1
|
Arumugam M, Pachamuthu RS, Rymbai E, Jha AP, Rajagopal K, Kothandan R, Muthu S, Selvaraj D. Gene network analysis combined with preclinical studies to identify and elucidate the mechanism of action of novel irreversible Keap1 inhibitor for Parkinson's disease. Mol Divers 2025; 29:2081-2098. [PMID: 39145879 DOI: 10.1007/s11030-024-10965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The cysteine residues of Keap1 such as C151, C273, and C288 are critical for its repressor activity on Nrf2. However, to date, no molecules have been identified to covalently modify all three cysteine residues for Nrf2 activation. Hence, in this study, our goal is to discover new Keap1 covalent inhibitors that can undergo a Michael addition with all three cysteine residues. The Keap1's intervening region was modeled using Modeller v10.4. Covalent docking and binding free energy were calculated using CovDock. Molecular dynamics (MD) was performed using Desmond. Various in-vitro assays were carried out to confirm the neuroprotective effects of the hit molecule in 6-OHDA-treated SH-SY5Y cells. Further, the best hit was evaluated in vivo for its ability to improve rotenone-induced postural instability and cognitive impairment in male rats. Finally, network pharmacology was used to summarize the complete molecular mechanism of the hit molecule. Chalcone and plumbagin were found to form the necessary covalent bonds with all three cysteine residues. However, MD analysis indicated that the binding of plumbagin is more stable than chalcone. Plumbagin displayed neuroprotective effects in 6-OHDA-treated SH-SY5Y cells at concentrations 0.01 and 0.1 μM. Plumbagin at 0.1 µM had positive effects on reactive oxygen species formation and glutathione levels. Plumbagin also improved postural instability and cognitive impairment in rotenone-treated male rats. Our network analysis indicated that plumbagin could also improve dopamine signaling. Additionally, plumbagin could exhibit anti-oxidant and anti-inflammatory activity through the activation of Nrf2. Cumulatively, our study suggests that plumbagin is a novel Keap1 covalent inhibitor for Nrf2-mediated neuroprotection in PD.
Collapse
Affiliation(s)
- Monisha Arumugam
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ranjith Sanjeeve Pachamuthu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Aditya Prakash Jha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Santhoshkumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang D, Liu W, Lu M, Xu Q. Neuropharmacological effects of Gastrodia elata Blume and its active ingredients. Front Neurol 2025; 16:1574277. [PMID: 40371076 PMCID: PMC12074926 DOI: 10.3389/fneur.2025.1574277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
Gastrodia elata Blume (GE), a traditional Chinese medicine clinically employed to treat neurological disorders, demonstrates therapeutic efficacy supported by robust clinical evidence. Nowadays, conventional pharmacotherapies for neurological conditions-such as cholinesterase inhibitors for Alzheimer's or Ldopa for Parkinson's-often provide limited symptom relief, exhibit side effects, and fail to halt disease w, underscoring the need for alternative strategies. The primary bioactive compounds of Gastrodia elata Blume (GE) include gastrodin, p-hydroxybenzyl alcohol, Vanillyl alcohol, Polysaccharides, and β-sitosterol. Modern research has demonstrated that GE and its active components exhibit neuropharmacological effects, including neuron protection, reduction of neurotoxicity, and promotion of nerve regeneration and survival. For example, Gastrodin, exerts neuroprotection by scavenging reactive oxygen species, suppressing pro-inflammatory cytokines, and enhancing GABAergic transmission, thereby alleviating oxidative stress and neuronal apoptosis. Vanillin, potentiates GABA receptor activity, enhancing inhibitory neurotransmission and reducing seizure susceptibility.GE polysaccharides modulate the gut-brain axis and suppress microglial activation, mitigating neuroinflammation. Current studies primarily focus on GE and its active ingredients for the treatment of neurological diseases such as Parkinson's disease, Alzheimer's disease, epilepsy, convulsions, depression, schizophrenia, as well as enhancing learning and memory, and preventing or treating cerebral ischemic injury. This review explores the neuropharmacological effects of GE and its active compounds, elucidates the underlying mechanisms, and suggests potential preventive and therapeutic strategies for neurological diseases using herbal remedies.