1
|
Attique I, Haider Z, Khan M, Hassan S, Soliman MM, Ibrahim WN, Anjum S. Reactive Oxygen Species: From Tumorigenesis to Therapeutic Strategies in Cancer. Cancer Med 2025; 14:e70947. [PMID: 40377005 DOI: 10.1002/cam4.70947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Reactive oxygen species (ROS), a class of highly reactive molecules, are closely linked to the pathogenesis of various cancers. While ROS primarily originate from normal cellular processes, external stimuli can also contribute to their production. Cancer cells typically exhibit elevated ROS levels due to disrupted redox homeostasis, characterized by an imbalance between antioxidant and oxidant species. ROS play a dual role in cancer biology: at moderate levels, they facilitate tumor progression by regulating oncogenes and tumor suppressor genes, inducing mutations, promoting proliferation, extracellular matrix remodeling, invasion, immune modulation, and angiogenesis. However, excessive ROS levels can cause cellular damage and initiate apoptosis, necroptosis, or ferroptosis. METHODS This review explores molecular targets involved in redox homeostasis dysregulation and examines the impact of ROS on the tumor microenvironment (TME). Literature from recent in vitro and in vivo studies was analyzed to assess how ROS modulation contributes to cancer development and therapy. RESULTS Findings indicate that ROS influence cancer progression through various pathways and cellular mechanisms. Targeting ROS synthesis or enhancing ROS accumulation in tumor cells has shown promising anticancer effects. These therapeutic strategies exhibit significant potential to impair tumor growth while also interacting with elements of the TME. CONCLUSION The ROS serve as both promoters and suppressors of cancer depending on their intracellular concentration. Their complex role offers valuable opportunities for targeted cancer therapies. While challenges remain in precisely modulating ROS for therapeutic benefit, they hold promise as synergistic agents alongside conventional treatments, opening new avenues in cancer management.
Collapse
Affiliation(s)
- Iqra Attique
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Zahra Haider
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Maha Khan
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women University, Lahore, Pakistan
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Zhang M, Zhao X, Liu Y, Liu Y, Shi Y, Zhang Y, Chen J. Targeting MLKL ameliorates T-2 toxin-induced cartilage damage by inhibiting chondrocyte death and matrix degradation in mice. Arch Toxicol 2025; 99:1505-1516. [PMID: 39966150 DOI: 10.1007/s00204-025-03966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
T-2 toxin is the most toxic mycotoxin found in contaminated food and animal feed that threatens health. Exposure to T-2 toxin causes cartilage damage and leads to joint disorders, but the mechanisms underlying T-2 toxin-induced cartilage damage remain unclear. The results showed that T-2 toxin-induced chondrocyte death in articular cartilage from rats fed T-2 toxin (200 ng/g b.w./day) caused a significant increase in phosphorylated receptor-interacting protein 3 (p-RIPK3) and phosphorylated mixed lineage kinase-like protein (p-MLKL). In vitro studies showed that T-2 toxin (48 ng/mL) reduced the viability of C-28/I2 chondrocytes, increased cell apoptosis, and significantly upregulated the expression of p-MLKL. The results suggest that chondrocyte necroptosis is involved in T-2 toxin-induced cartilage damage. Furthermore, necrostatin-1 (Nec-1), a necroptosis inhibitor, significantly attenuated T-2 toxin-induced cell death and the increase of p-MLKL. Further studies showed that mlkl-/- mice suppressed T-2 toxin-induced chondrocyte death, and mlkl-/- mice upregulated T-2 toxin-induced proteoglycan content and type II collagen reduction in mouse articular cartilage, and reduced increased matrix metalloproteinase-13 expression. Besides, the p-RIPK3 and p-MLKL were significantly increased in the articular cartilage of KBD patients. This study highlights the role of RIPK3/MLKL-mediated necroptosis in T-2 toxin-induced articular cartilage damage. Inhibition of MLKL alleviates T-2 toxin-induced cartilage damage by reducing chondrocyte death and matrix degradation in mice. These results suggest a potential therapeutic target for mitigating T-2 toxin-induced cartilage damage.
