1
|
Chen C, Liu X, Zhu S, Wang Y, Ma Y, Hu Z, Wu Y, Jiang L. Circ-0069561 as a novel diagnostic biomarker for progression of diabetic kidney disease. Ren Fail 2025; 47:2490200. [PMID: 40260530 PMCID: PMC12016256 DOI: 10.1080/0886022x.2025.2490200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are non-coding RNAs that are key regulators of the initiation and progression of various human diseases. However, the role of circRNAs in diabetic kidney disease (DKD) remains unknown. METHODS Whole high-throughput RNA sequencing (RNA-seq) was performed on kidney tissues from clinical DKD patients and controls. Circ-0069561 with significantly up-regulated expression level was selected by real-time PCR (RT-PCR) analysis. RT-PCR and fluorescent in situ hybridization (FISH) further validated the expression and subcellular localization of circ-0069561 in type 2 diabetic mice and DKD patients. The clinical significance of circ-0069561 in DKD was evaluated. The circRNA-miRNA-ferroptosis associated mRNA network was constructed. The biological function of circ-0069561 in mouse podocyte clone 5 (MPC5) was analyzed. RESULTS The top 10 up-regulated circular RNAs were selected by RT-PCR validation, and the results demonstrated a significant elevation in the expression level of circ-0069561. The RT-PCR and FISH results demonstrated that the expression of circ-0069561 was elevated in renal tissues of type 2 diabetic mice and DKD patients, with a predominant localization in glomerulus. The ROC curves showed that circ-0069561 had a good diagnostic value in massive proteinuria (area under the curve = 0.889). Kaplan-Meier analysis showed that high expression of circ-0069561 was associated with an increased risk of primary endpoints. The circRNA-miRNA-mRNA network indicated that ferroptosis might be involved in the pathogenesis of DKD. In vitro experiments demonstrated that circ-0069561 aggravated glucose-induced podocyte damage and ferroptosis. CONCLUSION Circ-0069561 has the potential to be an ideal biomarker and therapeutic target for DKD progression.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sai Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyun Hu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Shao N, Cai K, Hong Y, Wu L, Luo Q. USP9X suppresses ferroptosis in diabetic kidney disease by deubiquitinating Nrf2 in vitro. Ren Fail 2025; 47:2458761. [PMID: 39967230 PMCID: PMC11841168 DOI: 10.1080/0886022x.2025.2458761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many critical genes associated with iron storage and transportation, the activity of which is influenced by E3 ligase-mediated ubiquitination. We wondered whether there is a deubiquitinase that mediates the deubiquitination of Nrf2 to stabilize Nrf2 expression and further prevent diabetic kidney disease (DKD). High glucose (HG) was applied to induce an in vitro model of DKD. The effects of HG on HK-2 cell viability, apoptosis, Fe2+ level, Nrf2, and ubiquitin-specific protease 9X (USP9X) were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, iron assay, and Western blot. The direct interaction between Nrf2 and USP9X was analyzed using co-immunoprecipitation and ubiquitination assay. After transfection and ferrostatin-1 (Fer-1) intervention, Nrf2 and USP9X levels, cell viability, apoptosis, and Fe2+ level were tested again. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) contents, and ferroptosis-related markers were assessed by ROS assay kit, ELISA, and Western blot. HG reduced cell viability and levels of USP9X and Nrf2, while elevating apoptosis and Fe2+ level. An interaction between USP9X and Nrf2 has been verified and USP9X deubiquitinated Nrf2. Nrf2 up-regulation augmented the viability, GSH content, and ferroptosis-related protein expressions, while suppressing the apoptosis, Fe2+ level, MDA, and ROS content in HG-mediated HK-2 cells, which was reversed by USP9X silencing. Fer-1 offset the combined modulation of Nrf2 and siUSP9X on HG-induced HK-2 cells. USP9X mediates Nrf2 deubiquitinase to hamper the ferroptosis in DKD in vitro.
Collapse
Affiliation(s)
- Ningjun Shao
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Kedan Cai
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Yue Hong
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingping Wu
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Qun Luo
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
3
|
Xiong W, Liu H, Xiang B, Shang G. Identification of biomarkers related to iron death in diabetic kidney disease based on machine learning algorithms. Ann Hum Biol 2025; 52:2477248. [PMID: 40172091 DOI: 10.1080/03014460.2025.2477248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 02/20/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND While ferroptosis has been recognised for its key role in tumour development, its involvement in DKD is not well understood. Identifying differentially expressed ferroptosis-related genes (DEIRGs) could help improve early diagnosis and treatment strategies for DKD. AIM Diabetic kidney disease (DKD) is a complication of diabetes that can progress to end-stage renal disease. Early diagnosis and identification of biomarkers related to its pathogenesis are crucial. This study aims to investigate the role of ferroptosis, a type of programmed cell death, in DKD, which remains largely unexplored. OBJECTIVE The objective of this study was to screen for diagnosis-related DEIRGs (DDEIRGs) in DKD and construct a diagnostic model with high accuracy. METHOD We intersected differentially expressed genes in the DKD dataset with ferroptosis-related genes to obtain DEIRGs. Gene importance was ranked using the random forest and Adaboost algorithms, and DDEIRGs were identified by intersecting results. A diagnostic model was constructed using logistic regression, and its accuracy was evaluated. Additionally, the immune landscape of DDEIRGs was analysed, and RT-qPCR was used to validate gene expression levels. RESULTS The diagnostic model constructed with logistic regression demonstrated high diagnostic accuracy for DKD. Immune landscape analysis of DDEIRGs provided further insights into their potential roles. RT-qPCR confirmed the differential expression of diagnosis-related genes. CONCLUSION This study successfully identified diagnosis-related ferroptosis genes in DKD and constructed an accurate diagnostic model. These findings enhance our understanding of the role of ferroptosis in DKD and may contribute to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Wen Xiong
- Department of Nephrology, First Affiliated Hospital of Jishou University, Hunan, China
| | - Hongxia Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Jishou University, Hunan, China
| | - Bo Xiang
- Department of Clinical Laboratory, First Affiliated Hospital of Jishou University, Hunan, China
| | - Guangyu Shang
- Department of Nephrology, First Affiliated Hospital of Jishou University, Hunan, China
| |
Collapse
|
4
|
Yu W, Haoyu Y, Ling Z, Xing H, Pengfei X, Anzhu W, Lili Z, Linhua Z. Targeting lipid metabolic reprogramming to alleviate diabetic kidney disease: molecular insights and therapeutic strategies. Front Immunol 2025; 16:1549484. [PMID: 40352935 PMCID: PMC12061959 DOI: 10.3389/fimmu.2025.1549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is one of the major complications of diabetes, and its pathological progression is closely associated with lipid metabolic reprogramming. Under diabetic conditions, renal cells undergo significant lipid metabolic abnormalities, including increased lipid uptake, impaired fatty acid oxidation, disrupted cholesterol efflux, and enhanced lipid catabolism, as adaptive responses to metabolic stress. These changes result in the accumulation of lipids such as free fatty acids, diacylglycerol, and ceramides, leading to lipotoxicity that triggers inflammation and fibrosis. Hypoxia in the DKD microenvironment suppresses fatty acid oxidation and promotes lipid synthesis through the HIF-1α pathway, while chronic inflammation exacerbates lipid metabolic disturbances via inflammatory cytokines, inflammasomes, and macrophage polarization. Targeting lipid metabolism represents a promising therapeutic strategy for alleviating DKD; however, further clinical translational studies are warranted to validate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Haoyu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhou Ling
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Xing
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xie Pengfei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Wang Anzhu
- Chinese-Japanese Friendship Hospital, Beijing, China
| | - Zhang Lili
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Linhua
- Department of Endocrinology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
5
|
Kolligundla LP, Sullivan KM, Mukhi D, Andrade-Silva M, Liu H, Guan Y, Gu X, Wu J, Doke T, Hirohama D, Guarnieri P, Hill J, Pullen SS, Kuo J, Inamoto M, Susztak K. Glutathione-specific gamma-glutamylcyclotransferase 1 ( CHAC1) increases kidney disease risk by modulating ferroptosis. Sci Transl Med 2025; 17:eadn3079. [PMID: 40267214 DOI: 10.1126/scitranslmed.adn3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/20/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association studies (GWASs) have identified more than 1000 loci where genetic variants correlate with kidney function. However, the specific genes, cell types, and mechanisms influenced by these genetic variants remain largely uncharted. Here, we identified glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) on chromosome 15 as affected by GWAS variants by analyzing human kidney gene expression and methylation information. Both CHAC1 RNA and protein were expressed in the loop of Henle region in mouse and human kidneys, and CHAC1 expression was higher in patients carrying disease risk variants. Using CRISPR technology, we created mice with a single functional copy of the Chac1 gene (Chac1+/-) that displayed no baseline phenotypic alterations in kidney structure or function. These mice demonstrated resilience to kidney disease in multiple models, including folic acid-induced nephropathy, adenine-induced chronic kidney disease, and uninephrectomy-streptozotocin-induced diabetic nephropathy. We further showed that CHAC1 plays a critical role in degrading the cellular antioxidant glutathione. Tubule cells isolated from Chac1+/- mice showed increased glutathione, decreased lipid peroxidation, improved cell viability, and protection against ferroptosis. Expression of ferroptosis-associated genes was also lower in mice with only one copy of Chac1. Higher CHAC1 protein also correlated with ferroptosis-related protein abundance in kidney biopsies from patients with kidney disease. This study positions CHAC1 as an important mediator of kidney disease that influences glutathione concentrations and ferroptosis, suggesting potential avenues to explore for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Lakshmi P Kolligundla
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Katie M Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Pediatrics, Medical College of Wisconsin Pediatric Nephrology, Milwaukee, WI 53226, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Magaiver Andrade-Silva
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Yuting Guan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Xiangchen Gu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Daigoro Hirohama
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Paolo Guarnieri
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jon Hill
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jay Kuo
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
6
|
Fang H, Sun X, Ding Y, Niu B, Chen Q. Loureirin B analogs mitigate oxidative stress and confer renal protection. Cell Signal 2025; 132:111787. [PMID: 40188928 DOI: 10.1016/j.cellsig.2025.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes with high morbidity and mortality, necessitating effective treatment. In this study, the Loureirin B analogue (LB-A) was utilized to treat DKD in mice. The results demonstrated that LB-A effectively prevent the progression of DKD in mice, significantly lowering fasting blood glucose levels and reducing proteinuria levels. Additionally, there was a significant decrease in oxidase content in the kidneys of mice, accompanied by an increase in antioxidant oxidase content, resulting in a decrease in ROS levels, mitigating oxidative stress state through modulation of Cxcl1. Cell experiments further confirmed that reducing Cxcl1/Cxcr2 axis activation prevented the onset of DKD induced by high glucose exposure and affected the therapeutic effect of LB-A as well. These findings provide evidences to support that LB-A may mitigate oxidative stress by modulating the Cxcl1 signaling pathway, thereby contributing to renal protection in the context of DKD treatment.