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Liu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - MeiJuan Lu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Xu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Lei Y, Zhou J, Xu D, Chai S, Xiong N. Corilagin Attenuates Neuronal Apoptosis and Ferroptosis of Parkinson's Disease through Regulating the TLR4/Src/NOX2 Signaling Pathway. ACS Chem Neurosci 2025; 16:968-980. [PMID: 39950827 DOI: 10.1021/acschemneuro.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Corilagin has shown neuroprotective potential in various neurological disorders, but its effects in Parkinson's disease (PD) have not been fully explored. In this study, we investigated the therapeutic impact and underlying mechanism of corilagin on PD using MPTP-induced mice and MPP+-treated N2a cells. Behavioral tests and immunohistochemical analysis demonstrated that corilagin significantly reduced MPTP-induced loss of TH-positive neurons in the substantia nigra. In vitro, corilagin improved cell viability, decreased MPP+-induced apoptosis, and mitigated the associated oxidative stress by lowering intracellular ROS levels and preserving mitochondrial membrane potential. Moreover, corilagin reversed MPP+-induced iron accumulation and lipid peroxidation in N2a cells. Mechanistically, Western blotting revealed that the protective effects of corilagin are linked to the TLR4/Src/NOX2 signaling pathway. The TLR4 agonist RS 09 impaired the neuroprotective effects of corilagin, further supporting its role in modulating ferroptosis via this pathway. These findings suggest that corilagin could be a promising therapeutic agent for PD by targeting the TLR4/Src/NOX2 signaling axis to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yu Lei
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Jiabin Zhou
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Dongyuan Xu
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Songshan Chai
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Nanxiang Xiong
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
5
|
Khodir SA, Sweed EM, Faried MA, Abo Elkhair DM, Khalil MM, Afifi KH, El Agamy DF. Neuroprotective Effect of Maresin-1 in Rotenone-Induced Parkinson's Disease in Rats: The Putative Role of the JAK/STAT Pathway. Neurochem Res 2024; 50:30. [PMID: 39576344 PMCID: PMC11584474 DOI: 10.1007/s11064-024-04282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
Exposure to rotenone results in similar pathophysiological features as Parkinson's disease. Inflammation and oxidative stress are essential to PD pathogenesis. Maresin-1 has potent anti-inflammatory properties and promotes the regression of inflammation function. The current study aimed to evaluate the protective effects of Maresin-1 (MaR1) in rotenone (ROT)-induced PD and whether this protective role is associated with the initiation of the Janus kinase (JAK)-signal transducers and activator of transcription (STAT) signaling pathway. Thirty male Wister rats were classified into control, ROT-treated, and ROT + MaR1-treated groups. Rats underwent rotarod, open field, grip strength, and stepping tests as part of their motor behavioral evaluation. Serum glial cell-derived neurotrophic factor (GDNF) and striatal dopamine, acetylcholine, malondialdehyde (MDA), reduced glutathione (GSH), TNF-α, IL-6, and IL-1β were evaluated. Expression of JAK1 and STAT3 genes was assessed in striatum. Then, the tissue was subjected to histological and immunohistochemical evaluation for caspase-3, GFAP, and NF-kB. The administrated group with rotenone showed significant motor behavioral impairment. This was accompanied by reduced levels of GDNF and dopamine and increased levels of acetylcholine, as well as augmented oxidative stress and inflammatory biomarkers and reduced antioxidant activity. Inflammatory pathways (JAK1/STAT3, caspase-3, and NF-kB) were upregulated. Histopathological changes and upregulation in GFAP immunopositive reaction were observed. Remarkably, MaR1 treatment effectively alleviated behavior, histopathological changes, and biochemical alterations induced by ROT. MaR1 exerts protective effects against ROT-induced PD by its anti-inflammatory, antiapoptotic, and antioxidant properties. MaR1 mechanisms of action may involve modulation of pathways such as JAK/STAT.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Eman M Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt.
