1
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
2
|
D’Egidio F, Qosja E, Ammannito F, Topi S, d’Angelo M, Cimini A, Castelli V. Antioxidant and Anti-Inflammatory Defenses in Huntington's Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies. Life (Basel) 2025; 15:577. [PMID: 40283130 PMCID: PMC12028459 DOI: 10.3390/life15040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Huntington's disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the establishment of an intricate pathogenetic scenario in affected cells, particularly in HD neurons. Among the features of HD, oxidative stress plays a relevant role in the progression of the disease at the cellular level. Mitochondrial dysfunction, bioenergetic deficits, Reactive Oxygen Species (ROS) production, neuroinflammation, and general reduction of antioxidant levels are all involved in the promotion of a toxic oxidative environment, eventually causing cell death. Nonetheless, neuronal cells exert antioxidant molecules to build up defense mechanisms. Key components of these defensive mechanisms are the nuclear factor erythroid 2-related factor 2 (NRF2) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α). Thus, this review aims to describe the involvement of oxidative stress in HD by exploring the roles of NRF2 and PGC-1α, crucial actors in this play. Finally, antioxidant therapeutic strategies targeting such markers are discussed.
Collapse
Affiliation(s)
- Francesco D’Egidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (F.A.)
| | - Elvira Qosja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (E.Q.); (S.T.)
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (F.A.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (E.Q.); (S.T.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (F.A.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (F.A.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (F.A.)
| |
Collapse
|
3
|
Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and Structure-Activity Relationships of Harmine and Its Derivatives: A Review. Chem Biodivers 2025:e202402953. [PMID: 40024888 DOI: 10.1002/cbdv.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Natural products and their derivatives play a crucial role in treating various diseases. Harmine, a tricyclic β-carboline alkaloid isolated from the seeds of Peganum harmala L., has emerged as a promising therapeutic candidate owing to its multifaceted biological activities. Recent studies have further highlighted the enhanced therapeutic potential of harmine derivatives. To assess the current research landscape on harmine and its derivatives, we conducted a comprehensive analysis of studies published between 2019 and 2024 in scientific databases, such as PubMed, Web of Science, and Google Scholar. In this review, the possible applications of harmine and its derivatives were systematically illustrated, including biological activities, structure-activity relationships, and nanotechnology applications. Notably, the biological activities of harmine and its derivatives mainly contained antitumor, neuroprotective, antiparasitic, anti-inflammatory, and antidiabetic properties. In addition, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable. The aim of this review is to summarize the recent advancements in harmine and its derivatives research, analyze emerging trends, and explore their clinical value.
Collapse
Affiliation(s)
- Qian Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Cheng Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamin Qi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mingxing Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
4
|
Sharma V, Sharma P, Singh TG. Mechanistic insights on the role of Nrf-2 signalling in Huntington's disease. Neurol Sci 2025; 46:593-604. [PMID: 39392523 DOI: 10.1007/s10072-024-07802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder affecting individuals worldwide. It is characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. The pathogenesis of HD involves oxidative stress, neuroinflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor regulating cellular responses to redox imbalance and inflammation, has emerged as a potential target for therapeutic intervention. METHODS Through the use of a number of different search engines like Scopus, PubMed, Elsevier and Bentham, a literature review was carried out with the keywords 'Huntington's Disease, 'Pathology of HD' and 'Nrf2 signalling pathway'. Using the keywords that were given above, this review was carried out in order to collect the most recent publications and gain an understanding of the breadth of the extensive research that has been conducted on the role of Nrf2 in HD pathogenesis. RESULTS Oxidative stress and neuroinflammation significantly contribute to HD progression. Activation of Nrf2 