Collapse
Affiliation(s)
- Haowen Fang
- School of environmental and chemical engineering, Shanghai University, Shanghai, PR China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, PR China.
| | - Yanting Ding
- Tongji Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Biochip Co., Ltd., National Engineering Center for Biochip at Shanghai, Shanghai, PR China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, PR China.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
7
|
Huang Z, Zhou L, Liu B, Li X, Sang Y. Endoplasmic reticulum stress aggravates ferroptosis via PERK/ATF4/HSPA5 pathway in UUO-induced renal fibrosis. Front Pharmacol 2025; 16:1545972. [PMID: 40255561 PMCID: PMC12006179 DOI: 10.3389/fphar.2025.1545972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Renal fibrosis, resulting from the transformation of damaged tubular epithelial cells (TECs), serves as a prevalent pathological condition observed in nearly all forms of advancing chronic kidney disease (CKD). Although crucial in fibrotic diseases, the association between endoplasmic reticulum stress (ERS) and ferroptosis remains incompletely elucidated. Herein, increased levels of heat shock protein family A member 5 (HSPA5), acting as a co-molecular in ERS and ferroptosis, along with EMT-associated alterations, including increased α-smooth muscle actin (α-SMA) and Col1a1 levels and decreased E-cad expression, were observed in fibrotic kidneys of Unilateral Ureteral Obstruction (UUO)-induced mouse models and TGF-β-induced EMT in HK-2 cells. The employment of ferrostatin-1 (Fer-1) improved these alterations and reversed TGF-β-induced EMT in vitro. More importantly, Inhibiting ERS by Tauroursodeoxycholate (TUDCA) reversed the alterations of ferroptosis, including GPX4 expression, reactive oxygen species (ROS) accumulation, iron overload, increased lipid peroxidation production, as well as EMT progression in vivo and in vitro. Whereas the overexpression of HSPA5 strikingly attenuated the inhibitory effects of TUDCA on ferroptosis and TGF-β-induced EMT in vitro. Mechanistically, Co-immunoprecipitation (Co-IP) tests showed that ATF4 engaged with and SUMOylated HSPA5 to trigger the HSPA5 signaling pathway in response to TGF-β. These findings illuminate that focusing on HSPA5 may present a promising therapeutic approach to enhance tubular epithelial cells' survival and alleviate the progression of CKD.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Lihua Zhou
- Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan Hubei, China
| | - Bin Liu
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Xiaoju Li
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yu Sang
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Li Q, Shang J, Inagi R. Control of Mitochondrial Quality: A Promising Target for Diabetic Kidney Disease Treatment. Kidney Int Rep 2025; 10:994-1010. [PMID: 40303215 PMCID: PMC12034889 DOI: 10.1016/j.ekir.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 05/02/2025] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), affecting over 40% of patients with diabetes. DKD progression involves fibrosis and damage to glomerular and tubulointerstitial regions, with mitochondrial dysfunction playing a critical role. Impaired mitochondria lead to reduced adenosine triphosphate (ATP) production, damaged mitochondria accumulation, and increased reactive oxygen species (ROS), contributing to renal deterioration. Maintaining mitochondrial quality control (MQC) is essential for preventing cell death, tissue injury, and kidney failure. Recent clinical trials show that enhancing MQC can alleviate DKD. However, current treatments cannot halt kidney function decline, underscoring the need for new therapeutic strategies. Mitochondrial-targeted drugs show potential; however, challenges remain because of adverse effects and unclear mechanisms. Future research should aim to comprehensively explore therapeutic potential of MQC in DKD. This review highlights the significance of MQC in DKD treatment, emphasizing the need to maintain mitochondrial quality for developing new therapies.
Collapse
Affiliation(s)
- Qi Li
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Wu B, Wang J, Yan X, Jin G, Wang Q. Cordycepin ameliorates diabetic nephropathy injury by activating the SLC7A11/GPX4 pathway. J Diabetes Investig 2025. [PMID: 40120097 DOI: 10.1111/jdi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Cordycepin (CRD) has been identified to alleviate diabetes-induced injuries and complications including diabetic nephropathy (DN). Here, this work focused on probing the specific effects and potential mechanisms of CRD on DN progression. METHODS High glucose (HG)-induced mouse podocyte cell line (MPC5) was used for in vitro functional analyses. Cell proliferation and apoptosis were determined using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry, respectively. ELISA analysis detected inflammatory factors. Cell ferroptosis was assessed by measuring the levels of Fe2+, glutathione, reactive oxygen species, and malonaldehyde. RESULTS CRD treatment suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes. CRD treatment elevated SLC7A11 and GPX4 expression in HG-treated podocytes. The overexpression of SLC7A11 or GPX4 suppressed HG-evoked apoptosis, inflammation, and ferroptosis in podocytes. Moreover, the silencing of SLC7A11 or GPX4 abolished the protective effects of CRD on HG-treated podocytes. Moreover, CRD ameliorated renal structure injury and inflammation in STZ-induced diabetic mice by modulating SLC7A11 or GPX4 expression. CONCLUSIONS Cordycepin suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes in vitro, and ameliorated renal injury and inflammation in STZ-induced diabetic mice by activating the SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Bing Wu
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xiaohui Yan
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Gang Jin
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qiong Wang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Wang J, Shi H, Yang Y, Gong X. Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications. Front Immunol 2025; 16:1505794. [PMID: 40092979 PMCID: PMC11906378 DOI: 10.3389/fimmu.2025.1505794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes mellitus (DM), and its incidence is increasing alongside the number of diabetes cases. Effective treatment and long-term management of DKD present significant challenges; thus, a deeper understanding of its pathogenesis is essential to address this issue. Chronic inflammation and abnormal cell death in the kidney closely associate with DKD development. Recently, there has been considerable attention focused on immune cell infiltration into renal tissues and its inflammatory response's role in disease progression. Concurrently, ferroptosis-a novel form of cell death-has emerged as a critical factor in DKD pathogenesis, leading to increased glomerular filtration permeability, proteinuria, tubular injury, interstitial fibrosis, and other pathological processes. The cardiorenal benefits of SGLT2 inhibitors (SGLT2-i) in DKD patients have been demonstrated through numerous large clinical trials. Moreover, further exploratory experiments indicate these drugs may ameliorate serum and urinary markers of inflammation, such as TNF-α, and inhibit ferroptosis in DKD models. Consequently, investigating the interplay between ferroptosis and innate immune and inflammatory responses in DKD is essential for guiding future drug development. This review presents an overview of ferroptosis within the context of DKD, beginning with its core mechanisms and delving into its potential roles in DKD progression. We will also analyze how aberrant innate immune cells, molecules, and signaling pathways contribute to disease progression. Finally, we discuss the interactions between ferroptosis and immune responses, as well as targeted therapeutic agents, based on current evidence. By analyzing the interplay between ferroptosis and innate immunity alongside its inflammatory responses in DKD, we aim to provide insights for clinical management and drug development in this area.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haonan Shi
- School of Medicine, Shanghai University, Shanghai, China
| | - Ye Yang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xueli Gong
- Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
12
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Wise AF, Krisnadevi IGAAA, Bruell S, Lee HC, Bhuvan T, Kassianos AJ, Saini S, Wang X, Healy HG, Qian EL, Elliot DA, Steele JR, Fuller M, Nicholls KM, Ricardo SD. Fabry Disease Podocytes Reveal Ferroptosis as a Potential Regulator of Cell Pathology. Kidney Int Rep 2025; 10:535-548. [PMID: 39990892 PMCID: PMC11843119 DOI: 10.1016/j.ekir.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Fabry disease (FD) results from pathogenic GLA variants, leading to a deficiency in lysosomal α-galactosidase A (α-Gal A) and accumulation of the sphingolipid globotriaosylceramide (Gb3). This leads to severe renal and cardiovascular complications, primarily affecting kidney podocytes. As a multisystemic disorder, FD initiates at the cellular level; however, the mechanism(s) underlying Gb3-induced cell dysfunction remain largely unknown. This study aimed to identify potential drivers of FD and explore the underlying cell pathology in induced pluripotent stem cell (iPSC)-derived podocytes from patients with FD. Methods iPSCs were derived from patients with FD with GLA c.851T>C or GLA c.1193_1196del variants and compared with controls or CRISPR-Cas9-corrected cell lines. iPSCs were differentiated into podocytes; and α-Gal A activity, Gb3 accumulation, and cell morphology were assessed. Label-free mass spectrometry identified the top, differentially expressed proteins which were validated by using western blot. Results Podocytes derived from patients with FD exhibited expression of podocyte-specific markers and morphological features of FD. Reduced α-Gal A activity was observed in FD iPSC-derived podocytes along with the accumulation of Gb3. Proteomic profiling revealed distinct proteomic signatures between control and iPSC-derived podocytes from a patient with FD, with apparent variations among FD lines, highlighting GLA variant-specific proteomic alterations. Notably, the ferroptosis-associated protein, arachidonate 15-lipoxygenase (ALOX15), was the most upregulated protein in FD podocytes and ferroptosis was the most enriched pathway. Western blot analysis confirmed the upregulation of ALOX15 in FD podocytes, with validation of other markers implicating ferroptosis in FD pathology. Conclusion These findings underscore the heterogeneity of FD and, for the first time, implicate ferroptosis as a potential common pathway driving its pathology.
