1
|
Rahaman MM, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025; 205:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD pathogenesis and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Phurpa Wangchuk
- College of Science and Engineering, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Wang Y, Sun C, Cao Y, Jiao T, Wang K, Li J, Zhang M, Jiang J, Zhong X, Yu S, Xu H, Wang J, Yi T, Tian X, Zhu H, Zhou H, Huang C, Wu T, Guo X, Xie C. Glycyrrhizic acid and patchouli alcohol in Huoxiang Zhengqi attenuate intestinal inflammation and barrier injury via regulating endogenous corticosterone metabolism mediated by 11β-HSD1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119025. [PMID: 39489360 DOI: 10.1016/j.jep.2024.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC), a chronic inflammatory bowel disease, has become a significant public health challenge due to the limited effectiveness of available therapies. Huoxiang Zhengqi (HXZQ), a well-established traditional Chinese formula, shows potential in managing UC, as suggested by clinical and pharmacological studies. However, the active components and mechanisms responsible for its effects remain unclear. AIM OF STUDY This study aimed to identify the bioactive components of HXZQ responsible for its therapeutic effects on UC and to elucidate their underlying mechanisms. MATERIALS AND METHODS The effect of HXZQ against dextran sodium sulfate (DSS)-induced colitis was investigated. Ingredients in HXZQ were characterized and analyzed in colitic mice using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). In vitro, biological activity of compounds was assessed using lipopolysaccharide (LPS)-induced Ana-1 cells and bone marrow-derived macrophages (BMDMs), tumor necrosis factor-alpha (TNF-α)-induced Caco-2 cells, and isolated intestinal crypts from colitic mice. These results were confirmed in vivo. The targets of the components were identified through bioinformatics analysis and validated via molecular docking, enzyme inhibition assays, and in vivo experiments. Hematoxylin and eosin (HE) staining, periodic acid-Schiff (PAS) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative real-time polymerase chain reaction (qPCR) were employed to confirm the pharmaceutical effects. RESULTS A clinical equivalent dose of HXZQ (2.5 mL/kg) effectively treated DSS-induced colitis. A total of 113 compounds were identified in HXZQ, with 35 compounds detected in colitic mice. Glycyrrhizic acid (GA) and patchouli alcohol (PA) emerged as key contributors to the anti-colitic effects of HXZQ. Further investigation revealed that HXZQ and its active components decreased the levels of pro-inflammatory cytokines TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in colon, likely by inhibiting nuclear factor kappa-B (NF-κB) signaling pathway. This inhibition indirectly activated the intestinal farnesoid X receptor (FXR) signaling pathway, correcting bile acid imbalances caused by colitis. Additionally, these components significantly enhanced the expression of tight junction proteins ZO-1 and Occludin, as well as the adhesion protein E-cadherin, and reduced goblet cell loss, thereby repairing intestinal barrier injury. Mechanistically, GA and PA were found to inhibit 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, leading to increased local active corticosterone levels in the intestine to exert anti-inflammatory effects. Notably, the inhibition of 11β-HSD1 with the selective inhibitor BVT2733 (BVT) ameliorated colitis in mice. CONCLUSIONS HXZQ exhibits therapeutic effects on UC, primarily through GA and PA inhibiting 11β-HSD1. This suggests new natural therapy approaches for UC and positions 11β-HSD1 as a potential target for colitis treatment.
