1
|
Wang H, Peng LJ, Lu W, Li GR, Zhao PT, Lv X, Dong MQ, Liu ML. Acacetin reverses hypoxic pulmonary hypertension by inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells via SIRT1-HMGB1 pathway. Eur J Pharmacol 2025; 998:177650. [PMID: 40258398 DOI: 10.1016/j.ejphar.2025.177650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary arterial pressure and vascular remodeling. The present study is to investigate the efficacy of acacetin on HPH and its potential molecular mechanism. C57/BL6 mice were exposed to hypobaric hypoxia for six weeks. At 4th week of hypoxia exposure, mice were administrated with the water-soluble prodrug of acacetin (5, 10, 20 mg/kg) or equivalent normal saline for another two weeks. The haemodynamic and pathohistological assessment were performed. Primary pulmonary artery smooth muscle cells (PASMCs) were cultured to examine the anti-proliferation efficacy of acacetin (0.3-3 μM). The activity and expression of sirtuin1 (SIRT1) acetylation and distribution of high-mobility group box 1 (HMGB1) were determined in lungs and/or cultured PASMCs with or without RNA interference of SIRT1. Macromolecular docking and molecular dynamics simulation were done to explore the potential binding between acacetin and SIRT1. Results showed that acacetin prodrug significantly reversed the increased pulmonary pressure and vascular remodeling in HPH mice, which is associated with inhibiting the reduction in SIRT1 and the increase in HMGB1, and inhibiting the nucleocytoplasmic translocation of HMGB1. In cultured PASMCs, acacetin inhibited the hyper-proliferation induced by hypoxia, reversed the SIRT1 reduction and inhibited the nucleocytoplasmic translocation of HMGB1 and HMGB1 increase. Silencing SIRT1 abolished all the beneficial effects of acacetin. These results demonstrate that acacetin is very effective in reversing HPH by inhibiting PASMC hyper-proliferation via regulating SIRT1-HMGB1 signaling, suggesting that acacetin is likely a promising drug candidate for treating patients with HPH.
Collapse
Affiliation(s)
- Hui Wang
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611137, China
| | - Li-Jing Peng
- Department of Cardiology, 986th Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China
| | - Wang Lu
- Endoscopic Center, Xi'an Chest Hospital, Xi'an, Shaanxi, 710100, China
| | - Gui-Rong Li
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, 210032, China
| | - Peng-Tao Zhao
- School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xing Lv
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ming-Qing Dong
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China.
| | - Man-Ling Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Zhao Y, Li Z, Ma H, Pan Z, Cai B, Zhang C, Jiao J. METTL3-Mediated m 6A mRNA Modification Facilitates Neointimal Hyperplasia in Arteriovenous Fistula. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401375 DOI: 10.1161/atvbaha.124.321014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis in patients with end-stage renal disease, yet its long-term patency is threatened by neointimal hyperplasia (NIH). N6-methyladenosine, a prevalent RNA modification catalyzed by METTL3 (methyltransferase-like 3), plays a regulatory role in cardiovascular remodeling. Our previous studies found that N6-methyladenosine methyltransferase METTL3 mediated cardiomyocyte proliferation and heart repair after myocardial ischemia. However, its impact on AVF-related NIH remains unclear. METHODS We examined m6A levels and METTL3 expression in human and murine AVF tissues. Using smooth muscle cell-specific METTL3 conditional knockout and METTL3-overexpressing (adeno-associated virus-METTL3) mouse models, we evaluated NIH formation. In vitro, we analyzed vascular smooth muscle cell proliferation, migration, phenotypic switching, and ferroptosis. m6A epitranscriptomic microarray and RNA stability assays were used to explore downstream targets and mechanisms. RESULTS METTL3 was significantly upregulated in AVF tissues and vascular smooth muscle cells undergoing dedifferentiation. METTL3 deletion attenuated, while overexpression exacerbated, NIH in vivo. METTL3 enhanced vascular smooth muscle cell proliferation, migration, and phenotypic switching, while suppressing ferroptosis. Mechanistically, METTL3 increased m6A modification of SLC7A11 (solute carrier family 7 member 11) mRNA, stabilized its transcript, and promoted translation via recruitment of the m6A reader YTHDF1 (YTH N6-methyladenosine RNA-binding protein 1). Silencing SLC7A11 or YTHDF1 abrogated METTL3-induced phenotypic changes and ferroptosis resistance. CONCLUSIONS The METTL3-YTHDF1-SLC7A11 axis facilitates AVF NIH by regulating vascular smooth muscle cell dedifferentiation and ferroptosis. These findings uncover a novel epitranscriptional mechanism and suggest a potential therapeutic target for AVF stenosis.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Zhaozheng Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Huimin Ma
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Zhenwei Pan
- Harbin Medical University, China. (Z.P., B.C.)