Collapse
Affiliation(s)
- Andrea F. Wise
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | - Shoni Bruell
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Han-Chung Lee
- Department of Biochemistry and Molecular Biology, Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tejasvini Bhuvan
- Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andrew J. Kassianos
- Pathology Queensland at Royal Brisbane and Women’s Hospital, Queensland Health, Queensland, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Xiangju Wang
- Pathology Queensland at Royal Brisbane and Women’s Hospital, Queensland Health, Queensland, Australia
| | - Helen G. Healy
- Pathology Queensland at Royal Brisbane and Women’s Hospital, Queensland Health, Queensland, Australia
| | - Elizabeth Ling Qian
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Pediatrics, The Royal Children’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - David A. Elliot
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Pediatrics, The Royal Children’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Joel R Steele
- Department of Biochemistry and Molecular Biology, Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, South Australia Pathology at Women's and Children's Hospital and Adelaide Medical School and School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Kathleen M. Nicholls
- Department of Nephrology, The Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Parkville, Australia
| | - Sharon D. Ricardo
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Huang B, Wen W, Ye S. Iron-Deficiency Anemia Elevates Risk of Diabetic Kidney Disease in Type 2 Diabetes Mellitus. J Diabetes 2025; 17:e70060. [PMID: 39968673 PMCID: PMC11836615 DOI: 10.1111/1753-0407.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE This study aims to explore the link between iron deficiency anemia (IDA) and diabetic kidney disease (DKD) and assess the safety of iron supplementation. It also investigates key mechanisms and molecules involved in iron deficiency's role in disease development. METHODS A retrospective analysis was conducted on 1,398 T2DM patients using propensity score matching to identify risk factors for DKD. Mendelian randomization (MR) was used to explore causal relationships between IDA, iron supplementation, liver iron content, and DKD. The GSE27999 dataset was analyzed to examine how an iron-deficient diet affects kidney-related gene expression. Key pathways and molecules were identified through GSEA, GO/KEGG, and PPI analysis. RESULTS Retrospective data showed a correlation between hemoglobin levels and DKD risk. Logistic regression confirmed that IDA increased DKD risk independently of other factors. MR revealed a causal link between IDA and DKD, with no significant effect from iron supplementation. GSE27999 analysis identified 580 differentially expressed genes, enriched in pathways like cytokine signaling, oxidative biology, and small molecule transport. PPI analysis highlighted 10 key hub genes, including Cyp2d26 and Fgf4. CONCLUSION IDA increases susceptibility to DKD, possibly through oxidative stress and altered small molecule transport. However, iron supplementation does not appear to increase the risk of DKD.
Collapse
Affiliation(s)
- Bin Huang
- Department of EndocrinologyThe First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of StomatologyWannan Medical CollegeWuhuChina
| | - Shandong Ye
- Department of EndocrinologyThe First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
15
|
Hsiao HY, Nien CY, Shiu RF, Chin WC, Yen TH. Microplastic and nanoplastic exposure and risk of diabetes mellitus. World J Clin Cases 2025; 13:98110. [PMID: 39866647 PMCID: PMC11577526 DOI: 10.12998/wjcc.v13.i3.98110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 11/12/2024] Open
Abstract
The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease. Although research on the effects of MPs and NPs on diabetes is still in its early stages, there are potential concerns. This editorial highlights the risk to diabetics from co-exposure to contaminants and MPs/NPs, supported by evidence from animal studies and the various chemical compositions of MPs/NPs.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Zhongli 320317, Taoyuan, Taiwan
| | - Ruei-Feng Shiu
- Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chun Chin
- Department of Chemical and Materials Engineering, University of California Merced, Merced, CA 95343, United States
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
16
|
Hu Y, Tang J, Hong H, Chen Y, Ye B, Gao Z, Zhu G, Wang L, Liu W, Wang Y. Ferroptosis in kidney disease: a bibliometric analysis from 2012 to 2024. Front Pharmacol 2025; 15:1507574. [PMID: 39872050 PMCID: PMC11769937 DOI: 10.3389/fphar.2024.1507574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease. Material and Methods A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted. VOSviewer, CiteSpace, and Biblioshiny were used for in-depth scientometric and visualized analyses. Results From 2012 to 2024, a total of 2,244 articles met the inclusion criteria for final analysis. The number of annual publications in this area of study showed a steady pattern at the beginning of the decade. The top 3 journals with the highest publication output were Renal Failure, Oxidative Medicine And Cellular Longevity, and Biomedicine & Pharmacotherapy. China and the United States had the highest number of publications. Central South University and Guangzhou Medical University as the most active and influential institutions. Documents and citation analysis suggested that Andreas Linkermann, Jolanta Malyszko, and Alberto Ortiz are active researchers, and the research by Scott J. Dixon and Jose Pedro Friedmann Angeli, as the most cited article, are more important drivers in the development of the field. Keywords associated with glutathione, lipid peroxidation, and nitric oxide had high frequency in the early studies. In recent years, however, there has been a shift towards biomarkers, inflammation and necrosis, which indicate current and future research directions in this area. Conclusion The global landscape of the ferroptosis research in kidney disease from 2012 to 2024 was presented. Basic research and mechanism exploration for renal fibrosis and chronic kidney disease may be a hot spot in the future.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hanzhang Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Ye
- Beijing University of Chinese Medicine, Beijing, China
| | - Ziheng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Zhang Y, Huang R, Liu X, Cai M, Su M, Cheng Y, Jiang J, Wang X, Peng D. Taohong siwu decoction ameliorates abnormal uterine bleeding via inhibiting ACSL4-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119130. [PMID: 39566864 DOI: 10.1016/j.jep.2024.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD) is a well-known traditional Chinese medicine (TCM) prescription. It consists of six crude herbs, including Rehmannia glutinosa Libosch, Paeonia lactiflora Pall, Angelica sinensis (Oliv.) Diels, Ligusticum chuanxiong Hort., Prunus persica (L.) Batsch, Cauthamus tinctorius L. It has been used to treat blood stasis syndrome in Chinese clinics for thousands of years. According to recent research, TSD may be useful in the management of abnormal uterine bleeding (AUB). The aim of the present study is to investigate the possible mechanism of TSD on AUB after drug-induced incomplete abortion. AIM OF THE STUDY To investigate whether TSD could be effective in ameliorating AUB through inhibiting acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis. MATERIALS AND METHODS An incomplete medical aborting model was established and Ishikawa cell lines were utilized in vitro. The quantity of uterine bleeding was measured by alkaline hemoglobin photometry. Pathological results were observed by hematoxylin-eosin staining (HE). Mitochondrial morphology and function were measured by transmission electron microscopy. The related protein and mRNA were detected by western blot, the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). We used knockdown and overexpression of ACSL4 to investigate the influence of ferroptosis in Ishikawa cells and the impact of TSD on ferroptosis. RESULTS TSD dramatically reduced the amount and duration of bleeding as well as the endometrial inflammation of AUB. TSD improved mitochondrial characteristics, decreased ACSL4 protein and mRNA levels. The ferroptosis marker glutathione (GSH) levels were increased, on the contrary, reactive oxygen species (ROS) and iron levels decreased when TSD intervened. TSD decreased levels of the inflammatory factors and the oxidative products. CONCLUSION TSD alleviated endometrial inflammation by inhibiting ACSL4-mediated ferroptosis and exerts a protective effect of AUB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China
| | - Rong Huang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Xiaochuang Liu
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, PR China
| | - Mengyu Su
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Yao Cheng
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Juanjuan Jiang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Xuekai Wang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Daiyin Peng
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| |
Collapse
|
18
|
Chen Q, Song JX, Zhang Z, An JR, Gou YJ, Tan M, Zhao Y. Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway. Sci Rep 2025; 15:1754. [PMID: 39799153 PMCID: PMC11724886 DOI: 10.1038/s41598-025-85658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect. In our study, we used db/db mice to simulate Type 2 diabetes mellitus (T2DM). The mice were intraperitoneally injected with LIRA (200 µg/kg/d) daily for 6 weeks. Renal function, pathologic changes, lipid peroxidation levels, iron levels, and ferroptosis were assessed. First, LIRA ameliorated renal dysfunction and fibrosis in db/db mice. Second, LIRA inhibited lipid peroxidation by up-regulating T-SOD, GSH-Px, and GSH activities as well as down-regulating the levels of 8-OHDG, MDA, LPO, 4-HNE, 12-Lox, and NOX4 in db/db mice. In addition, LIRA attenuated iron deposition by decreasing the expression of TfR1 and increasing the expression of FPN1. Meanwhile, LIRA reduced high levels of high glucose-induced cell viability decline and intracellular lipid peroxidation. Furthermore, LIRA inhibited ferroptosis by adjusting the Fsp1-CoQ10-NAD(P)H pathway in vivo and in vitro. These findings suggested that LIRA attenuated kidney fibrosis injury in db/db mice by inhibiting ferroptosis through the Fsp1-CoQ10-NAD(P)H pathway.