Collapse
Affiliation(s)
- Yangyang Wang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200032, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaqi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Jiang
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianchun Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuwu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiawen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tong Yi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Xiaoting Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Haifeng Zhou
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chenggang Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tong Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Li D, Ding K, Jiang W, Lei M, Lei C. Current trends and research hotspots in the study of flavonoids for ulcerative colitis: A bibliometric study. Arab J Gastroenterol 2024; 25:356-368. [PMID: 39490351 DOI: 10.1016/j.ajg.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND STUDY AIMS Flavonoids have been shown to exhibit significant potential in treating ulcerative colitis (UC), and their mechanism of action is receiving increasing attention. This study was devoted to the bibliometric analysis of articles and review articles in flavonoid therapy for UC research between 2011 and 2022 to show publication trends and research hotspots. MATERIAL AND METHODS The literature search data for the bibliometric analysis were obtained from the Web of Science Core Collection by searching for the terms "Flavonoids" and "Ulcerative colitis or Idiopathic Proctocolitis or colitis gravis or Inflammatory Bowel Disease, Ulcerative Colitis Type." Three software programs, Bibliometrix, CiteSpace, and VOSviewer, were used to perform a bibliometric analysis of the retrieved literature data. RESULTS There were 181 publications on flavonoids for UC during the 12 years, with an upward trend in annual publications and an annual growth rate of 27.11 %. China had the highest cumulative number of publications, and Kyung Hee University was the academic institution with the most publications in this research area. In recent years, intestinal flora, intestinal barrier, apoptosis, tight protein junctions, and TLR4/ NF-κB pathway have become hot spots for research on flavonoids for UC. Grape seed analogs have been extensively investigated for treating UC in the past three years. CONCLUSION The results of this bibliometric study demonstrate the current status and trends of research on flavonoids for the treatment of UC and provide relevant researchers with hot topics and the latest research directions.
Collapse
Affiliation(s)
- Dingqi Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaofang Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Wang T, Liu X, Zhang W, Wang J, Wang T, Yue W, Ming L, Cheng J, Sun J. Traditional Chinese medicine treats ulcerative colitis by regulating gut microbiota, signaling pathway and cytokine: Future novel method option for pharmacotherapy. Heliyon 2024; 10:e27530. [PMID: 38501018 PMCID: PMC10945194 DOI: 10.1016/j.heliyon.2024.e27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.
Collapse
Affiliation(s)
- Tiancheng Wang
- College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinyue Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weijie Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wang
- Department of Accounting, Hongshan College, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Tingting Wang
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Wei Yue
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Jun Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
9
|
Wang L, Li M, Gu Y, Shi J, Yan J, Wang X, Li B, Wang B, Zhong W, Cao H. Dietary flavonoids-microbiota crosstalk in intestinal inflammation and carcinogenesis. J Nutr Biochem 2024; 125:109494. [PMID: 37866426 DOI: 10.1016/j.jnutbio.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Colorectal cancer (CRC) is currently the third leading cancer and commonly develops from chronic intestinal inflammation. A strong association was found between gut microbiota and intestinal inflammation and carcinogenic risk. Flavonoids, which are abundant in vegetables and fruits, can inhibit inflammation, regulate gut microbiota, protect gut barrier integrity, and modulate immune cell function, thereby attenuating colitis and preventing carcinogenesis. Upon digestion, about 90% of flavonoids are transported to the colon without being absorbed in the small intestine. This phenomenon increases the abundance of beneficial bacteria and enhances the production of short-chain fatty acids. The gut microbe further metabolizes these flavonoids. Interestingly, some metabolites of flavonoids play crucial roles in anti-inflammation and anti-tumor effects. This review summarizes the modulatory effect of flavonoids on gut microbiota and their metabolism by intestinal microbe under disease conditions, including inflammatory bowel disease, colitis-associated cancer (CAC), and CRC. We focus on dietary flavonoids and microbial interactions in intestinal mucosal barriers as well as intestinal immune cells. Results provide novel insights to better understand the crosstalk between dietary flavonoids and gut microbiota and support the standpoint that dietary flavonoids prevent intestinal inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Junli Shi
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bingqing Li
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
10
|
Tang E, Hu T, Jiang Z, Shen X, Lin H, Xian H, Wu X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora. Food Funct 2024; 15:295-309. [PMID: 38084034 DOI: 10.1039/d3fo03319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1β, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.