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Department of Clinical Pharmacology (the Heilongjiang Key Laboratory of Drug Research) (B.C.)
- Harbin Medical University, China. (Z.P., B.C.)
| | - Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
- Institute of Nephrology, Harbin Medical University, China (J.J.)
| |
Collapse
|
3
|
Li M, Hao Y, Song X, Liu H, Zhang C, Zhang J, Sun H, Zheng X, Zhang L, Yu H, Ma C, Zhao X, Zhu D. ca-circSCN8A Promotes HPASMCs Ferroptosis via LLPS Initiated R-Loop. Hypertension 2025. [PMID: 40384439 DOI: 10.1161/hypertensionaha.125.25036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Ferroptosis has been implicated in pulmonary hypertension (PH), and chromatin-associated RNAs are increasingly recognized as key regulators of this process. However, the detailed mechanism remains unexplored. METHODS Bioinformatics, Sanger sequencing, and RNase R digestion were used to identify the upregulation of ca-circSCN8A. Functional gain and loss assays were used to unveil the role of ca-circSCN8A in hypoxic redox-dependent ferroptosis in human pulmonary arterial smooth muscle cells and a PH mice model. Interaction between ca-circSCN8A and FUS was detected via RNA immunoprecipitation and pull-down assays. Fluorescence recovery after photobleaching, ChIRP-qPCR, malondialdehyde, reduced glutathione, and glutathione were conducted to explore the potential molecular mechanism. RESULTS ca-circSCN8A was identified and confirmed to be upregulated in PH. Its overexpression promoted hypoxia-induced ferroptosis in human pulmonary arterial smooth muscle cells. Under hypoxic conditions, ca-circSCN8A recruited EP300 to facilitate the lactylation of FUS, triggering the formation of a ca-circSCN8A/FUS/EP300 complex via liquid-liquid phase separation. Liquid-liquid phase separation maintained the stability of the R-loop formed by ca-circSCN8A and ferroptosis-related gene SLC7A11 (solute carrier family 7 member 11) promoter that inhibits its transcription, further result in the disruption of the redox homeostasis and causing ferroptosis in human pulmonary arterial smooth muscle cells. CONCLUSIONS ca-circSCN8A recruits EP300 to promote the lactylation of FUS, thereby driving liquid-liquid phase separation-mediated complex formation with FUS and EP300. This process enables ca-circSCN8A to form an R-loop with the nonhost SLC7A11 promoter, contributing to the regulation of hypoxia-induced ferroptosis in human pulmonary arterial smooth muscle cells. This study provides the first evidence that circRNAs can form R-loops with nonhost genes in a liquid-liquid phase separation-dependent manner. Our findings highlight ca-circSCN8A as a crucial regulator of ferroptosis in hypoxic PH and a potential therapeutic target for PH.
Collapse
Affiliation(s)
- Mengnan Li
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- College of Basic Medical, Harbin Medical University, PR China. (M.L., C.Z., J.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Yingying Hao
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Xinyue Song
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Huiyu Liu
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Chi Zhang
- College of Basic Medical, Harbin Medical University, PR China. (M.L., C.Z., J.Z.)
| | - Jiaqi Zhang
- College of Basic Medical, Harbin Medical University, PR China. (M.L., C.Z., J.Z.)
| | - Hanliang Sun
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Xiaodong Zheng
- Department of Genetic and Cell Biology, Harbin Medical University (Daqing), PR China (X. Zheng)
| | - Lixin Zhang
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Hang Yu
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Cui Ma
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Xijuan Zhao
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, PR China. (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
- Central Laboratory of Harbin Medical University (Daqing), PR China (M.L., Y.H., X.S., H.L., H.S., L.Z., H.Y., C.M., X. Zhao, D.Z.)