Collapse
Affiliation(s)
- Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Yu-Jing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Miao Tan
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.
| |
Collapse
|
19
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
20
|
Tian S, Zhou S, Wu W, lin Y, Wang T, Sun H, A‐Ni‐Wan A, Li Y, Wang C, Li X, Yu P, Zhao Y. GLP-1 Receptor Agonists Alleviate Diabetic Kidney Injury via β-Klotho-Mediated Ferroptosis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409781. [PMID: 39630101 PMCID: PMC11775532 DOI: 10.1002/advs.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Semaglutide (Smg), a GLP-1 receptor agonist (GLP-1RA), shows renal protective effects in patients with diabetic kidney disease (DKD). However, the exact underlying mechanism remains elusive. This study employs transcriptome sequencing and identifies β-Klotho (KLB) as the critical target responsible for the role of Smg in kidney protection. Smg treatment alleviates diabetic kidney injury by inhibiting ferroptosis in patients, animal models, and HK-2 cells. Notably, Smg treatment significantly increases the mRNA expression of KLB through the activation of the cyclic adenosine monophosphate (cAMP) signaling pathway, specifically through the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Subsequently, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway is activated, reprograming the key metabolic processes of ferroptosis such as iron metabolism, fatty acid synthesis, and the antioxidant response against lipid peroxidation. Suppression of ferroptosis by Smg further attenuates renal inflammation and fibrosis. This work highlights the potential of GLP-1RAs and KLB targeting as promising therapeutic approaches for DKD management.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Department of NephrologyThe Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)TaiyuanShanxi030000China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yao lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Tongdan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Haizhen Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - A‐Shan‐Jiang A‐Ni‐Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| | - Chongyang Wang
- School of Life SciencesPeking UniversityBeijing100871China
| | - Xiaogang Li
- Department of Internal MedicineMayo ClinicRochesterMN55901USA
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Nephropathy & Blood Purification DepartmentThe Second Hospital of Tianjin Medical UniversityTianjin300134China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| |
Collapse
|
21
|
Zhang W, Liu Y, Zhou J, Qiu T, Xie H, Pu Z. Chicoric acid advanced PAQR3 ubiquitination to ameliorate ferroptosis in diabetes nephropathy through the relieving of the interaction between PAQR3 and P110α pathway. Clin Exp Hypertens 2024; 46:2326021. [PMID: 38525833 DOI: 10.1080/10641963.2024.2326021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study aimed to examine the impact of CA on DN and elucidate its underlying molecular mechanisms of inflammation. METHODS We fed C57BL/6 mice injected with streptozotocin to induce diabetes. In addition, we stimulated NRK-52E cells with 20 mmol/L d-glucose to mimic the diabetic condition. RESULTS Our findings demonstrated that CA effectively reduced blood glucose levels, and improved DN in mice models. Additionally, CA reduced kidney injury and inflammation in both mice models and in vitro models. CA decreased high glucose-induced ferroptosis of NRK-52E cells by inducing GSH/GPX4 axis. Conversely, the ferroptosis activator or the PI3K inhibitor reversed positive effects of CA on DN in both mice and in vitro models. CA suppressed PAQR3 expression in DN models to promote PI3K/AKT activity. The PAQR3 activator reduced the positive effects of CA on DN in vitro models. Moreover, CA directly targeted the PAQR3 protein to enhance the ubiquitination of the PAQR3 protein. CONCLUSION Overall, our study has uncovered that CA promotes the ubiquitination of PAQR3, leading to the attenuation of ferroptosis in DN. This effect is achieved through the activation of the PI3K/AKT signaling pathways by disrupting the interaction between PAQR3 and the P110α pathway. These findings highlight the potential of CA as a viable therapeutic option for the prevention of DN and other forms of diabetes.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, P. R. China
| | - Yong Liu
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, Anhui, People's Republic of China
| | - Jiajun Zhou
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, Anhui, People's Republic of China
| | - Teng Qiu
- Department of Urology Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui People's Republic of China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui People's Republic of China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
22
|
Li Q, Zheng Y, Zhao J, Wei X, Shi Z, Fan H, Ge C, Xu M, Tan J. Radish red attenuates chronic kidney disease in obese mice through repressing oxidative stress and ferroptosis via Nrf2 signaling improvement. Int Immunopharmacol 2024; 143:113385. [PMID: 39549542 DOI: 10.1016/j.intimp.2024.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
Chronic kidney disease (CKD) presents a significant public health concern, with obesity being a prominent contributing factor to kidney disorders by inducing oxidative stress, lipotoxicity, and tubular cell injury. Natural anthocyanins extracted from red radishes (Raphanus sativus L.) exert antioxidant and anti-apoptotic functions. This study aims to employ a novel natural pigment anthocyanin, referred to as radish red (RR) isolated from red radishes, to alleviate obesity-related metabolic disturbances and kidney impairment in a CKD mouse model induced by high-fat and high-fructose diets (HFFD). The in vitro study initially demonstrated that RR treatment significantly mitigated the palmitate acid (PA)-induced injury and cytotoxicity in human tubular epithelial HK2 cells. Subsequently, RR supplementation notably improved obesity and associated metabolic dysfunctions in mice caused by HFFD. Abnormal renal function indices including serum creatinine, blood urea nitrogen (BUN), uric acid (UA), urine protein, albuminuria and urine albumin-to-creatinine ratio (UACR) were detected in HFFD-fed mice, which were effectively alleviated by RR treatment. Histologically, renal tubular cell injury, lipid deposition, tubular dilatation, and renal fibrosis induced by HFFD were markedly improved after RR administration in mice. Furthermore, RR treatment significantly alleviated oxidative stress in HFFD-fed mice, as evidenced by the decreased renal reactive oxygen species (ROS) production, 4-HNE, and NOX4 expression levels. Anti-oxidants such as superoxide dismutase-1 (SOD1), NAD (P) H: quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1) and glutamate cysteine ligase (GCLC) were highly upregulated in kidney of HFFD-fed mice with RR consumption through improving NFE2-related factor 2 (Nrf2) signaling activation. Furthermore, ferroptosis was identified in the kidneys of HFFD-fed mice, evidenced by the elevated levels of malondialdehyde (MDA), iron content, and lipid peroxidation, along with the decreased expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). These occurrences were significantly mitigated following RR treatment. Mechanistically, we further discovered that the suppressive effects of RR in restricting oxidative stress, ferroptosis, lipid accumulation, and injury of tubular epithelial cells induced by PA were significantly counteracted by Nrf2 knockdown. Collectively, our results demonstrated that dietary supplementation with RR could potentially serve as an efficacious therapeutic modality for the management of obesity-related CKD progression by enhancing Nrf2 activation to impede oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanbin Zheng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianyu Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xinyi Wei
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Zongxin Shi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Haonan Fan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
23
|