Collapse
Affiliation(s)
- Meng Zhang
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaoru Zhao
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yue Liu
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yinan Liu
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yawen Shi
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jinghong Chen
- School of Public Health, Health Science Center, NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
4
|
Sengupta A, Chakraborty S, Biswas S, Patra SK, Ghosh S. S-nitrosoglutathione (GSNO) induces necroptotic cell death in K562 cells: Involvement of p73, TSC2 and SIRT1. Cell Signal 2024; 124:111377. [PMID: 39222864 DOI: 10.1016/j.cellsig.2024.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nitric oxide and Reactive Nitrogen Species are known to effect tumorigenicity. GSNO is one of the main NO carrying signalling moiety in cell. In the current study, we tried to delve into the effect of GSNO induced nitrosative stress in three different myelogenous leukemic K562, U937 and THP-1 cell lines. METHOD WST-8 assay was performed to investigate cell viability. RT-PCR and western-blot analysis were done to investigate mRNA and protein expression. Spectrophotometric and fluorimetric assays were done to investigate enzyme activities. RESULT We found that GSNO exposure led to reduced cell viability and the mode of cell death in K562 was non apoptotic in nature. GSNO promoted impaired autophagic flux and necroptosis. GSNO treatment heightened phosphorylation of AMPK and TSC2 and inhibited mTOR pathway. We observed increase in NAD+/ NADH ratio following GSNO treatment. Increase in both SIRT1 m-RNA and protein expression was observed. While total SIRT activity remained unaltered. GSNO increased tumor suppressor TAp73/ oncogenic ∆Np73 ratio in K562 cells which was correlated with cell mortality. Surprisingly, GSNO did not alter cellular redox status or redox associated protein expression. However, steep increase in total SNO and PSNO content was observed. Furthermore, inhibition of autophagy, AMPK phosphorylation or SIRT1 exacerbated the effect of GSNO. Altogether our work gives insights into GSNO mediated necroptotic event in K562 cells which can be excavated to develop NO based anticancer therapeutics. CONCLUSION Our data suggests that GSNO could induce necroptotic cell death in K562 through mitochondrial dysfunctionality and PTM of different cellular proteins.
Collapse
Affiliation(s)
- Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanchita Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
6
|
Zhang L, Hu Z, Li Z, Lin Y. Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 2024; 19:1660-1670. [PMID: 38103229 PMCID: PMC10960298 DOI: 10.4103/1673-5374.389361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Central nervous system injuries have a high rate of resulting in disability and mortality; however, at present, effective treatments are lacking. Programmed cell death, which is a genetically determined form of active and ordered cell death with many types, has recently attracted increasing attention due to its functions in determining the fate of cell survival. A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage. In this review, we provide an overview of the role of programmed cell death in central nervous system injuries, including the pathways involved in mitophagy, pyroptosis, ferroptosis, and necroptosis, and the underlying mechanisms by which mitophagy regulates pyroptosis, ferroptosis, and necroptosis. We also discuss the new direction of therapeutic strategies targeting mitophagy for the treatment of central nervous system injuries, with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury. In conclusion, based on these properties and effects, interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Kong R, Wang N, Zhou C, Zhou Y, Guo X, Wang D, Shi Y, Wan R, Zheng Y, Lu J. Sanguinarine Induces Necroptosis of HCC by Targeting PKM2 Mediated Energy Metabolism. Cancers (Basel) 2024; 16:2533. [PMID: 39061173 PMCID: PMC11274805 DOI: 10.3390/cancers16142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUNDS Abnormal metabolism is the hallmark of hepatocellular carcinoma. Targeting energy metabolism has become the major focus of cancer therapy. The natural product, sanguinarine, displays remarkable anti-tumor properties by disturbing energy homeostasis; however, the underlying mechanism has not yet been elucidated. METHODS The anticancer activity of sanguinarine was determined using CCK-8 and colony formation assay. Morphological changes of induced cell death were observed under electron microscopy. Necroptosis and apoptosis related markers were detected using western blotting. PKM2 was identified as the target by transcriptome sequencing. Molecular docking assay was used to evaluate the binding affinity of sanguinarine to the PKM2 molecule. Furthermore, Alb-CreERT2; PKM2loxp/loxp; Rosa26RFP mice was used to construct the model of HCC-through the intervention of sanguinarine in vitro and in vivo-to accurately explore the regulation effect of sanguinarine on cancer energy metabolism. RESULTS Sanguinarine inhibited tumor proliferation, metastasis and induced two modes of cell death. Molecular docking of sanguinarine with PKM2 showed appreciable binding affinity. PKM2 kinase activity and aerobic glycolysis rate declined, and mitochondrial oxidative phosphorylation was inhibited by sanguinarine application; these changes result in energy deficits and lead to necroptosis. Additionally, sanguinarine treatment prevents the translocation of PKM2 into the nucleus and suppresses the interaction of PKM2 with β-catenin; the transcriptional activity of PKM2/β-catenin signaling and its downstream genes were decreased. CONCLUSIONS Sanguinarine showed remarkable anti-HCC activity via regulating energy metabolism by PKM2/β-catenin signaling. On the basis of these investigations, we propose that sanguinarine might be considered as a promising compound for discovery of anti-HCC drugs.
Collapse
Affiliation(s)
- Rui Kong
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Nan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Dongyan Wang
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Yihai Shi
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| |
Collapse
|
8
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
9
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Mohanty S, Suklabaidya S, Lavorgna A, Ueno T, Fujisawa JI, Ngouth N, Jacobson S, Harhaj EW. The tyrosine kinase KDR is essential for the survival of HTLV-1-infected T cells by stabilizing the Tax oncoprotein. Nat Commun 2024; 15:5380. [PMID: 38918393 PMCID: PMC11199648 DOI: 10.1038/s41467-024-49737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells. Inhibition of KDR specifically induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4 + T cells from HAM/TSP patients. Furthermore, inhibition of KDR triggers the autophagic degradation of Tax resulting in impaired NF-κB activation and diminished viral transmission in co-culture assays. Tax induces the expression of KDR, forms a complex with KDR, and is phosphorylated by KDR. These findings suggest that Tax stability is dependent on KDR activity which could be exploited as a strategy to target Tax in HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Millipore-Sigma, Rockville, MD, USA
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA.
| |
Collapse
|
11
|
Ciftci YC, Vatansever İE, Akgül B. Unraveling the intriguing interplay: Exploring the role of lncRNAs in caspase-independent cell death. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1862. [PMID: 38837618 DOI: 10.1002/wrna.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yusuf Cem Ciftci
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - İpek Erdoğan Vatansever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| |
Collapse
|
12
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Lin SS, Chang TM, Wei AIC, Lee CW, Lin ZC, Chiang YC, Chi MC, Liu JF. Acetylshikonin induces necroptosis via the RIPK1/RIPK3-dependent pathway in lung cancer. Aging (Albany NY) 2023; 15:14900-14914. [PMID: 38126996 PMCID: PMC10781480 DOI: 10.18632/aging.205316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.