offers neuroprotection by enhancing anti-oxidant defense mechanisms. Furthermore, several signaling pathways, play crucial roles in HD pathophysiology. Pharmacological modulation of these pathways through selective inhibitors or agonists shows promise for the development of new therapeutic strategies. CONCLUSION The various downstream pathways such as extracellular signal-related kinase (ERK), phosphoinositide 3-Kinase (PI3-K), 5'-AMP-activated protein kinase (AMPK), Sirtuins, Mitogen-activated protein kinases (MAPK) plays a role in alleviating pathophysiology of HD. Diverse reports of these studies demonstrated PI3-K/AMPK/ERK/Sirtuins activators and MAPK inhibitors as encouraging targets in alleviating HD pathophysiology.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
5
|
Gao L, Yang XN, Dong YX, Han YJ, Zhang XY, Zhou XL, Liu Y, Liu F, Fang JS, Ji JL, Gao ZR, Qin XM. The potential therapeutic strategy in combating neurodegenerative diseases: Focusing on natural products. Pharmacol Ther 2024; 264:108751. [PMID: 39522697 DOI: 10.1016/j.pharmthera.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington disease (HD), and Multiple sclerosis (MS), pose a significant global health challenge due to their intricate pathology and limited therapeutic interventions. Natural products represent invaluable reservoirs for combating these neurodegenerative diseases by targeting key pathological hallmarks such as protein aggregation, synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, inflammation, and neuronal cell death. This review provides an in-depth analysis of the mechanisms and therapeutic targets of natural products for their neuroprotective effects. Furthermore, it elucidates the current progress of clinical trials investigating the potential of natural products in delaying neurodegeneration. The objective of this review is to enhance the comprehension of natural products in the prevention and treatment of neurodegenerative diseases, offering new insights and potential avenues for future pharmaceutical research.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xi-Na Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Yi-Xiao Dong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Yi-Jia Han
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xin-Yue Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xin-Le Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Ying Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Fang Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Jian-Song Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian-Long Ji
- College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China.
| | - Zheng-Run Gao
- Songjiang Research Institute, Songjiang Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| |
Collapse
|
6
|
Jakkamsetti MS, Kolusu AS, Rongala S, Arakareddy BP, Nori LP, Samudrala PK. Saroglitazar, a PPAR α/γ agonist alleviates 3-Nitropropionic acid induced neurotoxicity in rats: Unveiling the underlying mechanisms. Neurotoxicology 2024; 105:131-146. [PMID: 39326639 DOI: 10.1016/j.neuro.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Saroglitazar (SGZ), a peroxisomal proliferated activated receptor α/γ agonist showed neuroprotective effects in various neurodegenerative disorders like Alzheimer's and Parkinson's. However, no studies were performed on Huntington's, so the goal of the current study is to examine the effect of SGZ on Huntington's disease like symptoms induced by 3-Nitropropionic acid. In this protocol, twenty-four rats were divided into four groups, each group consisting of 6 animals. Group 1: The control group received 1 % CMC 10 mg/kg, p.o. for 14 days. Groups 2, 3, and 4 received 3-NP 15 mg/kg, i.p. from Day 1 to Day 7. Groups 3 and 4 received SGZ 5 mg/kg, p.o. and 10 mg/kg, p.o. respectively once daily from day 1 to day 14. Various behavioral tests like OFT, rotarod, hanging wire, narrow beam walk, MWM, and Y-maze were performed. On day-15, the animals were euthanised by cervical dislocation and brain sample were isolated for biochemical and histopathological analysis. Administration of 3-NP showed a significant decrease in motor coordination and cognitive function. Furthermore, 3-NP altered the activity of acetylcholinesterase, anti-oxidant enzymes, Nrf-2, NF-κB, BDNF, CREB levels, and histological features. However, treatment with SGZ showed ameliorative effects in the 3-NP induced neurotoxicity via PPAR α/γ pathway by reducing motor dysfunction, memory impairment, cholinesterase levels, oxidative stress, neuroinflammation. It also enhanced the levels of Nrf-2, BDNF, and CREB expression and improved histological features. In conclusion, treatment with Saroglitazar attenuated Huntington's disease-like symptoms in rats which are induced by 3-NP via activation of PPAR α/γ pathway.