Sun Z, Zhang F, Gao Z, Wu J, Bi Q, Zheng X, Zhang J, Cao P, Wang W. Liraglutide alleviates ferroptosis in renal ischemia reperfusion injury via inhibiting macrophage extracellular trap formation. Int Immunopharmacol 2024; 142:113258. [PMID: 39340991 DOI: 10.1016/j.intimp.2024.113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND AND PURPOSE Renal transplantation and other conditions with transiently reduced blood flow is major cause of renal ischemia/reperfusion injury (RIRI), a therapeutic challenge clinically. This study investigated the role of liraglutide in ferroptosis-associated RIRI via macrophage extracellular traps (METs). METHODS Animal model with RIRI was established in C57BL/6J mice. A total of 72 C57BL/6J mice were used with 8 mice per group. Primary tubular epithelium was co-culture with RAW264.7 under hypoxia/reoxygenation (H/R) condition to mimic in vitro. Liraglutide was administrated into mice and cells. Extracellular DNA, neutrophil elastase and myeloperoxidase in serum and supernatant of cell medium were collected for measuring METs. F4/80 and citH3 were labeled to show METs. RESULTS Liraglutide relieved RIRI and ferroptosis in vivo, and inhibited renal I/R-induced METs both in vivo and in vitro. F4/80 and citrullinated histone H3 (citH3) were highly co-localized after RIRI. Liraglutide attenuated the co-localization of citH3 and F4/80. Expressions of M2 markers were enhanced whereas these of M1 markers suppressed during liraglutide treatment in RIRI. Phosphorylation of signal transducer and activator of transcription (STAT)1, 3 and 6 were increased in RIRI mice and H/R-induced RAW264.7. However, liraglutide decreased phosphorylation of STAT1 and increased phosphorylation of STAT3 and STAT6. STAT3/6 inhibition reversed liraglutide-inhibited M1 polarization, extracellular traps and ferroptosis. CONCLUSION Liraglutide inhibited ferroptosis-induced renal dysfunction since it skewed macrophage polarization into M2 phenotype that interfered the formation of extracellular traps based on STAT3/6 pathway during RIRI. Liraglutide was proposed to be used for RIRI clinical treatment.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Feilong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Zihao Gao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Peng Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
24
|
Yi R, Liu Y, Zhang X, Sun X, Wang N, Zhang C, Deng H, Yao X, Wang S, Yang G. Unraveling Quercetin's Potential: A Comprehensive Review of Its Properties and Mechanisms of Action, in Diabetes and Obesity Complications. Phytother Res 2024; 38:5641-5656. [PMID: 39307545 DOI: 10.1002/ptr.8332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
The prevalence of diabetes is escalating alarmingly, placing a significant economic burden on the global healthcare system. The use of chemical substances extracted from plants has been demonstrated to be an effective method for the treatment and control of insulin resistance and Type 2 diabetes mellitus (T2DM). New research indicates that natural phytochemicals present in fruits and vegetables are expected to become drugs for the treatment of diabetes and the prevention of related complications. Quercetin, a widely distributed flavonoid, is well-known for its antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. This article provides a comprehensive account of the mechanism of action of quercetin on diabetes and obesity complications in vivo and in vitro. It elucidates the impact of quercetin on various cells. These include hepatocytes, renal cells, skeletal muscle cells, and adipocytes. Furthermore, this article discusses the mechanism of quercetin on organ damage in diabetic mice induced by STZ, alloxan, diet, and spontaneous Type 2 diabetic mice caused by genetic defects. Additionally, it addresses the pharmacokinetics of quercetin and its potential for synergistic effects with existing diabetic drugs.
Collapse
Affiliation(s)
- Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Wu Q, Huang F. Targeting ferroptosis as a prospective therapeutic approach for diabetic nephropathy. Ann Med 2024; 56:2346543. [PMID: 38657163 PMCID: PMC11044758 DOI: 10.1080/07853890.2024.2346543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, causing a substantive threat to the public, which receives global concern. However, there are limited drugs targeting the treatment of DN. Owing to this, it is highly crucial to investigate the pathogenesis and potential therapeutic targets of DN. The process of ferroptosis is a type of regulated cell death (RCD) involving the presence of iron, distinct from autophagy, apoptosis, and pyroptosis. A primary mechanism of ferroptosis is associated with iron metabolism, lipid metabolism, and the accumulation of ROS. Recently, many studies testified to the significance of ferroptosis in kidney tissue under diabetic conditions and explored the drugs targeting ferroptosis in DN therapy. Our review summarized the most current studies between ferroptosis and DN, along with investigating the significant processes of ferroptosis in different kidney cells, providing a novel target treatment option for DN.
Collapse
Affiliation(s)
- Qinrui Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Du L, Guo C, Zeng S, Yu K, Liu M, Li Y. Sirt6 overexpression relieves ferroptosis and delays the progression of diabetic nephropathy via Nrf2/GPX4 pathway. Ren Fail 2024; 46:2377785. [PMID: 39082470 PMCID: PMC11293269 DOI: 10.1080/0886022x.2024.2377785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE Sirt6, reactive oxygen species and ferroptosis may participate in the pathogenesis of Diabetic Nephropathy (DN). Exploring the relationship between Sirt6, oxidative stress, and ferroptosis provides new scientific ideas to DN. METHODS Human podocytes were stimulated with 30 mM glucose and 5.5 mM glucose. The mice of db/db group were randomly divided into two groups:12 weeks and 16 weeks. Collect mouse blood and urine specimens and renal cortices for investigations. HE, Masson, PAS and immunohistochemical staining were used to observe pathological changes. Western blot, RT-qPCR and immunofluorescence staining were used to evaluate expression of relevant molecules. CCK8 method was introduced to observe cell viability. The changes of podocyte mitochondrial membrane potential and mitochondrial morphology in each group were determined by JC-1 staining and Mito-Tracker. RESULTS The expression level of Sirt6, Nrf2, SLC7A11, HO1, SOD2 and GPX4 were reduced, while ACSL4 was increased in DN. Blood glucose, BUN, Scr, TG, T-CHO and 24h urine protein were upregulated, while ALB was reduced in diabetic group. The treatment of Ferrostatin-1 significantly improved these changes, which proved ferroptosis was involved in the development of DN. Overexpression of Sirt6 might ameliorate the oxidation irritable reaction and ferroptosis. Sirt6 plasmid transfection increased mitochondrial membrane potential and protected morphology and structure of mitochondria. The application of Sirt6 siRNA could aggravated the damage manifestations. CONCLUSION High glucose stimulation could decrease the antioxidant capacity and increase formation of ROS and lipid peroxidation. Sirt6 might alleviate HG-induced mitochondrial dysfunction, podocyte injury and ferroptosis through regulating Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Lingyu Du
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Canghui Guo
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Shengnan Zeng
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ke Yu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Maodong Liu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
27
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
28
|
Gwon HJ, Cho W, Choi SW, Lim DS, Tanriverdi EÇ, Abd El-Aty AM, Jeong JH, Jung TW. Donepezil improves skeletal muscle insulin resistance in obese mice via the AMPK/FGF21-mediated suppression of inflammation and ferroptosis. Arch Pharm Res 2024; 47:940-953. [PMID: 39580762 DOI: 10.1007/s12272-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Donepezil has traditionally been used in Alzheimer's disease treatment and is known for its ability to alleviate neural inflammation and apoptosis. However, its impact on insulin signaling remains unexplored. This study sought to elucidate the novel role of donepezil in mitigating skeletal muscle insulin resistance under hyperlipidemic conditions. Western blot analysis was used to assess the expression of various proteins of interest, whereas a glucose uptake assay was performed in skeletal muscle cells via commercially available kits. An in vitro model of obesity was developed using palmitate. These in vitro findings were corroborated in vivo via insulin resistance models established through high-fat diet (HFD) feeding in mice. Intraperitoneal glucose tolerance tests and insulin tolerance tests were performed on the experimental mice. The results revealed that donepezil treatment improved insulin signaling and inflammation in palmitate-treated C2C12 myocytes and the skeletal muscle of HFD-fed mice. Notably, donepezil treatment augmented FGF21 expression and AMPK phosphorylation in the myocytes and skeletal muscle of HFD-fed mice. Knockdown of FGF21 or AMPK via siRNA reversed the effects of donepezil on insulin signaling and inflammation in cultured myocytes. We also found that donepezil ameliorated skeletal muscle insulin resistance via the FGF21-mediated suppression of ferroptosis under hyperlipidemic conditions. These findings suggest that donepezil enhances the FGF21/AMPK axis, thereby mitigating inflammation and insulin resistance in skeletal muscle. This study introduces a novel therapeutic approach for treating Alzheimer's disease patients with insulin resistance.