| |
Collapse
|
4
|
Chen J, Jiang C, Hu X, Zhang Y, Gao X, Guo X, Jin H, Zhang Y, Wu Y, Liang J, Liu P, Liu P. Mechanism of pulmonary arterial vascular cell dysfunction in pulmonary hypertension in broiler chickens. Avian Pathol 2025:1-12. [PMID: 40272452 DOI: 10.1080/03079457.2025.2480802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Broiler ascites syndrome is a common and complex disease in broiler farming, which severely impacts broiler growth performance and health and brings huge economic losses to the breeding industry. Hypoxia has been shown to be an important cause of this disease. Prolonged exposure of broiler chickens to a hypoxic environment induces pulmonary vasoconstriction, which leads to an increase in pulmonary artery pressure, triggering pulmonary artery remodelling and compensatory right ventricular hypertrophy, and ultimately ascites. Pulmonary artery remodelling is a process in which the vascular wall tissue structure and function undergo pathological changes after the pulmonary artery is stimulated by various injuries or hypoxia, including endothelial dysfunction, abnormal proliferation of pulmonary artery smooth muscle cells, vascular fibrosis, etc. When these cells are damaged or stimulated, they may undergo programmed cell death, an orderly and regulated mode of cell death that is important for maintaining the stability of the body's internal environment. It has been demonstrated that death modes such as apoptosis and autophagy are involved in the pathophysiologic process of pulmonary hypertension, but their specific molecular mechanisms are still unclear. In this review, we first describe the pathogenesis of broiler ascites, then describe the specific mechanism of dysfunction of pulmonary artery vascular cells in broiler ascites syndrome, and finally elaborate the progression of different programmed cell death in broiler pulmonary hypertension. This study aims to elucidate the specific mechanisms underlying the dysfunction of pulmonary artery vascular cells in broiler pulmonary hypertension, thereby enhancing our understanding of the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Juan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Chenxi Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoqin Hu
- Jiangxi Agricultural Engineering Vocational College, Zhangshu, Jiangxi, People's Republic of China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan, People's Republic of China
| | - Xiaona Gao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Huibo Jin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ying Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Yirong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Jing Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Pei Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ping Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| |
Collapse
|
5
|
Li J, Yang Y, Cui Z. Identification of shared important genes associated with ferroptosis across different etiologies of acute lung injury. Sci Rep 2025; 15:13561. [PMID: 40253492 PMCID: PMC12009320 DOI: 10.1038/s41598-025-98936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/15/2025] [Indexed: 04/21/2025] Open
Abstract
Acute lung injury (ALI) of different etiologies has shared pathophysiologic process, from which we speculated that ALI of different etiologies may share common molecular features. While the shared genetic characteristics of ALI remain unclear. In this paper, we aimed to identify shared ferroptosis-associated and bottleneck genes from acute lung injury of different etiologies. Firstly, we extracted five groups of gene sets related to three distinct models of ALI from the Gene Expression Omnibus (GEO) database. Then, through the utilization of weighted gene co-expression network analysis (WGCNA), we identified 3 significant gene modules and ascertained 7 shared co-expressed genes affected by these models. Subsequently, through the utilization of differential gene expression analysis and protein-protein interaction network analysis for the 3 gene modules, the shared bottleneck gene Slc7a11 was identified. Moreover, the 7 shared co-expressed genes subjected to these three ALI models were used to identify shared ferroptosis-associated genes via the FerrDb database. Finally, the key gene Slc7a11 was confirmed and validated. In addition, we observed that Slc7a11 is both a driver and a suppressor gene in the FerrDb database. Interestingly, we found the expression level of Slc7a11 was significantly upregulated in the three ALI models. Experimentally, we confirmed the expression of Slc7a11 in rat ALI tissues by using immunofluorescence staining and real-time polymerase chain reaction (qRT-PCR) assays. Collectively, our findings complement the exploration of the shared pathogenesis of ALI. There are genetic features shared by ALI of different etiology and the increased expression of Slc7a11 was identified in the three different etiologies of ALI, which can improve our understanding of the shared molecular mechanisms underlying ALI.