Collapse
Affiliation(s)
- Madhuri Suma Jakkamsetti
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Suma Rongala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Bhanu Prakash Arakareddy
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Lakshmi Prashanthi Nori
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India.
| |
Collapse
|
7
|
Kadyan P, Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol Rep 2024; 76:665-678. [PMID: 38758470 DOI: 10.1007/s43440-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson's disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic β-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
8
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Makhdoomi S, Fadaiie A, Mohammadi M, Ranjbar A, Haddadi R. Quercetin's Restorative Properties in Male Mice with 3-Nitropropionic Acid-induced Huntington-like Symptoms: Molecular Docking, Behavioral, and Biochemical Assessment. Cell Biochem Biophys 2024; 82:1489-1502. [PMID: 38760648 DOI: 10.1007/s12013-024-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
The neurotoxicity of 3-Nitropropionic acid (3-NP) is well known. Herein, the prophylactic versus therapeutic effects of quercetin (QCT) were investigated against 3-NP-induced behavioral anomalies and oxidative neural damage. Thirty male mice were assigned into five groups; the negative control group, the QCT group (25 mg/kg/day, p.o. for 21 days), the 3-NP group (17 days), the prophylactic group (QCT administration for 14 consecutive days, and then 3-NP was administrated), the therapeutic group (3-NP was administrated and then QCT for 21 days). At the end of the animal treatment, behavioral studies were assessed. Subsequently, the brain sample tissues were assessed for oxidative stress-related parameters and histological evaluation. Moreover, the potential interaction between 3-NP and tumor necrosis factor-alpha (TNF-α) was evaluated by using a molecular docking study. 3-NP markedly led to neurotoxicity which was indicated by behavioral deficits (motor behavior, depression-like behavior, memory dysfunction, and passive avoidance) and oxidative damage. Blind and targeted molecular docking results showed good interaction between 3-NP and TNF-α. However, the prophylactic effects of QCT were superior to the therapeutic effects for attenuating 3-NP-induced neurobehavioral and oxidative neural changes in experimental mice, which histological changes of the brain's striatum region approved our findings. Taken together, the antioxidant activity of QCT remarkably could attenuate 3-NP-induced neurobehavioral deficits and mitochondrial dysfunctions in mice.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plant and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Tabaa MME, Tabaa MME, Rashad E, Elballal MS, Elazazy O. Harmine alleviated STZ-induced rat diabetic nephropathy: A potential role via regulating AMPK/Nrf2 pathway and deactivating ataxia-telangiectasia mutated (ATM) signaling. Int Immunopharmacol 2024; 132:111954. [PMID: 38554444 DOI: 10.1016/j.intimp.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow: CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3β levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | | | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
12
|
