1
|
Retnosari R, Abdul Ghani MA, Majed Alkharji M, Wan Nawi WNIS, Ahmad Rushdan AS, Mahadi MK, Ugusman A, Oka N, Zainalabidin S, Latip J. The Protective Effects of Carvacrol Against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Cardiovasc Toxicol 2025; 25:167-181. [PMID: 39592525 DOI: 10.1007/s12012-024-09940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Doxorubicin (DOX) is a remarkable chemotherapeutic agent, however, its adverse effect on DOX-induced cardiotoxicity (DIC) is a rising concern. Recent research has identified carvacrol (CAR), an antioxidant and anti-inflammatory agent, as a promising natural compound for protecting against DIC. This study aims to investigate the potential cardioprotective effects properties of CAR in vitro and in vivo. The cardioprotective effect of CAR was assessed by pretreating H9c2 cells with non-toxic CAR for 24 h, followed by co-treatment with DOX (10 μM) for an additional 24 h. The cell viability was determined using an MTT assay. For the in vivo study, male Sprague-Dawley rats (200-250 g) were randomly divided into three groups: control, cardiotoxicity (DOX), and treatment (CAR + DOX) groups. CAR (50 mg/kg, BW) was administered orally to the CAR + DOX groups for 14 days. Then, a single dose of DOX (15 mg/kg/i.p, BW) was administered on day 15 for DOX and CAR + DOX groups. The rats were allowed to recover for 3 days before being sacrificed. Our results demonstrated that DOX (10 µM) significantly reduced H9c2 cell viability by 50% (p < 0.0001), and CAR (0.067 µM) protected H9c2 cells from DIC (p = 0.0045). In the rat model, CAR pretreatment effectively mitigated DOX-induced reductions in systolic pressure (p = 0.0007), pulse pressure (p = 0.0213), hypertrophy (p = 0.0049), and cardiac fibrosis (p = 0.0006). However, the pretreatment did not alter the heart function, oxidative stress, and antioxidant enzymes. In conclusion, our results indicate that CAR could potentially serve as an adjuvant to reduce cardiotoxicity by ameliorating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5, Malang, Indonesia
| | - Muhamad Adib Abdul Ghani
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Munirah Majed Alkharji
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Wan Nur Izzah Shazana Wan Nawi
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Ahmad Syafi Ahmad Rushdan
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Mohd Kaisan Mahadi
- Faculty of Pharmacy, Drug and Herbal Research Centre, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
- Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Smart Material and Sustainable Product Innovation (SMatSPIn) Research, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Retnosari R, Oh-Hashi K, Ugusman A, Zainalabidin S, Latip J, Oka N. Carvacrol-conjugated 3-Hydroxybenzoic Acids: Design, Synthesis, cardioprotective potential against doxorubicin-induced Cardiotoxicity, and ADMET study. Bioorg Med Chem Lett 2024; 113:129973. [PMID: 39317301 DOI: 10.1016/j.bmcl.2024.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Carvacrol (CA) is a phenolic monoterpene renowned for its diverse pharmacological benefits, particularly its cardioprotective effects. Concurrently, phenolic acids have also demonstrated promise in mitigating drug-induced cardiotoxicity. Focusing on combating doxorubicin-induced cardiotoxicity (DIC), the research aims to synthesize novel cardioprotective agents by combining CA with 3-hydroxybenzoic acid (3HA). Doxorubicin, an anticancer drug, poses cardiovascular risks as its adverse effect, prompting the exploration of hybrid compounds. Various linker molecules, including alkyl and acyl with different carbon lengths, were investigated to understand their impact on bioactivity. In vitro testing on the DOX-induced H9c2 cell death model revealed the effectiveness of a CA conjugate in preserving cardiomyocyte viability. In silico analysis highlighted favorable drug-like properties and low toxicity of the conjugate. This study sheds light on molecular hybridization's potential in developing cardioprotective agents, emphasizing CA's pivotal role in combating DIC.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Indonesia
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501- 1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia; Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Smart Material and Sustainable Product Innovation (SMatSPIn) Research, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
4
|
Đukanović Đ, Suručić R, Bojić MG, Trailović SM, Škrbić R, Gagić Ž. Design of Novel TRPA1 Agonists Based on Structure of Natural Vasodilator Carvacrol-In Vitro and In Silico Studies. Pharmaceutics 2024; 16:951. [PMID: 39065648 PMCID: PMC11280049 DOI: 10.3390/pharmaceutics16070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to design novel compounds based on carvacrol structure with improved activities. In an isolated tissue bath experiment, it was shown that 1 µM of the selective TRPA1 antagonist A967079 significantly (p < 0.001) reduced vasodilation induced by 3 mM of carvacrol. A reliable 3D-QSAR model with good statistical parameters was created (R2 = 0.83; Q2 = 0.59 and Rpred2 = 0.84) using 29 TRPA1 agonists. Obtained results from this model were used for the design of novel TRPA1 activators, and to predict their activity against TRPA1. Predicted pEC50 activities of these molecules range between 4.996 to 5.235 compared to experimental pEC50 of 4.77 for carvacrol. Molecular docking studies showed that designed molecules interact with similar amino acid residues of the TRPA1 channel as carvacrol, with eight compounds showing lower binding energies. In conclusion, carvacrol-induced vasodilation is partly mediated by the activation of TRPA1 channels. Combining different in silico approaches pointed out that the molecule D27 (2-[2-(hydroxymethyl)-4-methylphenyl]acetamide) is the best candidate for further synthesis and experimental evaluation in in vitro conditions.