Collapse
Affiliation(s)
- Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Esra Çinar Tanriverdi
- Department of Medical Education, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Zhang L, Wang X, Chang L, Ren Y, Sui M, Fu Y, Zhang L, Hao L. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Ren Fail 2024; 46:2327495. [PMID: 38465879 DOI: 10.1080/0886022x.2024.2327495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading factor in end-stage renal disease. The complexity of its pathogenesis, combined with the limited treatment efficacy, necessitates deeper insights into potential causes. Studies suggest that ferroptosis-driven renal tubular damage contributes to DKD's progression, making its counteraction a potential therapeutic strategy. Quercetin, a flavonoid found in numerous fruits and vegetables, has demonstrated DKD mitigation in mouse models, though its protective mechanism remains ambiguous. In this study, we delved into quercetin's potential anti-ferroptotic properties, employing a DKD rat model and high glucose (HG)-treated renal tubular epithelial cell models. Our findings revealed that HG prompted unusual ferroptosis activation in renal tubular epithelial cells. However, quercetin counteracted this by inhibiting ferroptosis and activating NFE2-related factor 2 (Nrf2) expression in both DKD rats and HG-treated HK-2 cells, indicating its renal protective role. Further experiments, both in vivo and in vitro, validated that quercetin stimulates Nrf2. Thus, our research underscores quercetin's potential in DKD treatment by modulating the ferroptosis process via activating Nrf2 in a distinct DKD rat model, offering a fresh perspective on quercetin's protective mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Chang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yiqun Ren
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Manshu Sui
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuting Fu
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
30
|
Li M, Zhao S, Liu Y, Wang Q, Chen Y, Zhou Y. Pathological Characteristics of Ferroptosis in Kidney Tissues in Type 2 Diabetic Patients with Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:4105-4113. [PMID: 39502451 PMCID: PMC11537185 DOI: 10.2147/dmso.s489536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Background Diabetes kidney disease (DKD) is a common complication of diabetes and is currently considered the primary cause of end-stage renal disease. Ferroptosis has been found to participate in the development of DKD. However, no ferroptosis-related markers have been evaluated in human DKD samples. This study aimed to examine the ferroptosis-related pathological alterations in DKD samples. Methods This study enrolled patients with DKD at the Third Hospital of Hebei Medical University between January 2018 and December 2022, of whom 30 were diagnosed with DKD and 10 with non-DKD (CON). Clinical data of patients were collected, and hematoxylin-eosin staining (H&E), PASM, and immunohistochemical staining were performed to evaluate pathological changes and the expression of ferroptosis-related proteins, including GPX4, ACSL4, Nrf2, TfR1, FTH, and FTL. Results Compared with the CON group, patients with DKD exhibited significantly elevated serum creatinine levels and reduced eGFR (P < 0.05). Iron content and the expression of the ferroptosis-related protein ACSL4 were significantly increased, while the expression of Nrf2 was significantly decreased in the renal tissues of patients with DKD (P all < 0.05). There were no differences in the expression of GPX4, TfR1, FTH, or FTL between the two groups. Nrf2 and ACSL4 expression were influential factors in the occurrence of DKD and both exhibited diagnostic value for DKD. Nrf2 was a protective factor (OR, < 1), whereas ACSL4 was a risk factor (OR, > 1). Conclusion Ferroptosis-promoting gene profile was identified in DKD renal samples, indicating that ferroptosis may participate in the pathogenesis of DKD. The expression levels of Nrf2 and ASCL4 in the kidneys are related to the severity and progression of DKD.
Collapse
Affiliation(s)
- Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Song Zhao
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qian Wang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Yongzhe Chen
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| |
Collapse
|
31
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
32
|
Chen H, Zhang Y, Miao Y, Song H, Tang L, Liu W, Li W, Miao J, Li X. Vitamin D inhibits ferroptosis and mitigates the kidney injury of prediabetic mice by activating the Klotho/p53 signaling pathway. Apoptosis 2024; 29:1780-1792. [PMID: 38558206 DOI: 10.1007/s10495-024-01955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yujing Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yufan Miao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hanlu Song
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lulu Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenyi Liu
- President's Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
33
|
Wu K, Chen J, Lin J, Zhu E, Xu X, Yan X, Ju L, Huang M, Zhang Y. The role of ferroptosis in DM-induced liver injury. Biometals 2024; 37:1191-1200. [PMID: 38874821 DOI: 10.1007/s10534-024-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 06/15/2024]
Abstract
The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jiasi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Lin
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaochang Xu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiuhong Yan
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lang Ju
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yimin Zhang
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
34
|
Cao S, Wei Y, Yue Y, Chen Y, Qian J, Wang D, Xiong A, Liu P, Zeng H. Rosiglitazone retards the progression of iron overload-induced osteoarthritis by impeding chondrocyte ferroptosis. iScience 2024; 27:110526. [PMID: 39224514 PMCID: PMC11366908 DOI: 10.1016/j.isci.2024.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is implicated in several diseases, including iron overload-induced osteoarthritis (IOOA), which is marked by oxidative stress, iron imbalance, and lipid peroxidation. Given rosiglitazone's (RSG) ability to inhibit lipid peroxidation and ferroptosis, this study aims to assess its therapeutic potential for treating IOOA. Our in vitro results show that RSG targets acyl-CoA synthetase long-chain family member 4 to mitigate impairments induced by interleukin-1 beta and ferric ammonium citrate, including cell apoptosis, senescence, inflammatory responses, extracellular matrix degradation, and ferroptosis. RSG reduced intracellular iron content, alleviated oxidative stress and lipid peroxidation, mitigated damage to membrane-bound organelles, and enhanced glucose transport. Additionally, pre-treatment with RSG imparted anti-ferroptotic properties to chondrocytes. In vivo, RSG alleviated cartilage degradation, inflammatory responses, and ferroptosis in mice with IOOA. In conclusion, RSG exhibits chondroprotective and anti-ferroptotic effects by suppressing lipid peroxidation and restoring iron homeostasis, highlighting its potential for treating IOOA.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Junyu Qian
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, People's Republic of China
| |
Collapse
|
35
|
Wang Y, Liu T, Liu W, Zhao H, Li P. Research hotspots and future trends in lipid metabolism in chronic kidney disease: a bibliometric and visualization analysis from 2004 to 2023. Front Pharmacol 2024; 15:1401939. [PMID: 39290864 PMCID: PMC11405329 DOI: 10.3389/fphar.2024.1401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background Disorders of lipid metabolism play a key role in the initiation and progression of chronic kidney disease (CKD). Recently, research on lipid metabolism in CKD has rapidly increased worldwide. However, comprehensive bibliometric analyses in this field are lacking. Therefore, this study aimed to evaluate publications in the field of lipid metabolism in CKD over the past 20 years based on bibliometric analysis methods to understand the important achievements, popular research topics, and emerging thematic trends. Methods Literature on lipid metabolism in CKD, published between 2004 and 2023, was retrieved from the Web of Science Core Collection. The VOSviewer (v.1.6.19), CiteSpace (v.6.3 R1), R language (v.4.3.2), and Bibliometrix (v.4.1.4) packages (https://www.bibliometrix.org) were used for the bibliometric analysis and visualization. Annual output, author, country, institution, journal, cited literature, co-cited literature, and keywords were also included. The citation frequency and H-index were used to evaluate quality and influence. Results In total, 1,285 publications in the field of lipid metabolism in CKD were identified in this study. A total of 7,615 authors from 1,885 institutions in 69 countries and regions published articles in 466 journals. Among them, China was the most productive (368 articles), and the United States had the most citations (17,880 times) and the highest H-index (75). Vaziri Nosratola D, Levi Moshe, Fornoni Alessia, Zhao Yingyong, and Merscher Sandra emerged as core authors. Levi Moshe (2,247 times) and Vaziri Nosratola D (1,969 times) were also authors of the top two most cited publications. The International Journal of Molecular Sciences and Kidney International are the most published and cited journals in this field, respectively. Cardiovascular disease (CVD) and diabetic kidney disease (DKD) have attracted significant attention in the field of lipid metabolism. Oxidative stress, inflammation, insulin resistance, autophagy, and cell death are the key research topics in this field. Conclusion Through bibliometric analysis, the current status and global trends in lipid metabolism in CKD were demonstrated. CVD and DKD are closely associated with the lipid metabolism of patients with CKD. Future studies should focus on effective CKD treatments using lipid-lowering targets.
