otolaryngology-Head and Neck Surgery, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| |
Collapse
|
6
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
8
|
Motamedi H, Alvandi A, Fathollahi M, Ari MM, Moradi S, Moradi J, Abiri R. In silico designing and immunoinformatics analysis of a novel peptide vaccine against metallo-beta-lactamase (VIM and IMP) variants. PLoS One 2023; 18:e0275237. [PMID: 37471423 PMCID: PMC10358925 DOI: 10.1371/journal.pone.0275237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 07/22/2023] Open
Abstract
The rapid spread of acquired metallo-beta-lactamases (MBLs) among gram negative pathogens is becoming a global concern. Improper use of broad-spectrum antibiotics can trigger the colonization and spread of resistant strains which lead to increased mortality and significant economic loss. In the present study, diverse immunoinformatic approaches are applied to design a potential epitope-based vaccine against VIM and IMP MBLs. The amino acid sequences of VIM and IMP variants were retrieved from the GenBank database. ABCpred and BCPred online Web servers were used to analyze linear B cell epitopes, while IEDB was used to determine the dominant T cell epitopes. Sequence validation, allergenicity, toxicity and physiochemical analysis were performed using web servers. Seven sequences were identified for linear B cell dominant epitopes and 4 sequences were considered as dominant CD4+ T cell epitopes, and the predicted epitopes were joined by KK and GPGPG linkers. Stabilized multi-epitope protein structure was obtained using molecular dynamics simulation. Molecular docking showed that the designed vaccine exhibited sustainable and strong binding interactions with Toll-like receptor 4 (TLR4). Finally, codon adaptation and in silico cloning studies were performed to design an effective vaccine production strategy. Immune simulation significantly provided high levels of immunoglobulins, T helper cells, T-cytotoxic cells and INF-γ. Even though the introduced vaccine candidate demonstrates a very potent immunogenic potential, but wet-lab validation is required to further assessment of the effectiveness of this proposed vaccine candidate.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Stasenko SV, Kovalchuk AV, Eremin EV, Drugova OV, Zarechnova NV, Tsirkova MM, Permyakov SA, Parin SB, Polevaya SA. Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115272. [PMID: 37299999 DOI: 10.3390/s23115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
This study introduces a novel method for detecting the post-COVID state using ECG data. By leveraging a convolutional neural network, we identify "cardiospikes" present in the ECG data of individuals who have experienced a COVID-19 infection. With a test sample, we achieve an 87 percent accuracy in detecting these cardiospikes. Importantly, our research demonstrates that these observed cardiospikes are not artifacts of hardware-software signal distortions, but rather possess an inherent nature, indicating their potential as markers for COVID-specific modes of heart rhythm regulation. Additionally, we conduct blood parameter measurements on recovered COVID-19 patients and construct corresponding profiles. These findings contribute to the field of remote screening using mobile devices and heart rate telemetry for diagnosing and monitoring COVID-19.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Neurotechnology Department, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Andrey V Kovalchuk
- Laboratory of Autowave Processes, Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Evgeny V Eremin
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Olga V Drugova
- Department of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Natalya V Zarechnova
- GBUZ NO "Nizhny Novgorod Regional Clinical Oncological Dispensary", 603126 Nizhny Novgorod, Russia
| | - Maria M Tsirkova
- Clinical Hospital No. 2, Privolzhsky District Medical Center, 603032 Nizhny Novgorod, Russia
| | - Sergey A Permyakov
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Sergey B Parin
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Sofia A Polevaya
- Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Temesgen Z, Kelley CF, Cerasoli F, Kilcoyne A, Chappell D, Durrant C, Ahmed O, Chappell G, Catterson V, Polk C, Badley A, Marconi VC. C reactive protein utilisation, a biomarker for early COVID-19 treatment, improves lenzilumab efficacy: results from the randomised phase 3 'LIVE-AIR' trial. Thorax 2023; 78:606-616. [PMID: 35793833 PMCID: PMC10314034 DOI: 10.1136/thoraxjnl-2022-218744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE COVID-19 severity is correlated with granulocyte macrophage colony-stimulating factor (GM-CSF) and C reactive protein (CRP) levels. In the phase three LIVE-AIR trial, lenzilumab an anti-GM-CSF monoclonal antibody, improved the likelihood of survival without ventilation (SWOV) in COVID-19, with the greatest effect in participants having baseline CRP below a median of 79 mg/L. Herein, the utility of baseline CRP to guide lenzilumab treatment was