Collapse
Affiliation(s)
- Enhui Tang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tong Hu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhaokang Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaojun Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Huan Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyan Xian
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
11
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
12
|
Lu Q, Xie Y, Luo J, Gong Q, Li C. Natural flavones from edible and medicinal plants exhibit enormous potential to treat ulcerative colitis. Front Pharmacol 2023; 14:1168990. [PMID: 37324477 PMCID: PMC10268007 DOI: 10.3389/fphar.2023.1168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic aspecific gut inflammatory disorder that primarily involves the recta and colons. It mostly presents as a long course of repeated attacks. This disease, characterized by intermittent diarrhoea, fecal blood, stomachache, and tenesmus, severely decreases the living quality of sick persons. UC is difficult to heal, has a high recurrence rate, and is tightly related to the incidence of colon cancer. Although there are a number of drugs available for the suppression of colitis, the conventional therapy possesses certain limitations and severe adverse reactions. Thus, it is extremely required for safe and effective medicines for colitis, and naturally derived flavones exhibited huge prospects. This study focused on the advancement of naturally derived flavones from edible and pharmaceutical plants for treating colitis. The underlying mechanisms of natural-derived flavones in treating UC were closely linked to the regulation of enteric barrier function, immune-inflammatory responses, oxidative stress, gut microflora, and SCFAs production. The prominent effects and safety of natural-derived flavones make them promising candidate drugs for colitis treatment.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yuhong Xie
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Cailan Li
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Yu W, Jiang Z, Zhang Z, Jiang L, Liu C, Lu C, Liang Z, Wang G, Yan J. The Wu-Shi-Cha formula protects against ulcerative colitis by orchestrating immunity and microbiota homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116075. [PMID: 36572328 DOI: 10.1016/j.jep.2022.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) has become a healthy burden worldwide due to its insidious onset and repetitive relapse, with a rather complex etiology, including inappropriate immune response, dysbiosis, genetic susceptibility, and unhealthy diets. The Wu-Shi-Cha (WSC) formula is a widely utilized drug to protect against gastrointestinal disorders. AIM OF THE STUDY The study aspired to dissect the pertinent mechanisms of the WSC to treat UC. MATERIALS AND METHODS Network pharmacology and weighted gene co-expression network analysis (WGCNA) were performed to predict the targets of WSC in the context of UC and colorectal cancer. Dextran sodium sulfate (DSS) was used to construct murine models of experimental colitis, and the WSC was given to colitis mice for 14 days. Feces and colon samples were subjected to 16S rRNA gene sequencing combined with liquid chromatography-mass spectrometry (LC-MS) and biochemical experiments, respectively. RESULTS Network pharmacology analysis predicted that the WSC formula could orchestrate inflammation, infection, and tumorigenesis, and WGCNA based on The Cancer Genome Atlas (TCGA) database showed a potent anti-neoplastic effect of the WSC therapy for colorectal cancer. The WSC therapy rescued bursts of pro-inflammatory cytokines and colonic epithelial collapse in DSS-induced colitis mice. Moreover, the high dose of WSC treatment facilitated the alternative activation of peritoneal macrophages (Mφs) and these Mφs were conducive to the survival of intestinal stem cells (ISCs), and the disturbed homeostasis of gut microbiota was re-established after WSC treatment, as evidenced by the decreased colonization of pathological taxa in the fecal samples. CONCLUSION The WSC formula suppresses inflammation and re-establishes the homeostasis of gut microbiota, thereby ameliorating colitis progression.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhiqiang Zhang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| |
Collapse
|
14
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
15
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
16
|