Collapse
Affiliation(s)
- Shih-Sen Lin
- Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City 613016, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
14
|
Park JH, Kim MS, Yun DH, Kim YC. Apoptosis/Necroptosis Inducing Thiazole-Containing Artificial Polypeptide for Immunogenic Cell Death of Cancer. ACS APPLIED BIO MATERIALS 2023; 6:5290-5300. [PMID: 38044569 DOI: 10.1021/acsabm.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Immunogenic cell death (ICD) has emerged as a promising approach to cancer immunotherapy. During ICD, cancer cell death and the release of damage-associated molecular pattern (DAMP) signals occur simultaneously. Increased production of reactive oxygen species (ROS) and severe endoplasmic reticulum stress are necessary for enhanced ICD. Furthermore, the levels of ROS and reduced glutathione (GSH) are involved in various cell death mechanisms. The thiazole ring structure has gained considerable interest as a functional moiety for anticancer agents. This study designed and synthesized a positively charged cell-penetrating polypeptide with a thiazole functional moiety (NS). The NS internalizes into the cancer cells through direct penetration and endo-lysosomal escape. The NS induces mitochondrial depolarization and ER stress in a concentration-dependent manner, leading to a significant ROS production and GSH depletion. Consequently, the ICD of cancer cells is activated, resulting in the release of DAMP signals. Furthermore, NS causes a shift in the cell death pathway from apoptosis to necroptosis as the concentration increases. In this study, we confirmed the possibility of NS as a promising ICD inducer that can be used while varying the concentration according to the cancer type.
Collapse
Affiliation(s)
- Jeong Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mun Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Do Hyun Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Kong X, Xiong Y. A novel necroptosis-related long non-coding RNA signature predicts prognosis and immune response in cervical cancer patients. J Cancer Res Clin Oncol 2023; 149:12947-12964. [PMID: 37466792 DOI: 10.1007/s00432-023-05158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Necroptosis has been linked to the development of tumors. Long non-coding RNAs (IncRNAs) have been identified as having a major role in numerous biological and pathological procedures. Despite this, the precise role that necroptosis-related lncRNAs (NRLs) have in cervical cancer (CC) and their potential for predicting its prognosis is still to a large extent unclear. METHODS Gene expression RNA-sequencing data, mutational data, and clinical profiles for 309 CC patients were obtained from the Cancer Genome Atlas (TCGA) database. The NRLs were then identified with Pearson correlation analysis followed by splitting of the patients into training and validation sets in a 3:2 ratio. Cox and LASSO regression models were performed to construct a cervical cancer prognostic signature based on NRLs. This 5-NRLs signature was then verified by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve, and nomogram for prognostic prediction. Further, a correlation study between the risk score (RS) and immune cell infiltration, immune checkpoint molecules, tumor mutation burden (TMB), and the sensitivity of chemotherapy drug was conducted. To validate the 5-NRLs, a quantitative reverse transcription polymerase chain reaction (qRT-PCR) was finally performed. RESULTS The 5-NRLs signature was designed to accurately predict the prognosis of CC. It consists of AC092153.1, AC007686.3, LINC01281, AC009097.2, and RUSC1-AS1 and was found to be highly predictive using ROC and Kaplan-Meier curves. Furthermore, when analyzed through stratified survival analysis, it was confirmed to be an independent risk factor for prognosis. The nomogram and calibration curves further validated its clinical utility. Moreover, distinct differences between two risk groups were observed when examining immune cell infiltration, immune checkpoint molecules, somatic gene alterations and half-inhibitory concentration of anticancer drug. CONCLUSIONS The 5-NRLs signature is a novel and valuable tool for evaluating the prognosis of CC patients, providing clinicians with an informed decision-making framework to formulate tailored treatment plans for their patients.
Collapse
Affiliation(s)
- Xiaoyu Kong
- School of Public Health, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, People's Republic of China.