assessed. DESIGN A subanalysis of the randomised, blinded, controlled, LIVE-AIR trial in which lenzilumab or placebo was administered on day 0 and participants were followed through Day 28. PARTICIPANTS Hospitalised COVID-19 participants (N=520) with SpO2 ≤94% on room air or requiring supplemental oxygen but not invasive mechanical ventilation. INTERVENTIONS Lenzilumab (1800 mg; three divided doses, q8h, within 24 hours) or placebo infusion alongside corticosteroid and remdesivir treatments. MAIN OUTCOME MEASURES The primary endpoint was the time-to-event analysis difference in SWOV through day 28 between lenzilumab and placebo treatments, stratified by baseline CRP. RESULTS SWOV was achieved in 152 (90%; 95% CI 85 to 94) lenzilumab and 144 (79%; 72 to 84) placebo-treated participants with baseline CRP <150 mg/L (HR: 2.54; 95% CI 1.46 to 4.41; p=0.0009) but not with CRP ≥150 mg/L (HR: 1.04; 95% CI 0.51 to 2.14; p=0.9058). A statistically significant interaction between CRP and lenzilumab treatment was observed (p=0.044). Grade ≥3 adverse events with lenzilumab were comparable to placebo in both CRP strata. No treatment-emergent serious adverse events were attributed to lenzilumab. CONCLUSION Hospitalised hypoxemic patients with COVID-19 with baseline CRP <150 mg/L derived the greatest clinical benefit from treatment with lenzilumab. TRIAL REGISTRATION NUMBER NCT04351152; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Zelalem Temesgen
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Colleen F Kelley
- Division of Infectious Diseases, Emory University School of Medicine, Grady Memorial Hospital, Atlanta, Georgia, USA
| | - Frank Cerasoli
- Medical Affairs, Rx Medical Dynamics, LLC, New York, New York, USA
| | | | | | | | - Omar Ahmed
- Humanigen Inc, Burlingame, California, USA
| | | | | | - Christopher Polk
- Infectious Disease, Atrium Health, Charlotte, North Carolina, USA
| | - Andrew Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Vincent C Marconi
- Division of Infectious Disease, Emory University School of Medicine, Rollins School of Public Health, and Emory Vaccine Center, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericskay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD + in the context of COVID-19. Int Rev Immunol 2022; 41:464-474. [PMID: 34378474 DOI: 10.1080/08830185.2021.1961768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.,Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
12
|
Irani S. Immune Responses in SARS-CoV-2, SARS-CoV, and MERS-CoV Infections: A Comparative Review. Int J Prev Med 2022; 13:45. [PMID: 35529506 PMCID: PMC9069147 DOI: 10.4103/ijpvm.ijpvm_429_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Coronavirus, discovered in the 1960s, is able to infect human hosts and causes mild to serious respiratory problems. In the last two decades, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recognized. It has long been demonstrated that MERS-CoV binds to dipeptidyl peptidase 4 and SARS-CoV binds to angiotensin-converting enzyme 2. A "cytokine storm" is the main pathophysiology of aforementioned viruses. Infiltration of neutrophils at the site of the infection is a risk factor for the development of acute respiratory distress syndrome and death. The new coronavirus, SARS-CoV-2, has infected more people than SARS-Cov and MERS-CoV as it can easily be transmitted from person to person. Epidemiological studies indicate that majority of individuals are asymptomatic; therefore, an effective and an efficient tool is required for rapid testing. Identification of various cytokine and inflammatory factor expression levels can help in outcome prediction. In this study we reviewed immune responses in SARS-CoV, Mers-CoV, and SARS-COV-2 infections and the role of inflammatory cells.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
- Pathology Department of Faculty of Medicine, Griffith University, Gold Coast, Australia
| |
Collapse
|
13
|
Li Y, Li B, Wang P, Wang Q. Traditional Chinese Medicine, Qingfei Paidu Decoction and Xuanfei Baidu Decoction, Inhibited Cytokine Production via NF-κB Signaling Pathway in Macrophages: Implications for Coronavirus Disease 2019 (COVID-19) Therapy. Front Pharmacol 2021; 12:722126. [PMID: 34764867 PMCID: PMC8576273 DOI: 10.3389/fphar.2021.722126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aims: Qingfei Paidu decoction (QPD) and Xuanfei Baidu decoction (XBD) are two typical traditional Chinese medicines with proven efficacy for the treatment of SARS-CoV-2, although the underlying mechanism is not well defined. Blunted immune response and enhanced production of pro-inflammatory cytokines (cytokine storm) are two main features observed in patients infected with SARS-CoV-2. Analysis based on network pharmacology has revealed that both QPD and XBD played an important role in the regulation of host immunity. We therefore investigated the role of QPD and XBD in the modulation of innate immunity in vitro, focusing on the type 1 interferon (IFN) signaling pathway in A549 cells and pro-inflammatory cytokine production in macrophages. Methods: A549 cells were treated with QPD or XBD and the production of endogenous IFNα and IFNβ as well as the expression levels of some interferon-stimulated genes (ISGs) were detected by reverse transcriptase-quantitative PCR (RT-qPCR). Macrophages derived from THP-1 cells were treated with QPD or XBD and their pro-inflammatory cytokine expression levels were measured by RT-qPCR, 6 h post LPS stimulation. In addition, the expression levels of some pro-inflammatory cytokines were further analyzed by ELISA. The effect of QPD and XBD on the NF-κB signaling pathway and the pinocytosis activity of THP-1-derived macrophages were evaluated by Western blot and neutral red uptake assay, respectively. Results: Although QPD and XBD showed very little effect on the type 1 IFN signaling pathway in A549 cells, either QPD or XBD markedly inhibited the production of pro-inflammatory markers including interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and chemokine ligand 10 in THP-1-derived M1 macrophages. In addition, the phosphorylation of IκBα and NF-κB p65 during the process of macrophage polarization was significantly suppressed following QPD or XBD treatment. QPD and XBD also suppressed the pinocytosis activity of macrophages. Conclusion: QPD and XBD have been shown to have robust anti-inflammatory activities in vitro. Our study demonstrated that both QPD and XBD decreased pro-inflammatory cytokine expression, inhibited the activation of the NF-κB signaling pathway, and blunted pinocytosis activity in THP-1-derived macrophages.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- The Joint Laboratory on Transfusion-transmitted Diseases (TTD) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning, China
| | - Bin Li
- The Joint Laboratory on Transfusion-transmitted Diseases (TTD) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning, China
| | - Pan Wang
- The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
| | - Qinghua Wang
- The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
| |
Collapse
|
14
|
Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol 2021; 96:107763. [PMID: 34162141 PMCID: PMC8101866 DOI: 10.1016/j.intimp.2021.107763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Trombetta AC, Farias GB, Gomes AMC, Godinho-Santos A, Rosmaninho P, Conceição CM, Laia J, Santos DF, Almeida ARM, Mota C, Gomes A, Serrano M, Veldhoen M, Sousa AE, Fernandes SM. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Front Immunol 2021; 12:691725. [PMID: 34248984 PMCID: PMC8265310 DOI: 10.3389/fimmu.2021.691725] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
After more than one year since the COVID-19 outbreak, patients with severe disease still constitute the bottleneck of the pandemic management. Aberrant inflammatory responses, ranging from cytokine storm to immune-suppression, were described in COVID-19 and no treatment was demonstrated to change the prognosis significantly. Therefore, there is an urgent need for understanding the underlying pathogenic mechanisms to guide therapeutic interventions. This study was designed to assess myeloid cell activation and phenotype leading to recovery in patients surviving severe COVID-19. We evaluated longitudinally patients with COVID-19 related respiratory insufficiency, stratified according to the need of intensive care unit admission (ICU, n = 11, and No-ICU, n = 9), and age and sex matched healthy controls (HCs, n = 11), by flow cytometry and a wide array of serum inflammatory/immune-regulatory mediators. All patients featured systemic immune-regulatory myeloid cell phenotype as assessed by both unsupervised and supervised analysis of circulating monocyte and dendritic cell subsets. Specifically, we observed a reduction of CD14lowCD16+ monocytes, and reduced expression of CD80, CD86, and Slan. Moreover, mDCs, pDCs, and basophils were significantly reduced, in comparison to healthy subjects. Contemporaneously, both monocytes and DCs showed increased expression of CD163, CD204, CD206, and PD-L1 immune-regulatory markers. The expansion of M2-like monocytes was significantly higher at admission in patients featuring detectable SARS-CoV-2 plasma viral load and it was positively correlated with the levels of specific antibodies. In No-ICU patients, we observed a peak of the alterations at admission and a progressive regression to a phenotype similar to HCs at discharge. Interestingly, in ICU patients, the expression of immuno-suppressive markers progressively increased until discharge. Notably, an increase of M2-like HLA-DRhighPD-L1+ cells in CD14++CD16− monocytes and in dendritic cell subsets was observed at ICU discharge. Furthermore, IFN-γ and IL-12p40 showed a decline over time in ICU patients, while high values of IL1RA and IL-10 were maintained. In conclusion, these results support that timely acquisition of a myeloid cell immune-regulatory phenotype might contribute to recovery in severe systemic SARS-CoV-2 infection and suggest that therapeutic agents favoring an innate immune system regulatory shift may represent the best strategy to be implemented at this stage.