Hamouda HA, Sayed RH, Eid NI, El-Sayeh BM. Azilsartan Attenuates 3-Nitropropinoic Acid-Induced Neurotoxicity in Rats: The Role of IĸB/NF-ĸB and KEAP1/Nrf2 Signaling Pathways. Neurochem Res 2024; 49:1017-1033. [PMID: 38184805 PMCID: PMC10901959 DOI: 10.1007/s11064-023-04083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. Injection of 3-nitropropionic acid (3-NP) is a widely used experimental model for induction of HD. The current study aimed to inspect the potential neuroprotective properties of azilsartan (Azil), an angiotensin II type 1 receptor blocker (ATR1), in 3-NP-induced striatal neurotoxicity in rats. Rats were randomly allocated into five groups and treated for 14 days as follows: group I received normal saline; group II received Azil (10 mg/kg, p.o.); group III received 3-NP (10 mg/kg, i.p); group IV and V received Azil (5 or 10 mg/kg, p.o, respectively) 1 h prior to 3-NP injection. Both doses of Azil markedly attenuated motor and behavioural dysfunction as well as striatal histopathological alterations caused by 3-NP. In addition, Azil balanced striatal neurotransmitters levels as evidenced by the increase of striatal gamma-aminobutyric acid content and the decrease of glutamate content. Azil also amended neuroinflammation and oxidative stress via modulating IĸB/NF-ĸB and KEAP1/Nrf2 downstream signalling pathways, as well as reducing iNOS and COX2 levels. Moreover, Azil demonstrated an anti-apoptotic activity by reducing caspase-3 level and BAX/BCL2 ratio. In conclusion, the present study reveals the neuroprotective potential of Azil in 3-NP-induced behavioural, histopathological and biochemical changes in rats. These findings might be attributed to inhibition of ATR1/NF-κB signalling, modulation of Nrf2/KEAP1 signalling, anti-inflammatory, anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hend A Hamouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
- School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Nihad I Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
13
|
Raafat RS, Habib MZ, AbdElfattah AA, Olama NK, Abdelraouf SM, Hendawy N, Kamal KA, Nawishy SA, Aboul-Fotouh S. Amisulpride attenuates 5-fluorouracil-induced cognitive deficits via modulating hippocampal Wnt/GSK-3β/β-catenin signaling in Wistar rats. Int Immunopharmacol 2023; 124:110945. [PMID: 37716161 DOI: 10.1016/j.intimp.2023.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a general term describing cognitive dysfunction during/after treatment with chemotherapeutic agents. CICI represents a significant medical problem due to its increasing prevalence with the lack of robust therapeutic approaches. This study aimed at investigating the effects of chronic treatment with amisulpride (5 mg/kg/day) in the management of 5-fluorouracil (5-FU)-induced cognitive deficits in Wistar rats. Rats received 5 intraperitoneal injections of 5-FU (25 mg/kg every 3 days). 5-FU treatment induced impairments in spatial learning (reduction in object location discrimination ratio) and non-spatial learning (reduction in novel object recognition discrimination ratio). Moreover, 5-FU induced a decrease in the activity of the Wnt/GSK-3β/β-catenin pathway with a decrease in brain-derived neurotrophic factor (BDNF) level in the hippocampus. These changes were associated with an increase in the expression of the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in hippocampal tissue sections accompanied by a decrease in the number of Ki-67 positive cells (indicating a decrease in proliferative capacity), a decrease in the Nissl's granules optical density (denoting neurodegeneration), a decrease in the number of viable intact neurons with an increase in the expression of β-amyloid and caspase-3. Amisulpride enhanced Wnt/GSK-3β/β-catenin signaling, increased BDNF levels, and abrogated 5-FU-induced neuroinflammation, apoptosis, β-amyloid accumulation, and neurodegenerative changes with an improvement of cognitive performance. This study draws attention to the pro-cognitive effects of amisulpride in 5-FU-exposed rats that could be attributed to enhancing hippocampal Wnt/GSK-3β/β-catenin signaling pathway, and this could offer a promising therapeutic option for subjects with CICI.
Collapse
Affiliation(s)
- Radwa S Raafat
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, King Salman International University, El-Tor, South Sinai, Egypt.