| |
Collapse
|
16
|
Xing X, Tian Y, Jin X. Immune infiltration and a necroptosis-related gene signature for predicting the prognosis of patients with cervical cancer. Front Genet 2023; 13:1061107. [PMID: 36685937 PMCID: PMC9852722 DOI: 10.3389/fgene.2022.1061107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Cervical cancer (CC), the fourth most common cancer among women worldwide, has high morbidity and mortality. Necroptosis is a newly discovered form of cell death that plays an important role in cancer development, progression, and metastasis. However, the expression of necroptosis-related genes (NRGs) in CC and their relationship with CC prognosis remain unclear. Therefore, we screened the signature NRGs in CC and constructed a risk prognostic model. Methods: We downloaded gene data and clinical information of patients with cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) from The Cancer Genome Atlas (TCGA) database. We performed functional enrichment analysis on the differentially expressed NRGs (DENRGs). We constructed prognostic models and evaluated them by Cox and LASSO regressions for DENRGs, and validated them using the International Cancer Genome Consortium (ICGC) dataset. We used the obtained risk score to classify patients into high- and low-risk groups. We employed the ESTIMATE and single sample gene set enrichment analysis (ssGSEA) algorithms to explore the relationship between the risk score and the clinical phenotype and the tumor immune microenvironment. Results: With LASSO regression, we established a prognostic model of CC including 16 signature DENRGs (TMP3, CHMP4C, EEF1A1, FASN, TNF, S100A10, IL1A, H1.2, SLC25A5, GLTP, IFNG, H2AC13, TUBB4B, AKNA, TYK2, and H1.5). The risk score was associated with poor prognosis in CC. Survival was lower in the high-risk group than the low-risk group. The nomogram based on the risk score, T stage, and N stage showed good prognostic predictive power. We found significant differences in immune scores, immune infiltration analysis, and immune checkpoints between the high- and low-risk groups (p < 0.05). Conclusion: We screened for DENRGs based on the TCGA database by using bioinformatics methods, and constructed prognostic models based on the signature DENRGs, which we confirmed as possibly having important biological functions in CC. Our study provides a new perspective on CC prognosis and immunity, and offers a series of new targets for future treatment.
Collapse
Affiliation(s)
- Xuewei Xing
- The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, China,Department of Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanan Tian
- Postgraduate Union Training Base of Jinzhou Medical University, Xiangyang No 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China,Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xuan Jin
- Department of Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Xuan Jin,
| |
Collapse
|
17
|
Du X, Pu X, Wang X, Zhang Y, Jiang T, Ge Y, Zhu H. A novel necroptosis-related lncRNA based signature predicts prognosis and response to treatment in cervical cancer. Front Genet 2022; 13:938250. [PMID: 36561319 PMCID: PMC9763697 DOI: 10.3389/fgene.2022.938250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Necroptosis has been demonstrated to play a crucial role in the prognosis prediction and assessment of treatment outcome in cancers, including cervical cancer. The purpose of this study was to explore the potential prognostic value of necroptosis-related lncRNAs and their relationship with immune microenvironment and response to treatment in cervical cancer. Methods: Data from The Cancer Genome Atlas (TCGA) were collected to obtain synthetic data matrices. Necroptosis-related lncRNAs were identified by Pearson Correlation analysis. Univariate Cox and multivariate Cox regression analysis and Lasso regression were used to construct a necroptosis-related LncRNAs signature. Kaplan-Meier analysis, univariate and multivariate Cox regression analyses, receiver operating characteristic (ROC) curve, nomogram, and calibration curves analysis were performed to validate this signature. Gene set enrichment analyses (GSEA), immunoassays, and the half-maximal inhibitory concentration (IC50) were also analyzed. Results: Initially, 119 necroptosis-related lncRNAs were identified based on necroptosis-related genes and differentially expressed lncRNAs between normal and cervical cancer samples. Then, a prognostic risk signature consisting of five necroptosis-related lncRNAs (DDN-AS1, DLEU1, RGS5, RUSC1-AS1, TMPO-AS1) was established by Cox regression analysis, and LASSO regression techniques. Based on this signature, patients with cervical cancer were classified into a low- or high-risk group. Cox regression confirmed this signature as an independent prognostic predictor with an AUC value of 0.789 for predicting 1-year OS. A nomogram including signature, age, and TNM stage grade was then established, and showed an AUC of 0.82 for predicting 1-year OS. Moreover, GSEA analysis showed that immune-related pathways were enriched in the low-risk group; immunoassays showed that most immune cells, ESTIMAT scores and immune scores were negatively correlated with risk score and that the expression of immune checkpoint-proteins (CD27, CD48, CD200, and TNFRSF14) were higher in the low-risk group. In addition, patients in the low-risk group were more sensitive to Rucaparib, Navitoclax and Crizotinib than those in the high-risk group. Conclusion: We established a novel necroptosis-related lncRNA based signature to predict prognosis, tumor microenvironment and response to treatment in cervical cancer. Our study provides clues to tailor prognosis prediction and individualized immunization/targeted therapy strategies.