Lu PD, Yuan MC, Quan XP, Chen JF, Zhao YH. Preclinical studies of licorice in ulcerative colitis: A systematic review with meta-analysis and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115444. [PMID: 35671864 DOI: 10.1016/j.jep.2022.115444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, as a traditional Chinese herbal medicine, possessing the efficacies of invigorating spleen and replenishing qi, heat-clearing and detoxicating, phlegm-resolving and cough suppressant, relieving spasm and pain, and hamonizing actions of various medicines. AIM OF THE STUDY The goal of this systematic review, which includes meta-analysis and network pharmacology in preclinical studies, is to investigate the multiple efficacies of licorice on ulcerative colitis (UC). MATERIALS AND METHODS We searched several databases, e.g., Web of Science, Elsevier ScienceDirect and PubMed until Januanry 2022 for literature collection, and the Review Manager 5.3 was used to analyze the data. To synthesize the retrieved data, the fixed and random-effects models were utilized, respectively, and network pharmacology was applied to confirm the mechanisms. RESULTS Based on the result of meta-analysis, it suggested that the treatments of licorice extract and its active compounds showed strong therpeutic effects, which not only reflected the declining histological score, a index of the colitis severity [SMD = -2.86, 95% CI (-3.65, -2.08); P < 0.00001], but also reversed colonic shortness [WMD = 1.67, 95% CI (1.16, 2.19); P < 0.00001] between experimental UC model and licorice-treatment groups. In addition, it suggested the significant reduction of TNF-α level [SMD = -2.70, 95% CI (-3.23, -2.16); P < 0.00001], which acted as a crucial role in inflammatory response. Furthermore, from the results of network pharmacology, it indicated that anti-inflammation, anti-oxidative stress, immunomodulatory effect and microbiota homeostasis were the predominant therapeutic mechanisms of licorice extract and its active compounds treating UC. CONCLUSION This systematic review with meta-analysis and network pharmacology demonstrates an efficient role of licorice extract and its active compounds in preclinical studies of UC, which provides supporting evidence for clinical trial implementation. However, there exist some limitations, such as technique quality decificency, missed reports due to negative outcome, failure to calculate sample size, and the risk of bias.
Collapse
Affiliation(s)
- Peng-De Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China.
| | - Meng-Chen Yuan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Xing-Ping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Jin-Fen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yong-Hua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
17
|
Chen J, Shen B, Jiang Z. Traditional Chinese medicine prescription Shenling BaiZhu powder to treat ulcerative colitis: Clinical evidence and potential mechanisms. Front Pharmacol 2022; 13:978558. [PMID: 36160392 PMCID: PMC9494158 DOI: 10.3389/fphar.2022.978558] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC), characterized by syndromes including abdominal pain, bloody stool, diarrhea, weight loss, and repeated relapse, is a non-specific inflammatory intestinal disease. In recent years, with the changing dietary habits in China, the incidence of UC has shown an upward trend. UC belongs to the category of recorded as "diarrhea," "chronic dysentery," and "hematochezia" in traditional Chinese medicine (TCM), and Shenling BaiZhu powder (SLBZP) is one of the most effective and commonly used prescriptions. In this review, we aim to systematically summarize the clinical application and pharmacological mechanism of SLBZP in the treatment of UC to provide a theoretical basis for its clinical use and experimental evaluation of SLBZP. Our results showed that both SLBZP and SLBZP in combination with chemical drugs, have a significant therapeutic effect against UC with few adverse reactions. Furthermore, combined therapy was better than western medicine. Further, pathophysiological studies indicated that SLBZP has anti-inflammatory, immunomodulatory, antioxidant effects, regulation relative cell signal transduction and regulation of gut microbiota. Although evidence suggests superior therapeutic efficacy of SLBZP for treating UC and the relative mechanism has been studied extensively, various shortcomings limit the existing research on the topic. There is a lack of UC animal models, especially UC with TCM syndromes, with no uniform standard and certain differences between the animal model and clinical syndrome. The dosage, dosage form, and therapeutic time of SLBZP are inconsistent and lack pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. In addition, SLSZP is composed of multiple Chinese drugs that contain massive numbers of ingredients and which or several components contribute to therapeutic effects. How they work synergistically together remains unknown. Therefore, on the one hand, large sample prospective cohort studies to clarify the clinical efficacy and safety of SLBZP in the treatment of UC are needed. In contrast, researchers should strengthen the study of the molecular biological mechanism of active ingredients and its synergistic actions, clarifying the mechanism of SLBZP in treating UC by multi-component, multi-target, and multi-pathway.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| | - Bixin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| |