| | - Amany A AbdElfattah
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt; Faculty of Medicine, King Salman International University, El-Tor, South Sinai, Egypt
| | - Nouran K Olama
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar M Abdelraouf
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nevien Hendawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| | - Khaled A Kamal
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Salwa A Nawishy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Habib MZ, Elnahas EM, Aboul-Ela YM, Ebeid MA, Tarek M, Sadek DR, Negm EA, Abdelhakam DA, Aboul-Fotouh S. Risperidone impedes glutamate excitotoxicity in a valproic acid rat model of autism: Role of ADAR2 in AMPA GluA2 RNA editing. Eur J Pharmacol 2023; 955:175916. [PMID: 37460052 DOI: 10.1016/j.ejphar.2023.175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Several reports indicate a plausible role of calcium (Ca2+) permeable AMPA glutamate receptors (with RNA hypo-editing at the GluA2 Q/R site) and the subsequent excitotoxicity-mediated neuronal death in the pathogenesis of a wide array of neurological disorders including autism spectrum disorder (ASD). This study was designed to examine the effects of chronic risperidone treatment on the expression of adenosine deaminase acting on RNA 2 (Adar2), the status of AMPA glutamate receptor GluA2 editing, and its effects on oxidative/nitrosative stress and excitotoxicity-mediated neuronal death in the prenatal valproic acid (VPA) rat model of ASD. Prenatal VPA exposure was associated with autistic-like behaviors accompanied by an increase in the apoptotic marker "caspase-3" and a decrease in the antiapoptotic marker "BCL2" alongside a reduction in the Adar2 relative gene expression and an increase in GluA2 Q:R ratio in the hippocampus and the prefrontal cortex. Risperidone, at doses of 1 and 3 mg, improved the VPA-induced behavioral deficits and enhanced the Adar2 relative gene expression and the subsequent GluA2 subunit editing. This was reflected on the cellular level where risperidone impeded VPA-induced oxidative/nitrosative stress and neurodegenerative changes. In conclusion, the present study confirms a possible role for Adar2 downregulation and the subsequent hypo-editing of the GluA2 subunit in the pathophysiology of the prenatal VPA rat model of autism and highlights the favorable effect of risperidone on reversing the RNA editing machinery deficits, giving insights into a new possible mechanism of risperidone in autism.
Collapse
Affiliation(s)
- Mohamed Z Habib
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Esraa M Elnahas
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M Aboul-Ela
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai A Ebeid
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Tarek
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa R Sadek
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Negm
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina A Abdelhakam
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023; 11:biomedicines11030912. [PMID: 36979889 PMCID: PMC10046345 DOI: 10.3390/biomedicines11030912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1β in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1β decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).
Collapse
Affiliation(s)
- Simon K. P. Schmich
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Jan Keck
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Gabriel A. Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Mirjam Bertoune
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Anna Adam
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Beate Wilhelm
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-2864042; Fax: +49-6421-2868983
| |
Collapse
|
16
|
Zhang G, Govindasamy C, Subramaniyan Sivakumar A, Hasan Hussein-Al-Ali S, Wu J. Protective Effects of Harmine on Monosodium Iodoacetate-induced Osteoarthritis in Rats: In vitro and In vivo Studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
17
|
Zohny SM, Habib MZ, Mohamad MI, Elayat WM, Elhossiny RM, El-Salam MFA, Hassan GAM, Aboul-Fotouh S. Memantine/Aripiprazole Combination Alleviates Cognitive Dysfunction in Valproic Acid Rat Model of Autism: Hippocampal CREB/BDNF Signaling and Glutamate Homeostasis. Neurotherapeutics 2023; 20:464-483. [PMID: 36918475 PMCID: PMC10121975 DOI: 10.1007/s13311-023-01360-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Significant efforts are increasingly directed towards identifying novel therapeutic targets for autism spectrum disorder (ASD) with a rising role of aberrant glutamatergic transmission in the pathogenesis of ASD-associated cellular and behavioral deficits. This study aimed at investigating the role of chronic memantine (20 mg/kg/day) and aripiprazole (3 mg/kg/day) combination therapy in the management of prenatal sodium valproate (VPA)-induced autistic-like/cognitive deficits in male Wistar rats. Pregnant female rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like behaviors in their offspring. Prenatal VPA induced autistic-like symptoms (decreased social interaction and the appearance of stereotyped behavior) with deficits in spatial learning (in Morris water maze) and cognitive flexibility (in the attentional set-shifting task) in addition to decreased hippocampal protein levels of phosphorylated cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and gene expression of glutamate transporter-1 (Glt-1) with a decline in GABA/glutamate ratio (both measured by HPLC). These were accompanied by the appearance of numerous neurofibrillary tangles (NFTs) with enhanced apoptosis in hippocampal sections. Memantine/aripiprazole combination increased the protein levels of p-CREB, BDNF, and Glt-1 gene expression with restoration of GABA/glutamate balance, attenuation of VPA-induced neurodegenerative changes and autistic-like symptoms, and improvement of cognitive performance. This study draws attention to the favorable cognitive effects of memantine/aripiprazole combination in autistic subjects which could be mediated via enhancing CREB/BDNF signaling with increased expression of astrocytic Glt-1 and restoration of GABA/glutamate balance, leading to inhibition of hippocampal NFTs formation and neuronal apoptosis.