Collapse
|
18
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
19
|
Zheng J, Cai X, Zhang Y, Wang H, Liu L, Tang F, Liu L, Sun Y. A comprehensive pan-cancer analysis of necroptosis molecules in four gynecologic cancers. BMC Cancer 2022; 22:1160. [DOI: 10.1186/s12885-022-10166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
In recent years, it has been proved that necroptosis plays an important role in the occurrence, development, invasion, metastasis and drug resistance of malignant tumors. Hence, further evaluation and targeting of necroptosis may be of clinical benefit for gynecologic cancers (GCs).
Methods
To compare consistency and difference, we explored the expression pattern and prognostic value of necroptosis-related genes (NRGs) in pan-GC analysis through Linear regression and Empirical Bayesian, Univariate Cox analysis, and public databases from TCGA and Genotype-Tissue Expression (GTEx), including CESC, OV, UCEC, and UCS. We explored the copy number variation (CNV), methylation level and enrichment pathways of NRGs in the four GCs. Based on LASSO Cox regression analysis or principal component analysis, we established the prognostic NRG-signature or necroptosis-score for the four GCs. In addition, we predicted and compared functional pathways, tumor mutational burden (TMB), somatic mutation features, immunity status, immunotherapy, chemotherapeutic drug sensitivity of the NRG-signature based on NRGs. We also examined the expression level of several NRGs in OV samples that we collected using Quantitative Real-time PCR.
Results
We confirmed the presence of NRGs in expression, prognosis, CNV, and methylation for four GCs, thus comparing the consistency and difference among the four GCs. The prognosis and independent prognostic value of the risk signatures based on NRGs were determined. Through the results of subclass mapping, we found that GC patients with lower risk score may be more sensitive to PDL1 response and more sensitive to immune checkpoint blockade therapy. Drug susceptibility analysis showed that, 51, 45, 64, and 29 drugs with differences between risk groups were yielded in CESC, OV, UCEC, and UCS respectively. For OV, the expression differences of several NRGs in the tissues we collected were similar to that in TCGA.
Conclusion
Our comprehensive analysis of NRGs and NRG-signature demonstrated their similarity and difference, as well as their potential roles in prognosis and could guide therapeutic strategies, thus improving the outcome of GC patients.
Collapse
|
20
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Zhang C, Liu N. Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol 2022; 13:920059. [PMID: 35958626 PMCID: PMC9361070 DOI: 10.3389/fimmu.2022.920059] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies that causes death in women and is a heterogeneous disease with complex molecular and genetic changes. Because of the relatively high recurrence rate of OC, it is crucial to understand the associated mechanisms of drug resistance and to discover potential target for rational targeted therapy. Cell death is a genetically determined process. Active and orderly cell death is prevalent during the development of living organisms and plays a critical role in regulating life homeostasis. Ferroptosis, a novel type of cell death discovered in recent years, is distinct from apoptosis and necrosis and is mainly caused by the imbalance between the production and degradation of intracellular lipid reactive oxygen species triggered by increased iron content. Necroptosis is a regulated non-cysteine protease–dependent programmed cell necrosis, morphologically exhibiting the same features as necrosis and occurring via a unique mechanism of programmed cell death different from the apoptotic signaling pathway. Pyroptosis is a form of programmed cell death that is characterized by the formation of membrane pores and subsequent cell lysis as well as release of pro-inflammatory cell contents mediated by the abscisin family. Studies have shown that ferroptosis, necroptosis, and pyroptosis are involved in the development and progression of a variety of diseases, including tumors. In this review, we summarized the recent advances in ferroptosis, necroptosis, and pyroptosis in the occurrence, development, and therapeutic potential of OC.
Collapse
|