Collapse
Affiliation(s)
- Jing Li
- Department of Burns and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Emergency Surgery, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Yanming Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhengjun Cui
- Department of Burns and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
7
|
Yu K, Li X, Shi X, Li R, Zhang M. EEPD1 regulates inflammation and endothelial apoptosis in atherosclerosis through KLF4-EEPD1-ERK axis. Clin Transl Med 2025; 15:e70311. [PMID: 40268512 PMCID: PMC12017893 DOI: 10.1002/ctm2.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Inflammation and endothelial apoptosis are implicated in the advancement of atherosclerosis. EEPD1 holds a pivotal position in the repair of DNA damage and contributes to the progression of multiple cancers. However, the role of EEPD1 in cardiovascular diseases needs to be explored further, especially in atherosclerosis. METHODS We constructed EEPD1 and ApoE (apolipoprotein E)-deficient mice to assess how EEPD1 influences endothelial inflammation and apoptosis within atherosclerotic plaques. High-throughput RNA sequencing of human aortic endothelial cell groups treated with siCon+TNFα and siEEPD1+TNFα identified notable disparities in the MAPK pathway between groups. Chromatin immunoprecipitation and luciferase reporter assay confirmed that KLF4 directly regulates EEPD1. RESULTS Further examination of gene expression data revealed elevated EEPD1 concentrations in atherosclerotic plaques of patients, which findings were corroborated in the aortas of ApoE-/- mice. Present study demonstrated that adhesion molecule expression, endothelial apoptosis, aortic root plaques and macrophage accumulation were markedly ameliorated in EEPD1-/-ApoE-/- mice compared to WT ApoE-/- mice. Functional analysis revealed that increase in EEPD1 promotes ERK phosphorylation and significantly increases endothelial apoptosis and inflammation in atherosclerosis, which was abrogated by inhibition of ERK phosphorylation. We found KLF4 to be the transcription repressor of EEPD1 through luciferase assay and chromatin immunoprecipitation, and KLF4 inhibition abrogated the amelioration of endothelial apoptosis and inflammation caused by EEPD1 deletion. CONCLUSIONS Collectively, this study revealed that EEPD1 deletion can lead to amelioration of atherosclerosis through the KLF4-EEPD1-ERK axis. Hence, targeting EEPD1 could be a promising therapeutic strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Kaiwen Yu
- Department of CardiologyShanghai Jiao Tong University Affiliated Chest HospitalShanghaiChina
| | - Xiang Li
- Department of CardiologyShanghai Jiao Tong University Affiliated Chest HospitalShanghaiChina
| | - Xin Shi
- Department of CardiologyShanghai Jiao Tong University Affiliated Chest HospitalShanghaiChina
| | - Ruogu Li
- Department of CardiologyShanghai Jiao Tong University Affiliated Chest HospitalShanghaiChina
| | - Min Zhang
- Department of CardiologyShanghai Jiao Tong University Affiliated Chest HospitalShanghaiChina
| |
Collapse
|
8
|
Huang X, Yu W, Wei A, Wang X, Chen S. Beyond Tumors: The Pivotal Role of TRIM Proteins in Chronic Non-Tumor Lung Diseases. J Inflamm Res 2025; 18:1899-1910. [PMID: 39935527 PMCID: PMC11812559 DOI: 10.2147/jir.s499029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
While TRIM proteins are extensively studied in the context of lung tumors, their roles in non-tumor chronic lung diseases remain underexplored. This review delves into the emerging significance of TRIM family proteins in the pathogenesis of idiopathic pulmonary fibrosis (IPF), asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension (PH). TRIM proteins modulate key pathological processes, including inflammation, fibrosis, and cellular remodeling, contributing to disease progression. We highlight their potential as biomarkers and therapeutic targets, offering promising avenues for drug development in these debilitating respiratory disorders. However, the translation of these findings into clinical applications faces significant challenges. These include the dual functional nature of TRIM proteins, their context-dependent roles, the complexity of their downstream signaling networks, and the limitations of current therapeutic strategies in achieving tissue-specific targeting with minimal off-target effects. Addressing these challenges will require innovative approaches and interdisciplinary efforts to unlock the therapeutic potential of TRIM proteins in non-tumor chronic lung diseases.
Collapse
Affiliation(s)
- Xiangfei Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Wen Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Aiping Wei
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| |
Collapse
|
9
|
Jing C, Wu Y, Zhang Y, Zhu Z, Zhang Y, Liu Z, Sun D. Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases. Clin Epigenetics 2025; 17:4. [PMID: 39799367 PMCID: PMC11724467 DOI: 10.1186/s13148-024-01809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity. Ferroptosis has been detected in many cardiovascular diseases (CVDs), including coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and chemotherapy-induced myocardial damage. In cardiomyocytes, epigenetic regulation and post-translational modifications regulate the expression of ferroptosis-related factors, maintain iron homeostasis, and participate in the progression of CVDs. Currently, there is no detailed mechanism to explain the relationship between epigenetic regulation and ferroptosis in CVDs. In this review, we provide an initial summary of the core mechanisms of ferroptosis in cardiomyocytes, with first focus on the epigenetic regulation and expression of ferroptosis-related factors in the context of common cardiovascular diseases. We anticipate that the new insights into the pathogenesis of CVDs provided here will inspire the development of clinical interventions to specifically target the active sites of these factors, reducing the harmfulness of ferroptosis to human health.