Collapse
Affiliation(s)
- Amelia C Trombetta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Guilherme B Farias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André M C Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina M Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joel Laia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana F Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina II, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Andreia Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Serrano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana M Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina Intensiva, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
16
|
Tan Q, He L, Meng X, Wang W, Pan H, Yin W, Zhu T, Huang X, Shan H. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J Nanobiotechnology 2021; 19:173. [PMID: 34112203 PMCID: PMC8190731 DOI: 10.1186/s12951-021-00926-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The worldwide pandemic of COVID-19 remains a serious public health menace as the lack of efficacious treatments. Cytokine storm syndrome (CSS) characterized with elevated inflammation and multi-organs failure is closely correlated with the bad outcome of COVID-19. Hence, inhibit the process of CSS by controlling excessive inflammation is considered one of the most promising ways for COVID-19 treatment. RESULTS Here, we developed a biomimetic nanocarrier based drug delivery system against COVID-19 via anti-inflammation and antiviral treatment simultaneously. Firstly, lopinavir (LPV) as model antiviral drug was loaded in the polymeric nanoparticles (PLGA-LPV NPs). Afterwards, macrophage membranes were coated on the PLGA-LPV NPs to constitute drugs loaded macrophage biomimetic nanocarriers (PLGA-LPV@M). In the study, PLGA-LPV@M could neutralize multiple proinflammatory cytokines and effectively suppress the activation of macrophages and neutrophils. Furthermore, the formation of NETs induced by COVID-19 patients serum could be reduced by PLGA-LPV@M as well. In a mouse model of coronavirus infection, PLGA-LPV@M exhibited significant targeted ability to inflammation sites, and superior therapeutic efficacy in inflammation alleviation and tissues viral loads reduction. CONCLUSION Collectively, such macrophage biomimetic nanocarriers based drug delivery system showed favorable anti-inflammation and targeted antiviral effects, which may possess a comprehensive therapeutic value in COVID-19 treatment.
Collapse
Affiliation(s)
- Qingqin Tan
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lingjie He
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaojun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Wang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hudan Pan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Weiguo Yin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China. .,Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| | - Hong Shan
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
17
|
Abstract
The immune system is capable of adequately controlling SARS-CoV-2 infection in 81% of patients, whose disease is asymptomatic or who experience moderate symptoms. However, 19% of infected patients develop severe disease which can become critical or fatal. This review article intends to provide an overview of the epidemiological antecedents of β-coronaviruses, describe the mechanisms of SARS-CoV-2 infection, and summarize the rational immunological underpinnings known at present which allow for a better understanding of the immunopathology of COVID-19. The SARS-CoV-2 virus is capable of profoundly altering the behavior of molecular and cellular components of the immune system. The initial decisions of the innate immune system are responsible for a proper or improper response of the adaptive immune system and, along with comorbidities, are directly associated with disease progression.
Collapse
|
18
|
Samaha AA, Mouawia H, Fawaz M, Hassan H, Salami A, Bazzal AA, Saab HB, Al-Wakeel M, Alsaabi A, Chouman M, Moussawi MA, Ayoub H, Raad A, Hajjeh O, Eid AH, Raad H. Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon. Viruses 2021; 13:989. [PMID: 34073401 PMCID: PMC8226630 DOI: 10.3390/v13060989] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study was designed to determine the efficacy of ivermectin, an FDA-approved drug, in producing clinical benefits and decreasing the viral load of SARS-CoV-2 among asymptomatic subjects that tested positive for this virus in Lebanon. METHODS A randomized controlled trial was conducted in 100 asymptomatic Lebanese subjects that have tested positive for SARS-CoV2. Fifty patients received standard preventive treatment, mainly supplements, and the experimental group received a single dose (according to body weight) of ivermectin, in addition to the same supplements the control group received. RESULTS There was no significant difference (p = 0.06) between Ct-values of the two groups before the regimen was started (day zero), indicating that subjects in both groups had similar viral loads. At 72 h after the regimen started, the increase in Ct-values was dramatically higher in the ivermectin than in the control group. In the ivermectin group, Ct increased from 15.13 ± 2.07 (day zero) to 30.14 ± 6.22 (day three; mean ± SD), compared to the control group, where the Ct values increased only from 14.20 ± 2.48 (day zero) to 18.96 ± 3.26 (day three; mean ± SD). Moreover, more subjects in the control group developed clinical symptoms. Three individuals (6%) required hospitalization, compared to the ivermectin group (0%). CONCLUSION Ivermectin appears to be efficacious in providing clinical benefits in a randomized treatment of asymptomatic SARS-CoV-2-positive subjects, effectively resulting in fewer symptoms, lower viral load and reduced hospital admissions. However, larger-scale trials are warranted for this conclusion to be further cemented.