Collapse
Affiliation(s)
- Đorđe Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| | - Relja Suručić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| | - Milica Gajić Bojić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Saša M. Trailović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Žarko Gagić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| |
Collapse
|
5
|
Khazdair MR, Moshtagh M, Anaeigoudari A, Jafari S, Kazemi T. Protective effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction - A comprehensive review. Food Sci Nutr 2024; 12:3137-3149. [PMID: 38726397 PMCID: PMC11077248 DOI: 10.1002/fsn3.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a class of illnesses that affect the heart or blood vessels, leading to the most common causes of death worldwide. In 2017, CVD caused approximately 17.8 million deaths that were increased approximately to 20.5 million deaths in 2021, globally. Also, nearly 80% of worldwide CVD deaths occur in some countries. Some herbs and their constituents due to their several pharmacological activities have been used for medicinal purposes. Carvacrol is a phenolic mono-terpenoid found in the oils of aromatic herbs with several biological properties. The possible therapeutic effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction were summarized in the current study. The data from this review article were obtained by searching the terms including; "Carvacrol", "Hypertension", Hypotensive, "Cardiac dysfunction", "Ischemia", "Lipid profile", and Oxidative stress in several web databases such as Web of Sciences, PubMed Central, and Google Scholar, until November 2023. The results of the reviewed studies revealed that carvacrol inhibits acetylcholinesterase (AchE) activity and alters lipid profiles, reducing heart rate as well as systolic and diastolic blood pressure (BP). Carvacrol also decreased the proinflammatory cytokine (IL-1β), while increasing secretion of anti-inflammatory cytokine (IL-10). Moreover, carvacrol improved oxidative stress and mitigated the number of apoptotic cells. The pharmacological effects of carvacrol on CVD might be through its antioxidative, anti-inflammatory, and antiapoptotic effects. The mentioned therapeutic effects of carvacrol on lipid profile, hypertension, and cardiac dysfunction indicate the possible remedy effect of carvacrol for the treatment of CVD.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mozhgan Moshtagh
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | - Shima Jafari
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Clinical Pharmacy, School of PharmacyBirjand University of Medical SciencesBirjandIran
| | - Toba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
6
|
Aguilar BA, Vieira S, Veiga AC, da Silva JVMB, Paixao TV, Rodrigues KP, Tank J, Ruys LA, de Souza HCD. Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan. Hypertens Res 2024; 47:1350-1361. [PMID: 38418900 DOI: 10.1038/s41440-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
The treatment of hypertensive patients with losartan is very common. Despite the reduction in blood pressure, its effects on cardiac contractility and sympathetic autonomic drive are still controversial. In turn, aerobic physical training (APT) also presents an important therapeutic option, providing significant improvements in cardiovascular autonomic control, however little is known about its effects on cardiac contractility, especially when associated with losartan. Therefore, we investigated in spontaneously hypertensive rats (SHR) the effects of losartan and APT on cardiac hemodynamics and functionality, with emphasis on autonomic tonic balance and cardiac contractility. Sixty-four SHR (18 weeks old) were divided into four groups (N = 16): vehicle; vehicle submitted to APT through swimming for 12 weeks; treated with losartan (5 mg·kg-1·d-1) for 12 weeks; and treated with losartan associated with APT. The groups were submitted to cardiac morphological and functional analysis by echocardiography; double blockade of cardiac autonomic receptors with atropine and propranolol; and coronary bed reactivity and left ventricular contractility analyses by the Langendorff technique. APT improved functional parameters and autonomic balance by reducing sympathetic drive and/or increasing vagal drive. In contrast, it promoted a concentric remodeling of the left ventricle (LV). Treatment with losartan reduced sympathetic autonomic drive and cardiac morphological parameters, but there were no significant gains in cardiac functionality and contractility. When combined, the concentric remodeling of the LV to APT was abolished and gains in cardiac functionality and contractility were observed. Our findings suggest that the effects of losartan and APT are complementary and should be applied together in the treatment of hypertension. In spontaneously hypertensive rats, the combination of aerobic physical training with losartan treatment was crucial to greater blood pressure reductions and an increase in left ventricular contractility. Furthermore, losartan treatment prevented the concentric left ventricular remodeling caused by aerobic physical training.