- Quality Assurance Center, Menoufia National University, Menoufia, Egypt.
| | - Manar A Faried
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Doaa M Abo Elkhair
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Marwa M Khalil
- Medical biochemistry and molecular biology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical biochemistry and molecular biology Department, Menoufia National University, Menoufia, Egypt
| | - Khaled Hatem Afifi
- Neurology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Dalia Fathy El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
6
|
Temviriyanukul P, Chansawhang A, Inthachat W, Supasawat P, Phochantachinda S, Pitchakarn P, Chantong B. Phikud navakot extract acts as an ER stress inhibitor to ameliorate ER stress and neuroinflammation. Heliyon 2024; 10:e39700. [PMID: 39524867 PMCID: PMC11543883 DOI: 10.1016/j.heliyon.2024.e39700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The prevalence of neurological disorders (NDs) such as Alzheimer's disease (AD) is increasing globally, and the lack of effective pharmacological interventions presents a significant health risk. Multiple mechanisms including the activation of oxidative stress, amyloid pathway, ER stress, and neuroinflammation have been implicated in AD; therefore, multi-targeted agents against these mechanisms may be preferable to single-target agents. Phikud Navakot (PN), a Thai traditional medicine combining nine herbs, has been shown to reduce oxidative stress and neuroinflammation of neuronal and microglia cells and the coculture between them, indicating the promising role of PN extract as anti-AD. This study evaluated the neuroprotective effects of PN extract against oxidative stress, amyloid pathway, endoplasmic reticulum stress (ER stress), and neuroinflammation using neuronal and microglia cells, as well as in a Drosophila model of AD. Results showed that PN extract reduced oxidative stress, lipid peroxidation, pro-inflammatory cytokines, amyloid pathway, and ER stress induced by aluminum chloride (AlCl3, AD-induced agent) or thapsigargin (TG, an ER stress activator) in both neurons and microglia cells. PN extract also reduced oxidative stress, ER-stress-related genes, and neurotoxic peptides (amyloid beta) in a Drosophila model of AD. Data indicated that PN extract may function as an anti-AD agent by targeting multiple mechanisms as described. This research also revealed for the first time that PN extract acted as an ER stress inhibitor.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Punchaya Supasawat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
7
|
Hedayatikatouli F, Kalyn M, Elsaid D, Mbesha HA, Ekker M. Neuroprotective Effects of Ascorbic Acid, Vanillic Acid, and Ferulic Acid in Dopaminergic Neurons of Zebrafish. Biomedicines 2024; 12:2497. [PMID: 39595063 PMCID: PMC11592154 DOI: 10.3390/biomedicines12112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a debilitating neurodegenerative disease that targets the nigrostriatal dopaminergic (DAnergic) system residing in the human midbrain and is currently incurable. The aim of this study is to investigate the neuroprotective effects of ascorbic acid, vanillic acid, and ferulic acid in a zebrafish model of PD induced by MPTP by assessing the impact of these compounds on DAnergic neurons, focusing on gene expression, mitochondrial dynamics, and cellular stress responses. Methods/Results: Following exposure and qPCR and immunohistochemical analyses, ascorbic acid enhanced DAnergic function, indicated by an upregulation of the dopamine transporter (dat) gene and increased eGFP+ DAnergic cells, suggesting improved dopamine reuptake and neuroprotection. Ascorbic acid also positively affected mitochondrial dynamics and stress response pathways, countering MPTP-induced dysregulation. Vanillic acid only had modest, if any, neuroprotective effects on DAnergic neurons following MPTP administration. Ferulic acid exhibited the largest neuroprotective effects through the modulation of gene expression related to DAnergic neurons and mitochondrial dynamics. Conclusions: These findings suggest that ascorbic acid and ferulic acid can act as potential protective interventions for DAnergic neuron health, demonstrating various beneficial effects at the molecular and cellular levels. However, further investigation is needed to translate these results into clinical applications. This study enhances the understanding of neuroprotective strategies in neurodegenerative diseases, emphasizing the importance of considering interactions between physiological systems.