Collapse
|
18
|
Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110704. [PMID: 36091591 PMCID: PMC9451982 DOI: 10.1155/2022/9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW. Methods 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms. Results (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our in vitro experiments confirmed that the JW treatment suppressed caspase3-dependent pyroptosis, hypoxia-inducible factor 1α (HIF1α), and interleukin-1b (IL-1b) in the colon; facilitated the alternative activation of macrophages (Mφs); and inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs). Conclusion The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
Collapse
|
19
|
Ye X, Pi X, Zheng W, Cen Y, Ni J, Xu L, Wu K, Liu W, Li L. The Methanol Extract of Polygonatum odoratum Ameliorates Colitis by Improving Intestinal Short-Chain Fatty Acids and Gas Production to Regulate Microbiota Dysbiosis in Mice. Front Nutr 2022; 9:899421. [PMID: 35634366 PMCID: PMC9133717 DOI: 10.3389/fnut.2022.899421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
The potential impacts of methanol extract from Polygonatum odoratum on (YZM) colonic histopathology, gut gas production, short-chain fatty acids (SCFAs), and intestinal microbiota composition were evaluated with dextran sulfate sodium (DSS)-induced colitis mice in this study. These results indicated that YZM increased colon length and ameliorated colonic histopathology in DSS-induced colitis mice. Moreover, YZM administration reversed intestinal microbiota compositions leading to the inhibition of H2S-related bacteria (e.g., Desulfovibrionaceae) and the lower level of H2S and higher contents of SCFA-related bacteria (e.g., Muribaculaceae). Taken together, the effects of methanol extract from Polygonatum odoratum are studied to provide new enlightenment and clues for its application as a functional food and clinical drug. Our study first revealed the relationship between intestinal gas production and key bacteria in ulcerative colitis.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenxin Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yingxin Cen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiahui Ni
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Langyu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kefei Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Lanjuan Li,
| |
Collapse
|
20
|
Zhang B, Liu K, Yang H, Jin Z, Ding Q, Zhao L. Gut Microbiota: The Potential Key Target of TCM's Therapeutic Effect of Treating Different Diseases Using the Same Method-UC and T2DM as Examples. Front Cell Infect Microbiol 2022; 12:855075. [PMID: 35433500 PMCID: PMC9005880 DOI: 10.3389/fcimb.2022.855075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional Chinese herbal medicine often exerts the therapeutic effect of "treating different diseases with the same method" in clinical practice; in other words, it is a kind of herbal medicine that can often treat two or even multiple diseases; however, the biological mechanism underlying its multi-path and multi-target pharmacological effects remains unclear. Growing evidence has demonstrated that gut microbiota dysbiosis plays a vital role in the occurrence and development of several diseases, and that the root cause of herbal medicine plays a therapeutic role in different diseases, a phenomenon potentially related to the improvement of the gut microbiota. We used local intestinal diseases, such as ulcerative colitis, and systemic diseases, such as type 2 diabetes, as examples; comprehensively searched databases, such as PubMed, Web of Science, and China National Knowledge Infrastructure; and summarized the related studies. The results indicate that multiple individual Chinese herbal medicines, such as Rhizoma coptidis (Huang Lian), Curcuma longa L (Jiang Huang), and Radix Scutellariae (Huang Qin), and Chinese medicinal compounds, such as Gegen Qinlian Decoction, Banxia Xiexin Decoction, and Shenling Baizhu Powder, potentially treat these two diseases by enriching the diversity of the gut microbiota, increasing beneficial bacteria and butyrate-producing bacteria, reducing pathogenic bacteria, improving the intestinal mucosal barrier, and inhibiting intestinal and systemic inflammation. In conclusion, this study found that a variety of traditional Chinese herbal medicines can simultaneously treat ulcerative colitis and type 2 diabetes, and the gut microbiota may be a significant target for herbal medicine as it exerts its therapeutic effect of "treating different diseases with the same method".
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|