Collapse
Affiliation(s)
- Bruno Augusto Aguilar
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Suenimeire Vieira
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Tallys Velasco Paixao
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karine Pereira Rodrigues
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jens Tank
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center, 51147, Cologne, Germany
| | - Leticia Araujo Ruys
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Gonçalves TAF, Lima VS, de Almeida AJPO, de Arruda AV, Veras ACMF, Lima TT, Soares EMC, Santos ACD, Vasconcelos MECD, de Almeida Feitosa MS, Veras RC, de Medeiros IA. Carvacrol Improves Vascular Function in Hypertensive Animals by Modulating Endothelial Progenitor Cells. Nutrients 2023; 15:3032. [PMID: 37447358 DOI: 10.3390/nu15133032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Carvacrol, a phenolic monoterpene, has diverse biological activities, highlighting its antioxidant and antihypertensive capacity. However, there is little evidence demonstrating its influence on vascular regeneration. Therefore, we evaluated the modulation of carvacrol on endothelial repair induced by endothelial progenitor cells (EPC) in hypertension. Twelve-week-old spontaneously hypertensive rats (SHR) were treated with a vehicle, carvacrol (50 or 100 mg/kg/day), or resveratrol (10 mg/kg/day) orally for four weeks. Wistar Kyoto (WKY) rats were used as the normotensive controls. Their systolic blood pressure (SBP) was measured weekly through the tail cuff. The EPCs were isolated from the bone marrow and peripherical circulation and were quantified by flow cytometry. The functionality of the EPC was evaluated after cultivation through the quantification of colony-forming units (CFU), evaluation of eNOS, intracellular detection of reactive oxygen species (ROS), and evaluation of senescence. The superior mesenteric artery was isolated to evaluate the quantification of ROS, CD34, and CD31. Treatment with carvacrol induced EPC migration, increased CFU formation and eNOS expression and activity, and reduced ROS and senescence. In addition, carvacrol reduced vascular ROS and increased CD31 and CD34 expression. This study showed that treatment with carvacrol improved the functionality of EPC, contributing to the reduction of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Viviane Silva Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Alinne Villar de Arruda
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Thaís Trajano Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | | | | | | | - Robson Cavalcante Veras
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| |
Collapse
|
8
|
Sun M, Liu N, Miao J, Zhang Y, Hao Y, Zhang J, Li H, Bai H, Shi L. Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization. Int J Mol Sci 2023; 24:ijms24087320. [PMID: 37108486 PMCID: PMC10138667 DOI: 10.3390/ijms24087320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Oregano is a medicinal and aromatic plant of value in the pharmaceutical, food, feed additive, and cosmetic industries. Oregano breeding is still in its infancy compared with traditional crops. In this study, we evaluated the phenotypes of 12 oregano genotypes and generated F1 progenies by hybridization. The density of leaf glandular secretory trichomes and the essential oil yield in the 12 oregano genotypes varied from 97-1017 per cm2 and 0.17-1.67%, respectively. These genotypes were divided into four terpene chemotypes: carvacrol-, thymol-, germacrene D/β-caryophyllene-, and linalool/β-ocimene-type. Based on phenotypic data and considering terpene chemotypes as the main breeding goal, six oregano hybrid combinations were performed. Simple sequence repeat (SSR) markers were developed based on unpublished whole-genome sequencing data of Origanum vulgare, and 64 codominant SSR primers were screened on the parents of the six oregano combinations. These codominant primers were used to determine the authenticity of 40 F1 lines, and 37 true hybrids were identified. These 37 F1 lines were divided into six terpene chemotypes: sabinene-, β-ocimene-, γ-terpinene-, thymol-, carvacrol-, and p-cymene-type, four of which (sabinene-, β-ocimene-, γ-terpinene-, and p-cymene-type) were novel (i.e., different from the chemotypes of parents). The terpene contents of 18 of the 37 F1 lines were higher than those of their parents. The above results lay a strong foundation for the creating of new germplasm resources, constructing of genetic linkage map, and mapping quantitative trait loci (QTLs) of key horticultural traits, and provide insights into the mechanism of terpenoid biosynthesis in oregano.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ningning Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Miao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanpeng Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