Collapse
Affiliation(s)
- Chunlu Jing
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yong Zhang
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Zhen Liu
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China.
| |
Collapse
|
10
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Ge Q, Zhang T, Yu J, Lu X, Xiao S, Zhang T, Qing T, Xiao Z, Zeng L, Luo L. A new perspective on targeting pulmonary arterial hypertension: Programmed cell death pathways (Autophagy, Pyroptosis, Ferroptosis). Biomed Pharmacother 2024; 181:117706. [PMID: 39581144 DOI: 10.1016/j.biopha.2024.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease characterized by elevated pulmonary vascular resistance, progressive increases in pulmonary artery pressures, ultimately leading to right-sided heart failure, and potentially mortality. Pulmonary vascular remodeling is pivotal in PAH onset and progression. While targeted drug therapies have notably ameliorated PAH prognosis, current medications primarily focus on vascular vasodilation, with limited ability to reverse pulmonary vascular remodeling fundamentally, resulting in suboptimal patient prognoses. Cellular death in pulmonary vasculature, once thought to be confined to apoptosis and necrosis, has evolved with the identification of pyroptosis, autophagy, and ferroptosis, revealing their association with vascular injury in PAH. These novel forms of regulated cellular death impact reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, leading to pulmonary vascular cell loss, exacerbating vascular injury, and mediating adverse remodeling, inflammation, immune anomalies, and current emerging mechanisms (such as endothelial-mesenchymal transition, abnormal energy metabolism, and epigenetic regulation) in the pathogenesis of PAH. This review comprehensively delineates the roles of autophagy, pyroptosis, and ferroptosis in PAH, elucidating recent advances in their involvement and regulation of vascular injury. It juxtaposes their distinct functions in PAH and discusses the interplay of these programmed cell deaths in pulmonary vascular injury, highlighting the benefits of combined targeted therapies in mitigating pulmonary arterial hypertension-induced vascular injury, providing novel insights into targeted treatments for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Jiangbiao Yu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Xuelin Lu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Sijie Xiao
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Ting Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tao Qing
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China.
| |
Collapse
|
13
|
Liu C, Gan YH, Yong WJ, Xu HD, Li YC, Hu HM, Zhao ZZ, Qi YY. OTUB1 regulation of ferroptosis and the protective role of ferrostatin-1 in lupus nephritis. Cell Death Dis 2024; 15:791. [PMID: 39500879 PMCID: PMC11538433 DOI: 10.1038/s41419-024-07185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Lupus nephritis (LN) is a prevalent and severe manifestation of systemic lupus erythematosus (SLE), leading to significant morbidity and mortality. OTUB1, a deubiquitinating enzyme, has emerged as a potential therapeutic target due to its role in cellular protection and regulation of ferroptosis, a form of cell death linked to LN. Our study revealed significantly reduced OTUB1 expression in the glomeruli of LN patients and podocytes, correlated with disease severity. CRISPR/Cas9-mediated OTUB1 knockout in podocytes resulted in pronounced injury, indicated by decreased levels of nephrin and podocin. Ferrostatin-1 treatment effectively mitigated this injury, restoring SLC7A11 expression and significantly reducing MDA levels, Fe2+ levels, BODIPY C11 expression, and normalized cysteine and glutathione expression. In the MRL/lpr mouse model, Ferrostatin-1 significantly improved renal function decreased proteinuria, and ameliorated renal histopathological changes, including reduced glomerular endothelial swelling, mesangial cell proliferation, and leukocyte infiltration. These results underscore the protective role of Ferrostatin-1 in modulating the pathogenesis of LN. OTUB1 plays a crucial protective role against podocyte injury in LN by regulating ferroptosis. Ferrostatin-1 effectively mitigates podocyte damage induced by OTUB1 deficiency, suggesting that targeting ferroptosis could be a promising therapeutic strategy for LN.