Collapse
Affiliation(s)
- Sohir M Zohny
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Ghada A M Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Al Galala, Egypt
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
19
|
Dai P, Chen S, Wang M, Ma H, Liu F, Lin C, Zhu C. β-Carboline alkaloids from Picrasma quassioides and their 3D-QSAR study on anti-inflammation in LPS-induced RAW 264.7 cells. Fitoterapia 2023; 166:105437. [PMID: 36693439 DOI: 10.1016/j.fitote.2023.105437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Two new β-carboline alkaloids (1-2), 1-pyrrolidone propionyl-β-carboline (1) and 1-(3-hydroxy-2-oxopiperidine-1-ethyl)-4,8-dimethoxyl-β-carboline (2), named kumujantine W and J respectively, together with ten known compounds (3-12) were isolated from the stems of Picrasma quassioides (D. Don) Benn. Their structures were elucidated from spectral data including 1D and 2D NMR, UV, IR, HR-ESI-MS spectroscopic analysis and ECD calculations as well as by comparison to the reference databases or literature. The anti-inflammatory effects of these alkaloids (1-12) and six other β-carboline alkaloids (13-18) in LPS-induced RAW 264.7 cells were evaluated by measuring nitric oxide (NO) concentrations. Among them, compounds 1, 3, 6, 15, and 17 could inhibit the secretion of NO, displaying significant anti-inflammatory activity without affecting cell viability in vitro, and 3D-QSAR analysis further revealed the influence of groups on the activity in β-carboline alkaloids.
Collapse
Affiliation(s)
- Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Huanhuan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
21
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Liu M, Dai Y, Song C, Wang J, Liu Y, Wang Q. Structural Characterization of a Pleurotus sajor-caju Polysaccharide and Its Neuroprotection Related to the Inhibition of Oxidative Stress. Nutrients 2022; 14:nu14194047. [PMID: 36235700 PMCID: PMC9573675 DOI: 10.3390/nu14194047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
A novel polysaccharide PSP2-1 was isolated and purified from Pleurotus sajor-caju. The structural characterization data displayed that the molecular weight of PSP2-1 was 44.9 kDa, and PSP2-1 consisted of fucose, galactose, glucose, and mannose. The methylation results showed that the glycosidic bonds of PSP2-1 included T-Fuc, 1,6-Gal, T-Glc, 1,6-Glc, 1,3,6-Glc, 1,3-Man, 1,2,6-Man, and T-Man. Neuroprotective studies indicated that PSP2-1 significantly improved the cell viability of the H2O2-induced oxidatively damaged neuronal cell HT22, reduced the release of LDH, inhibited apoptosis and release of cytochrome c, and alleviated the decline of mitochondrial membrane potential and ROS accumulation. Furthermore, PSP2-1 decreased the phosphorylation levels of cleaved PARP and cleaved caspase-3, and increased the ratio of bcl-2/bax. Additionally, PSP2-1 could inhibit the phosphorylation of MAPK family members including JNK, p38, and Erk. Finally, animal experiments showed that PSP2-1 could improve the oxidative stress injury and the learning and memory ability of mice with aging induced by D-galactose. Our results confirmed that PSP2-1 significantly ameliorated the oxidative stress injury, inhibited the apoptosis in H2O2-induced neuronal cells via MAPK pathway, and also improved cognition in mice with aging induced by D-galactose. Our research gives the foundation for the functional food application of P. sajor-caju polysaccharides in the future.
Collapse
Affiliation(s)
- Mengdi Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chengming Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jia Wang
- Guang’anmen Hospital China Academy of Chinese Medical Sciences Respiratory Department, Beijing 100053, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| |
Collapse
|