9
|
Bansal A, Saleh-E-In MM, Kar P, Roy A, Sharma NR. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022; 27:molecules27144597. [PMID: 35889476 PMCID: PMC9323284 DOI: 10.3390/molecules27144597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer remains a major public health concern among all cancer diseases due to the toxicity and side-effects of the available commercially synthesized drugs. Natural product-derived synthesized anticancer drugs are now of promising interest to fight against cancer death. Carvacrol is a major component of most essential oil-bearing plants with potential pharmacological activity, especially against various cancer cell lines. Among the other organometallic compounds, copper complexes have been reported to be effective anticancer agents against various cancer cell lines, especially lung and leukemia cancers, due to the nontoxic nature of copper in normal cells since it is an endogenic metal. In this study, we synthesized three carvacrol derivatives, i.e., carvacrol aldehyde, Schiff base, and copper–Schiff base complex, through an established synthesis protocol and characterized the synthesized product using various spectroscopic techniques. The synthesized derivatives were evaluated for in vitro cytotoxic activity against different cancer cell lines, including human lung cancer (A549) and human fibroblast (BALB-3T3). Our findings showed that the copper–Schiff base complex derived from carvacrol inhibited the proliferation and migration of the A549 cell lines in a dose-dependent manner. This activity might be due to the inhibition of cell proliferation and migration at the G2/M cell-cycle phase, as well as apoptosis, possibly through the activation of the mitochondrial apoptotic pathway. To our knowledge, this is the first report on the activity of the copper–Schiff base complex of carvacrol against A549 cell lines. Our result highlights that a new synthesized copper complex from carvacrol could be a novel potential drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Anu Bansal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Md. Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200701, Korea;
| | - Pallab Kar
- B.S. Diagnostic and Pathology Laboratory, Siliguri 734001, India;
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
- Correspondence: ; Tel.: +91-828-3921-144
| |
Collapse
|
10
|
Niu Z, Qiang T, Lin W, Li Y, Wang K, Wang D, Wang X. Evaluation of Potential Herb-Drug Interactions Between Shengmai Injection and Losartan Potassium in Rat and In Vitro. Front Pharmacol 2022; 13:878526. [PMID: 35517807 PMCID: PMC9065348 DOI: 10.3389/fphar.2022.878526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.
Collapse
Affiliation(s)
- Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keyan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Marconi GD, Della Rocca Y, Fonticoli L, Guarnieri S, Carradori S, Rajan TS, Pizzicannella J, Diomede F. The Beneficial Effect of Carvacrol in HL-1 Cardiomyocytes Treated with LPS-G: Anti-Inflammatory Pathway Investigations. Antioxidants (Basel) 2022; 11:antiox11020386. [PMID: 35204269 PMCID: PMC8869563 DOI: 10.3390/antiox11020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Carvacrol (CAR), a natural phenolic monoterpene, possesses different biological activities, such as anti-inflammatory and antioxidant activities. The current study aimed to evaluate the response of HL-1 cardiomyocytes to an inflammatory stimulus triggered by lipopolysaccharide from Porphyromonas gingivalis (LPS-G), alone or in co-treatment with CAR, to investigate the potential protective role of CAR in the inflammatory process through modulation of the TLR4/NFκB/NALP3/IL-1β pathway and ROS production. In an in vitro experiment, HL-1 cardiomyocytes were exposed to LPS-G and incubated with CAR. We evaluated the anti-inflammatory effect of CAR by the reduction in TLR4, NFκB, NALP3, and IL-1β expression using immunofluorescence staining. Western blot analysis also validated the modulation of the TLR4/NFκB/NALP3/IL-1β pathway. ROS analyses confirmed the protective effects of CAR. Our results suggest that CAR could provide a significant protection role against inflammatory stimulus generated by LPS-G, involving the suppression of the TLR4/NFκB/NALP3/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (F.D.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (F.D.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | | | - Jacopo Pizzicannella
- Ss. Annunziata Hospital, ASL 02 Lanciano-Vasto-Chieti, 66100 Chieti, Italy
- Correspondence:
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (F.D.)
| |
Collapse
|