Collapse
Affiliation(s)
- Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
36
|
Mu K, Yang Y, An X, Zhu J, Zhang J, Jiang Y, Yang X, Zhang J. Proteomic analysis of urinary exosomes reveals ferroptosis-associated proteins are involved in diabetic nephropathy. Genes Dis 2024; 11:101138. [PMID: 38764722 PMCID: PMC11098774 DOI: 10.1016/j.gendis.2023.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/06/2023] [Accepted: 09/10/2023] [Indexed: 05/21/2024] Open
Affiliation(s)
- Kaida Mu
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanping Yang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jie Zhu
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanfei Jiang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaorong Yang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jinan Zhang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
37
|
Mishra S, Shelke V, Gaikwad AB. Acyl-CoA Synthetase Long-Chain Isoenzymes in Kidney Diseases: Mechanistic Insights and Therapeutic Implications. Cell Biochem Funct 2024; 42:e4114. [PMID: 39210707 DOI: 10.1002/cbf.4114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Long-chain acyl-CoA synthetases (ACSLs) are pivotal enzymes in fatty acid metabolism, essential for maintaining cellular homeostasis and energy production. Recent research has uncovered their significant involvement in the pathophysiology of various kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), and renal cell carcinoma (RCC). While ACSL1, ACSL3, ACSL4, and ACSL5 have been extensively studied for their roles in processes such as ferroptosis, lipid peroxidation, renal fibrosis, epithelial-mesenchymal transition, and tumor progression, the role of ACSL6 in kidney diseases remain largely unexplored. Notably, these isoenzymes exhibit distinct functions in different kidney diseases. Therefore, to provide a comprehensive understanding of their involvement, this review highlights the molecular pathways influenced by ACSLs and their roles in modulating cell death, inflammation, and fibrosis during kidney disease progression. By examining these mechanisms in detail, this review underscores the potential of ACSLs as biomarkers and therapeutic targets, advocating for further research to elucidate the precise roles of individual ACSL isoenzymes in kidney disease progression. Understanding these mechanisms opens new avenues for developing targeted interventions and improving therapeutic outcomes for patients with kidney diseases.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
38
|
Tian S, Yang X, Lin Y, Li X, Zhou S, Yu P, Zhao Y. PDK4-mediated Nrf2 inactivation contributes to oxidative stress and diabetic kidney injury. Cell Signal 2024; 121:111282. [PMID: 38971568 DOI: 10.1016/j.cellsig.2024.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Diabetic kidney disease (DKD) is often featured with redox dyshomeostatis. Pyruvate dehydrogenase kinase 4 (PDK4) is the hub for DKD development. However, the mechanism by which PDK4 mediates DKD is poorly understood. The current work aimed to elucidate the relationship between PDK4 and DKD from the perspective of redox manipulation. Oxidative stress was observed in the human proximal tubular cell line (HK-2 cells) treated with a high concentration of glucose and palmitic acid (HGL). The mechanistic study showed that PDK4 could upregulate Kelch-like ECH-associated protein 1 (Keap1) in HGL-treated HK-2 cells through the suppression of autophagy, resulting in the depletion of nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of redox homeostasis. At the cellular level, pharmacological inhibition or genetic knockdown of PDK4 could boost Nrf2, followed by the increase of a plethora of antioxidant enzymes and ferroptosis-suppression enzymes. Meanwhile, the inhibition or knockdown of PDK4 remodeled iron metabolism, further mitigating oxidative stress and lipid peroxidation. The same trend was observed in the DKD mice model. The current work highlighted the role of PDK4 in the development of DKD and suggested that PDK4 might be a promising target for the management of DKD.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xinran Li
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Nephropathy & Blood Purification Department, The Second Hospital of Tianjin Medical University, Tianjin 300134, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
39
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Jin EJ, Jo Y, Wei S, Rizzo M, Ryu D, Gariani K. Ferroptosis and iron metabolism in diabetes: Pathogenesis, associated complications, and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1447148. [PMID: 39279996 PMCID: PMC11392752 DOI: 10.3389/fendo.2024.1447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Diabetes mellitus is a complex chronic disease, considered as one of the most common metabolic disorders worldwide, posing a major threat to global public health. Ferroptosis emerges as a novel mechanism of programmed cell death, distinct from apoptosis, necrosis, and autophagy, driven by iron-dependent lipid peroxidation accumulation and GPx4 downregulation. A mounting body of evidence highlights the interconnection between iron metabolism, ferroptosis, and diabetes pathogenesis, encompassing complications like diabetic nephropathy, cardiomyopathy, and neuropathy. Moreover, ferroptosis inhibitors hold promise as potential pharmacological targets for mitigating diabetes-related complications. A better understanding of the role of ferroptosis in diabetes may lead to an improvement in global diabetes management. In this review, we delve into the intricate relationship between ferroptosis and diabetes development, exploring associated complications and current pharmacological treatments.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Manfredi Rizzo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
41
|
Zhu S, Kang Z, Zhang F. Tanshinone IIA suppresses ferroptosis to attenuate renal podocyte injury in diabetic nephropathy through the embryonic lethal abnormal visual-like protein 1 and acyl-coenzyme A synthetase long-chain family member 4 signaling pathway. J Diabetes Investig 2024; 15:1003-1016. [PMID: 38650121 PMCID: PMC11292391 DOI: 10.1111/jdi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
AIMS/INTRODUCTION Tanshinone IIA (TIIA) is one of the main components of the root of the red-rooted Salvia miltiorrhiza Bunge. However, the molecular mechanisms underlying TIIA-mediated protective effects in diabetic nephropathy (DN) are still unclear. MATERIALS AND METHODS High glucose (HG)-induced mouse podocyte cell line (MPC5) cells were used as the in vitro model of DN and treated with TIIA. Cell viability, proliferation and apoptosis were detected using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and flow cytometry assays. The protein levels were assessed using western blot assay. The levels of inflammatory factors were deleted by enzyme-linked immunoassay. Fe+ level, reactive oxygen species, malondialdehyde and glutathione products were detected using special assay kits. After ENCORI prediction, the interaction between embryonic lethal abnormal visual-like protein 1 (ELAVL1) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) was verified using co-immunoprecipitation assay and dual-luciferase reporter assays. ACSL4 messenger ribonucleic acid expression was measured using real-time quantitative polymerase chain reaction. RESULTS TIIA repressed HG-induced MPC5 cell apoptosis, inflammatory response and ferroptosis. ACSL4 upregulation relieved the repression of TIIA on HG-mediated MPC5 cell injury and ferroptosis. ELAVL1 is bound with ACSL4 to positively regulate the stability of ACSL4 messenger ribonucleic acid. TIIA hindered HG-triggered MPC5 cell injury and ferroptosis by regulating the ELAVL1-ACSL4 pathway. TIIA blocked DN progression in in vivo research. CONCLUSION TIIA treatment restrained HG-caused MPC5 cell injury and ferroptosis partly through targeting the ELAVL1-ACSL4 axis, providing a promising therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Shuai Zhu
- Graduate SchoolXinxiang Medical UniversityXinxiangChina
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Zhiqiang Kang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Fengjiao Zhang
- Department of Endocrinology and MetabolismZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
42
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
43
|
Packer M. Iron homeostasis, recycling and vulnerability in the stressed kidney: A neglected dimension of iron-deficient heart failure. Eur J Heart Fail 2024; 26:1631-1641. [PMID: 38727795 DOI: 10.1002/ejhf.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 07/26/2024] Open
Abstract
The available evidence suggests that the kidney may contribute importantly to the development of an iron deficiency state in patients with heart failure and may be injured by therapeutic efforts to achieve iron repletion. The exceptional workload of the proximal renal tubule requires substantial quantities of iron for ATP synthesis, which it derives from Fe3+ bound to transferrin in the bloodstream. Following ferrireduction, Fe2+ is conveyed by divalent transporters (e.g. DMT1) out of the endosome of the proximal renal tubule, and highly reactive Fe2+ can be directed to the mitochondria, sequestered safely in a ferritin nanocage or exported through the actions of hepcidin-inhibitable ferroportin. The actions of ferroportin, together with transferrin endocytosis and DMT1-mediated transport, play a key role in the recycling of iron from the tubular fluid into the bloodstream and preventing the loss of filtered iron in the urine. Activation of endogenous neurohormonal systems and proinflammatory signalling in heart failure decrease megalin-mediated uptake and DMT1 expression, and increase hepcidin-mediated suppression of ferroportin, promoting the loss of iron in the urine and contributing to the development of an iron deficiency state. Furthermore, the failure of ferroportin-mediated efflux at the basolateral membrane heightens the susceptibility of the renal tubules to cytosolic excesses of Fe2+, causing lipid peroxidation and synchronized cell death (ferroptosis) through the iron-dependent free radical theft of electrons from lipids in the cell membrane. Ferroptosis is a central mechanism to most disorders that can cause acute and chronic kidney disease. Short-term bolus administration of intravenous iron can cause oxidative stress and is accompanied by markers of renal injury. Experimentally, long-term maintenance of an iron-replete state is accompanied by accelerated loss of nephrons, oxidative stress, inflammation and fibrosis. Intravenous iron therapy increases glomerular filtration rate rapidly in patients with heart failure (perhaps because of a haemodynamic effect) but not in patients with chronic kidney disease, and the effects of intravenous iron on the progression of renal dysfunction in the long-term trials - AFFIRM-AHF, IRONMAN and HEART-FID - have not yet been reported. Given the potential role of dysregulated renal iron homeostasis in the pathogenesis of iron deficiency and the known vulnerability of the kidney to intravenous iron, the appropriate level of iron repletion with respect to the risk of acute and chronic kidney injury in patients with heart failure requires further study.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