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Ghaderi S, Gholipour P, Safari S, Sadati SM, Brooshghalan SE, Sohrabi R, Rashidi K, Komaki A, Salehi I, Sarihi A, Zarei M, Shahidi S, Rashno M. Uncovering the protective potential of vanillic acid against traumatic brain injury-induced cognitive decline in male rats: Insights into underlying mechanisms. Biomed Pharmacother 2024; 179:117405. [PMID: 39236478 DOI: 10.1016/j.biopha.2024.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and there is still no specific drug available to treat cognitive deficits in survivors. Vanillic acid (VA), a bioactive phenolic compound, has shown protective effects in various models of neurodegeneration; however, its impact on TBI outcomes remains elusive. Therefore, this study aimed to elucidate the possible role of VA in ameliorating TBI-induced cognitive decline and to reveal the mechanisms involved. TBI was induced using the Marmarou impact acceleration model to deliver an impact force of 300 g, and treatment with VA (50 mg/kg; P.O.) was initiated 30 minutes post-TBI. The cognitive performance, hippocampal long-term potentiation (LTP), oxidative stress markers, neurological function, cerebral edema, and morphological changes were assessed at scheduled points in time. TBI resulted in cognitive decline in the passive avoidance task, impaired LTP in the perforant path-dentate gyrus (PP-DG) pathway, increased hippocampal oxidative stress, cerebral edema, neurological deficits, and neuronal loss in the rat hippocampus. In contrast, acute VA administration mitigated all the aforementioned TBI outcomes. The data suggest that reducing synaptic plasticity impairment, regulating oxidative and antioxidant defense, alleviating cerebral edema, and preventing neuronal loss by VA can be at least partially attributed to its protection against TBI-induced cognitive decline.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mahdi Sadati
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Sohrabi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| |
Collapse
|
9
|
Yedke NG, Soni D, Kumar P. Effect of Bacille-Calmette-Guerin vaccine against rotenone-induced Parkinson's disease: Role of neuroinflammation and neurotransmitters. Fundam Clin Pharmacol 2024; 38:538-549. [PMID: 38041521 DOI: 10.1111/fcp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is an extrapyramidal movement disorder associated with a hypokinetic condition generated by impairment in dopaminergic neuronal viability in the nigrostriatal region of the brain. Current medications can only provide symptomatic management; to date, no permanent cure is available. To compensate for this lacuna, researchers are gaining interest in antigen-based therapy, and Bacille-Calmette-Guerin (BCG) is one of the vaccines with a high safety margin that acts by stimulating immunoreactive T-cells in the CNS and reducing expression of pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrotic factor (TNF-α) to produce neuroprotection. A previous study reported that BCG exerts a neuroprotective effect against several neurodegenerative disorders, such as Alzheimer's disease. OBJECTIVE The objective of this study is to explore the neuroprotective effect of the BCG vaccine against the rotenone model of PD. METHODS Rotenone (1.5 mg/kg, s.c) for 28 days, and BCG vaccine (2 × 107 cfu, i.p) single dose was injected to rats, and behavioral assessments were performed on the 21st and 28th day. On the 29th day, rats were sacrificed, and brains were isolated for biochemical and neurochemical estimation. RESULTS BCG vaccine significantly restored rotenone-induced motor deficits (open field test, narrow beam walk, and rotarod), biochemical levels (GSH, SOD, catalase, MDA, and nitrite), neurotransmitters (dopamine, 5-hydroxy tryptamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, hemovanillic acid, and 5-hydroxy indoleacetic acid), and levels of inflammatory cytokines (IL-1β and TNF-α) in the striatum. It also prevents histopathological changes by reducing eosinophilic lesions in the striatum. CONCLUSION From the results, we conclude that BCG vaccine showed neuroprotection through antioxidant and anti-inflammatory effect. Thus, in the future, it can be used as a neuroprotective agent for other neurological disorders, including PD.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
11
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
12
|
Alqurashi M, Al-Abbasi F, Afzal M, Alghamdi A, Zeyadi M, Sheikh R, Alshehri S, Imam S, Sayyed N, Kazmi I. Protective effect of sterubin against neurochemical and behavioral impairments in rotenone-induced Parkinson's disease. Braz J Med Biol Res 2024; 57:e12829. [PMID: 38359270 PMCID: PMC10868181 DOI: 10.1590/1414-431x2023e12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