Collapse
Affiliation(s)
- Ali A. Samaha
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
- Nursing Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Mazraa 1105, Lebanon;
- Department of Biomedical Sciences, Lebanese International University, Beirut, Mazraa 1105, Lebanon
- Department of Cardiology, Rayak University Hospital, Bekaa 1801, Lebanon;
| | - Hussein Mouawia
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Mirna Fawaz
- Nursing Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Mazraa 1105, Lebanon;
| | - Hamad Hassan
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
- Ministry of Health, Beirut, Lebanon
| | - Ali Salami
- Department of Mathematics, Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
| | - Ali Al Bazzal
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Hamid Bou Saab
- Faculty of Sciences, Lebanese University, Zahle 1801, Lebanon;
| | | | - Ahmad Alsaabi
- Department of Biology, Lille University, 59160 Lille, France;
| | - Mohamad Chouman
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Mahmoud Al Moussawi
- Faculty of Nursing Sciences, Islamic University of Lebanon, Baalbek 1800, Lebanon;
| | - Hassan Ayoub
- Department of Cardiology, Rayak University Hospital, Bekaa 1801, Lebanon;
| | - Ali Raad
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Ola Hajjeh
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Unit, QU Health, Qatar University, Doha, Qatar
| | - Houssam Raad
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| |
Collapse
|
19
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
20
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
22
|
Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021; 30:9636897211010632. [PMID: 33949207 PMCID: PMC8114753 DOI: 10.1177/09636897211010632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) first emerged in December 2019 in Wuhan, China, and has since spread rapidly worldwide. As researchers seek to learn more about COVID-19, the disease it causes, this novel virus continues to infect and kill. Despite the socioeconomic impacts of SARS-CoV-2 infections and likelihood of future outbreaks of other pathogenic coronaviruses, options to prevent or treat coronavirus infections remain limited. In current clinical trials, potential coronavirus treatments focusing on killing the virus or on preventing infection using vaccines largely ignore the host immune response. The relatively small body of current research on the virus indicates pathological responses by the immune system as the leading cause for much of the morbidity and mortality caused by COVID-19. In this review, we investigated the host innate and adaptive immune responses against COVID-19, collated information on recent COVID-19 experimental data, and summarized the systemic immune responses to and histopathology of SARS-CoV-2 infection. Finally, we summarized the immune-related biomarkers to define patients with high-risk and worst-case outcomes, and identified the possible usefulness of inflammatory markers as potential immunotherapeutic targets. This review provides an overview of current knowledge on COVID-19 and the symptomatological differences between healthy, convalescent, and severe cohorts, while offering research directions for alternative immunoregulation therapeutic targets.
Collapse
Affiliation(s)
- Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Hsu
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Cancer Center, Hualien, Taiwan
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Department of Radiation Oncology, Hualien, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Booz GW, Zouein FA. Science unites a troubled world: Lessons from the pandemic. Eur J Pharmacol 2020; 890:173696. [PMID: 33130278 PMCID: PMC7598756 DOI: 10.1016/j.ejphar.2020.173696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022]
Abstract
European Journal of Pharmacology has published a special issue entitled Therapeutic targets and pharmacological treatment of COVID-19 that contains more than 30 manuscripts. Scientists from around the world contributed both review articles and original manuscripts that are remarkable in their diversity. Each contribution offers a unique perspective on the current approaches of the discipline called pharmacology. Yet the contributions share an enthusiasm to put forward a fresh viewpoint and make a positive difference by the exchange of ideas during the troubled times of this pandemic. What other enterprise but science can unite so many diverse cultures and nationalities in global uncertainty and discord, and mobilize an effective response against a common enemy. The efforts of science are in stark contrast to those of populism that has introduced division and a self-serving attitude that are not simply ill-matched to tackle the pandemic, but foster its spread and severity. We trust that the readers of European Journal of Pharmacology will discover new ideas and concepts in our special COVID-19 series as members of the scientific community and shared world.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|