44
|
Zhang Y, Zhang Z, Huang L, Wang C, Yang P, Zhang L, Liao X. Augmenter of liver regeneration knockout aggravates tubular ferroptosis and macrophage activation by regulating carnitine palmitoyltransferase-1A-induced lipid metabolism in diabetic nephropathy. Acta Physiol (Oxf) 2024; 240:e14159. [PMID: 38767438 DOI: 10.1111/apha.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
AIM Ferroptosis is a novel type of programmed cell death that performs a critical function in diabetic nephropathy (DN). Augmenter of liver regeneration (ALR) exists in the inner membrane of mitochondria, and inhibits inflammation, apoptosis, and oxidative stress in acute kidney injury; however, its role in DN remains unexplored. Here, we aimed to identify the role of ALR in ferroptosis induction and macrophage activation in DN. METHODS The expression of ALR was examined in DN patients, db/db DN mice, and HK-2 cells treated with high glucose (HG). The effects of ALR on ferroptosis and macrophage activation were investigated with ALR conditional knockout, lentivirus transfection, transmission electron microscopy, qRT-PCR and western blotting assay. Mass spectrometry and rescue experiments were conducted to determine the mechanism of ALR. RESULTS ALR expression was reduced in the kidney tissues of DN patients and mice, serum of DN patients, and HG-HK-2 cells. Moreover, the inhibition of ALR promoted ferroptosis, macrophage activation, and DN progression. Mechanistically, ALR can directly bind to carnitine palmitoyltransferase-1A (CPT1A), the key rate-limiting enzyme of fatty acid oxidation (FAO), and inhibit the expression of CPT1A to regulate lipid metabolism involving FAO and lipid droplet-mitochondrial coupling in DN. CONCLUSION Taken together, our findings revealed a crucial protective role of ALR in ferroptosis induction and macrophage activation in DN and identified it as an alternative diagnostic marker and therapeutic target for DN.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, China
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Lili Huang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunxia Wang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pengfei Yang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Kuanren Laboratory of Translational Lipidology, Centre for Lipid Research, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
46
|
Jia J, Tan R, Xu L, Wang H, Li J, Su H, Zhong X, Liu P, Wang L. Hederagenin improves renal fibrosis in diabetic nephropathy by regulating Smad3/NOX4/SLC7A11 signaling-mediated tubular cell ferroptosis. Int Immunopharmacol 2024; 135:112303. [PMID: 38776855 DOI: 10.1016/j.intimp.2024.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 μM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 μM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.
Collapse
Affiliation(s)
- Jian Jia
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ruizhi Tan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Linghui Xu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Honglian Wang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianchun Li
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongwei Su
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Xia Zhong
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China.
| | - Li Wang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
47
|
Li J, Yang J, Xian Q, Su H, Ni Y, Wang L. Kaempferitrin attenuates unilateral ureteral obstruction-induced renal inflammation and fibrosis in mice by inhibiting NOX4-mediated tubular ferroptosis. Phytother Res 2024; 38:2656-2668. [PMID: 38487990 DOI: 10.1002/ptr.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 06/13/2024]
Abstract
Tubular ferroptosis significantly contributes to renal inflammation and fibrosis, critical factors in chronic kidney disease (CKD). This study aims to investigate Kaempferitrin, a potent flavonoid glycoside from Bauhinia forficata leaves, renowned for its anti-inflammatory and antitumor effects, and to elucidate its potential mechanisms in mitigating inflammation and fibrosis induced by tubular ferroptosis. The study investigated Kaempferitrin's impact on tubular ferroptosis using a unilateral ureteral obstruction (UUO) model-induced renal inflammation and fibrosis. In vitro, erastin-induced ferroptosis in primary tubular epithelial cells (TECs) was utilized to further explore Kaempferitrin's effects. Additionally, NADPH oxidase 4 (NOX4) transfection in TECs and cellular thermal shift assay (CETSA) were conducted to identify Kaempferitrin's target protein. Kaempferitrin effectively improved renal function, indicated by reduced serum creatinine and blood urea nitrogen levels. In the UUO model, it significantly reduced tubular necrosis, inflammation, and fibrosis. Its renoprotective effects were linked to ferroptosis inhibition, evidenced by decreased iron, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) levels, and increased glutathione (GSH). Kaempferitrin also normalized glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11(SLC7A11) expression, critical ferroptosis mediators. In vitro, it protected TECs from ferroptosis and consistently suppressed NOX4 expression. NOX4 transfection negated Kaempferitrin's antiferroptosis effects, while CETSA confirmed Kaempferitrin-NOX4 interaction. Kaempferitrin shows promise as a nephroprotective agent by inhibiting NOX4-mediated ferroptosis in tubular cells, offering potential therapeutic value for CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jieke Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qianwen Xian
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongwei Su
- Department of Urology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Han Z, Luo Y, Chen H, Zhang G, You L, Zhang M, Lin Y, Yuan L, Zhou S. A Deep Insight into Ferroptosis in Renal Disease: Facts and Perspectives. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:224-236. [PMID: 38835406 PMCID: PMC11149998 DOI: 10.1159/000538106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/25/2024] [Indexed: 06/06/2024]
Abstract
Background Ferroptosis, a newly recognized form of programmed cell death, is distinguished by its reliance on reactive oxygen species and iron-mediated lipid peroxidation, setting it apart from established types like apoptosis, cell necrosis, and autophagy. Recent studies suggest its role in exacerbating or mitigating diseases by influencing metabolic and signaling pathways in conditions such as tumors and ischemic organ damage. Evidence also links ferroptosis to various kidney diseases, prompting a review of its research status and potential breakthroughs in understanding and treating these conditions. Summary In acute kidney disease (AKI), ferroptosis has been confirmed in animal kidneys after being induced by various factors such as renal ischemia-reperfusion and cisplatin, and glutathione peroxidase 4 (GPX4) is linked with AKI. Ferroptosis is associated with renal fibrosis in chronic kidney disease (CKD), TGF-β1 being crucial in this regard. In diabetic nephropathy (DN), high SLC7A11 and low nuclear receptor coactivator 4 (NCOA4) expressions are linked to disease progression. For polycystic kidney disease (PKD), ferroptosis promotes the disease by regulating ferroptosis in kidney tissue. Renal cell carcinoma (RCC) and lupus nephritis (LN) also have links to ferroptosis, with mtDNA and iron accumulation causing RCC and oxidative stress causing LN. Key Messages Ferroptosis is a newly identified form of programmed cell death that is associated with various diseases. It targets metabolic and signaling pathways and has been linked to kidney diseases such as AKI, CKD, PKD, DN, LN, and clear cell RCC. Understanding its role in these diseases could lead to breakthroughs in their pathogenesis, etiology, and treatment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanke Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guochen Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
50
|
Li Y, Wang X, Zhang Q, Tian D, Bai Y, Feng Y, Liu W, Diao Z. Dipeptidase 1 promotes ferroptosis in renal tubular epithelial cells in diabetic nephropathy via inhibition of the GSH/GPX4 axis. Int Immunopharmacol 2024; 133:111955. [PMID: 38626544 DOI: 10.1016/j.intimp.2024.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
Renal tubular injury is an important pathological change associated with diabetic nephropathy (DN), in which ferroptosis of renal tubular epithelial cells is critical to its pathogenesis. Inhibition of the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis is the most important mechanism in DN tubular epithelial cell ferroptosis, but the underlying reason for this is unclear. Our biogenic analysis showed that a zinc-dependent metalloproteinase, dipeptidase 1 (DPEP1), is associated with DN ferroptosis. Here, we investigated the role and mechanism of DPEP1 in DN tubular epithelial cell ferroptosis. DPEP1 upregulation was observed in the renal tubular epithelial cells of DN patients and model mice, as well as in HK-2 cells stimulated with high glucose. Furthermore, the level of DPEP1 upregulation was associated with the degree of tubular injury in DN patients and HK-2 cell ferroptosis. Mechanistically, knocking down DPEP1 expression could alleviate the inhibition of GSH/GPX4 axis and reduce HK-2 cell ferroptosis levels in a high glucose environment. HK-2 cells with stable DPEP1 overexpression also showed GSH/GPX4 axis inhibition and ferroptosis, but blocking the GSH/GPX4 axis could mitigate these effects. Additionally, treatment with cilastatin, a DPEP1 inhibitor, could ameliorate GSH/GPX4 axis inhibition and relieve ferroptosis and DN progression in DN mice. These results revealed that DPEP1 can promote ferroptosis in DN renal tubular epithelial cells via inhibition of the GSH/GPX4 axis.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xueqi Wang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Qidong Zhang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Dongli Tian
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yu Bai
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yiduo Feng
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zongli Diao
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|