This study was conducted to evaluate how sterubin affects rotenone-induced Parkinson's disease (PD) in rats. A total of 24 rats were distributed into 4 equal groups: normal saline control and rotenone control were administered saline or rotenone (ROT), respectively, orally; sterubin 10 received ROT + sterubin 10 mg/kg po; and sterubin alone was administered to the test group (10 mg/kg). Rats of the normal saline and sterubin alone groups received sunflower oil injection (sc) daily, 1 h after receiving the treatments cited above, while rats of the other groups received rotenone injection (0.5 mg/kg, sc). The treatment was continued over the course of 28 days daily. On the 29th day, catalepsy and akinesia were assessed. The rats were then euthanized, and the brain was extracted for estimation of endogenous antioxidants (MDA: malondialdehyde, GSH: reduced glutathione, CAT: catalase, SOD: superoxide dismutase), nitrative (nitrite) stress markers, neuroinflammatory cytokines, and neurotransmitter levels and their metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), norepinephrine (NE), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA)). Akinesia and catatonia caused by ROT reduced the levels of endogenous antioxidants (GSH, CAT, and SOD), elevated the MDA level, and altered the levels of nitrites, neurotransmitters, and their metabolites. Sterubin restored the neurobehavioral deficits, oxidative stress, and metabolites of altered neurotransmitters caused by ROT. Results demonstrated the anti-Parkinson's activities of sterubin in ROT-treated rats.
Collapse
Affiliation(s)
- M.M. Alqurashi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F.A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - A.M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - R.A. Sheikh
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - S.S. Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - N. Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| | - I. Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wang F, Wan J, Liao Y, Liu S, Wei Y, Ouyang Z. Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Fehér M, Márton Z, Szabó Á, Kocsa J, Kormos V, Hunyady Á, Kovács LÁ, Ujvári B, Berta G, Farkas J, Füredi N, Gaszner T, Pytel B, Reglődi D, Gaszner B. Downregulation of PACAP and the PAC1 Receptor in the Basal Ganglia, Substantia Nigra and Centrally Projecting Edinger-Westphal Nucleus in the Rotenone model of Parkinson's Disease. Int J Mol Sci 2023; 24:11843. [PMID: 37511603 PMCID: PMC10380602 DOI: 10.3390/ijms241411843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.
Collapse
Affiliation(s)
- Máté Fehér
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Department of Neurosurgery, Kaposi Mór Teaching Hospital, Tallián Gy. u. 20-32, H-7400 Kaposvár, Hungary
| | - Zsombor Márton
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ákos Szabó
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - János Kocsa
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Bence Pytel
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- ELKH-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
15
|
Farzan M, Farzan M, Amini-Khoei H, Shahrani M, Bijad E, Anjomshoa M, Shabani S. Protective effects of vanillic acid on autistic-like behaviors in a rat model of maternal separation stress: Behavioral, electrophysiological, molecular and histopathological alterations. Int Immunopharmacol 2023; 118:110112. [PMID: 37030116 DOI: 10.1016/j.intimp.2023.110112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Compounds derived from herbs exhibit a range of biological properties, including anti-inflammatory, antioxidant, and neuroprotective properties. However, the exact mechanism of action of these compounds in various neurological disorders is not fully discovered yet. Herein, the present work detected the effect of Vanillic acid (VA), a widely-used flavoring agent derived from vanillin, on autistic-like behaviors to assess the probable underlying mechanisms that mediate behavioral, electrophysiological, molecular, and histopathological alterations in the rat model of maternal separation (MS) stress. Maternal separated rats were treated with VA (25, 50, and 100 mg/kg interperitoneally for 14 days). In addition, anxiety-like, autistic-like behaviors, and learning and memory impairment were evaluated using various behavioral tests. Hippocampus samples were assessed histopathologically by H&E staining. Levels of malondialdehyde (MDA) and antioxidant capacity (by the FRAP method), as well as nitrite levels, were measured in brain tissue. Moreover, gene expression of inflammatory markers (IL-1β, TLR-4, TNF-α, and NLRP3) was evaluated in the hippocampus. Electrophysiological alterations were also estimated in the hippocampus by long-term potentiation (LTP) assessments. Results showed that VA reversed the negative effects of MS on behavior. VA increased the diameter and decreased the percentage of dark neurons in the CA3 area. Accordingly, VA decreased MDA and nitrite levels and increased the antioxidant capacity in brain samples and decreased the expression of all inflammatory genes. VA treated rats showed significant improvements in all LTP parameters. This study provided evidence suggesting a possible role for VA in preventing autism spectrum disorder (ASD) by regulating immune signaling.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
The effects of gallic acid and vagotomy on motor function, intestinal transit, brain electrophysiology and oxidative stress alterations in a rat model of Parkinson's disease induced by rotenone. Life Sci 2023; 315:121356. [PMID: 36621537 DOI: 10.1016/j.lfs.2022.121356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The neuropathology of Parkinson's disease (PD) is complex and affects multiple systems of the body beyond the central nervous system. This study examined the effects of gallic acid (GA) and gastrointestinal vagotomy (VG) on motor, cognitive, intestinal transit time, and thalamic nuclei electrical power in an animal model of PD induced by rotenone. MATERIALS AND METHODS Male Wistar rats were divided into 4 groups: Sham, ROT, ROT+GA, VG + ROT. Sham rats received vehicle, those in ROT received rotenone (5 mg/kg/2 ml, ig), PD rats in ROT+GA were treated with GA (100 mg/kg, gavage/once daily, for 28 days), and in VG + ROT, the vagal nerve was dissected. Stride length, motor coordination and locomotion, intestinal transit time, cognitive and pain threshold, and thalamic local EEG were evaluated. Oxidative stress indexes in striatal tissue were also measured. RESULTS Rotenone diminished significantly the stride length (p < 0.001), motor coordination (p < 0.001), power of thalamic EEG (p < 0.01) and pain (p < 0.001). MDA increased significantly (p < 0.001) while GPx activity decreased (p < 0.001). Intestinal transit time rose significantly (p < 0.01). PD rats treated with GA improved all above disorders (p < 0.001, p < 0.01). Vagotomy prevented significant alterations of motor and non-motor parameters by rotenone. CONCLUSION According to current findings, rotenone acts as a toxin in GI and plays a role in the pathogenesis of PD through gastric vagal nerve. Thus, vagotomy could prevent the severity of toxicity by rotenone. In addition, GA improved symptoms of PD induced by rotenone. Therefore, GA can be regarded as a promising therapeutic candidate for PD patients.
Collapse
|
17
|
Urine biomarkers discovery by metabolomics and machine learning for Parkinson's disease diagnoses. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
18
|
Lu C, Qu S, Zhong Z, Luo H, Lei SS, Zhong HJ, Su H, Wang Y, Chong CM. The effects of bioactive components from the rhizome of gastrodia elata blume (Tianma) on the characteristics of Parkinson's disease. Front Pharmacol 2022; 13:963327. [PMID: 36532787 PMCID: PMC9748092 DOI: 10.3389/fphar.2022.963327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease caused by the death and degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The decrease of the neurotransmitter dopamine in the patient's brain leads to various motor symptoms. PD drugs mainly enhance dopamine levels but cannot prevent or slow down the loss of dopaminergic neurons. In addition, they exhibit significant side effects and addiction issues during long-term use. Therefore, it is particularly urgent to develop novel drugs that have fewer side effects, can improve PD symptoms, and prevent the death of dopaminergic neurons. The rhizome of Gastrodia elata Blume (Tianma) is a well-known medicinal herb and has long been used as a treatment of nervous system-related diseases in China. Several clinical studies showed that formula comprising Tianma could be used as an add-on therapy for PD patients. Pharmacological studies indicated that Tianma and its bioactive components can reduce the death of dopaminergic neurons, α-synuclein accumulation, and neuroinflammation in various PD models. In this review, we briefly summarize studies regarding the effects of Tianma and its bioactive components' effects on major PD features and explore the potential use of Tianma components for the treatment of PD.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
19
|
Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74:557-569. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington's disease (HD), and Parkinson's disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
20
|
Vanillic acid induces mitochondrial biogenesis in SH-SY5Y cells. Mol Biol Rep 2022; 49:4443-4449. [DOI: 10.1007/s11033-022-07284-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
|
21
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|