Collapse
Affiliation(s)
- Chen Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yu-Hui Gan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Wei-Jing Yong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Hong-de Xu
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yong-Chun Li
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui-Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| |
Collapse
|
14
|
Liu A, Wang Y, Zheng S, Bao Z, Zhu H, Yin L, Liu C, Zhao X, Zhao Z, Zhu D, Yu H. Endonuclear Circ-calm4 regulates ferroptosis via a circR-Loop of the COMP gene in pulmonary artery smooth muscle cells. Eur J Pharmacol 2024; 982:176944. [PMID: 39187041 DOI: 10.1016/j.ejphar.2024.176944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Cartilage Oligomeric Matrix Protein/genetics
- Cartilage Oligomeric Matrix Protein/metabolism
- Cell Hypoxia/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Ferroptosis/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Aijing Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Yingqi Wang
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Shuang Zheng
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Zhitu Bao
- Department of Chest Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - He Zhu
- Department of Oncology, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Lulu Yin
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Chunmiao Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Xiaoxu Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Ziru Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), China; College of Pharmacy, Harbin Medical University, China.
| | - Hang Yu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China.
| |
Collapse
|
15
|
Yin Z, Zhang J, Shen Z, Qin J, Wan J, Wang M. Regulated vascular smooth muscle cell death in vascular diseases. Cell Prolif 2024; 57:e13688. [PMID: 38873710 PMCID: PMC11533065 DOI: 10.1111/cpr.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zican Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy Aging, Wuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
16
|
Yang C, Liu YH, Zheng HK. Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis. Sci Rep 2024; 14:25283. [PMID: 39455660 PMCID: PMC11511845 DOI: 10.1038/s41598-024-76514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with a poor prognosis, and metabolic abnormalities play a critical role in its development. This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH. In this study, plasma samples were collected from 17 patients diagnosed with idiopathic pulmonary arterial hypertension (IPAH) and 20 healthy controls. Plasma metabolomic profiling was performed by high-performance liquid chromatography-mass spectrometry. Gene profiles of PAH patients were obtained from the GEO database. Key differentially expressed metabolites (DEMs) and metabolism-related genes were subsequently identified using machine learning algorithms. Twenty differential plasma metabolites associated with IPAH were identified (VIP score > 1 and p < 0 0.05), and enrichment analysis revealed the arginine biosynthesis pathway as the most altered pathway. Using machine learning models, including least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM), we extracted key metabolites that correlated with clinical phenotypes. Our results suggested that five metabolites, kynurenine, homoserine, tryptophan, AMP, and spermine, are potential biomarkers for IPAH. Bioinformatics analysis also identified 3 metabolism-related genes, MAPK6, SLC7A11 and CDC42BPA, that are strongly correlated with pulmonary hypertension, demonstrating strong predictive power and clinical relevance. Our findings revealed some key genes associated with metabolism in PH, and provided crucial information about complex metabolic reprogramming signals and may lead to the identification of useful metabolic biomarkers for the diagnosis of PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Yi-Hang Liu
- Department of cardiology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, No.126, Xiantan Street, Changchun, 130033, China.
| |
Collapse
|
17
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
18
|
Wang E, Zhang B, Huang L, Li P, Han R, Zhou S, Zeng D, Wang R. LncRNA MIR210HG promotes phenotype switching of pulmonary arterial smooth muscle cells through autophagy-dependent ferroptosis pathway. Apoptosis 2024; 29:1648-1662. [PMID: 38635022 DOI: 10.1007/s10495-024-01963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.
Collapse
Affiliation(s)
- Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ling Huang
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei, 230001, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China.
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital, Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
19
|
Fan J, Gillespie KP, Mesaros C, Blair IA. HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1. Commun Biol 2024; 7:1234. [PMID: 39354146 PMCID: PMC11445383 DOI: 10.1038/s42003-024-06930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu. We previously showed that cisplatin-mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin-mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is required for the CRT translocation. Furthermore, CT-HMGB2 is three orders of magnitude more potent at inducing CRT translocation than oxaliplatin.
Collapse
Affiliation(s)
- Jingqi Fan
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin P Gillespie
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
21
|
Wang R, Wang R, Zhou S, Liu T, Dang J, Chen Q, Chen J, Wang Z. Ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension mediated by neural precursor cell-expressed developmentally down-regulated gene 4-Like. Respir Res 2024; 25:326. [PMID: 39210401 PMCID: PMC11363581 DOI: 10.1186/s12931-024-02953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES In this study, we investigated whether neural precursor cell-expressed developmentally down-regulated gene 4-like (NEDD4L) is the E3 enzyme of angiotensin-converting enzyme 2 (ACE2) and whether NEDD4L degrades ACE2 via ubiquitination, leading to the progression of pulmonary arterial hypertension (PAH). METHODS Bioinformatic analyses were used to explore the E3 ligase that ubiquitinates ACE2. Cultured pulmonary arterial smooth muscle cells (PASMCs) and specimens from patients with PAH were used to investigate the crosstalk between NEDD4L and ACE2 and its ubiquitination in the context of PAH. RESULTS The inhibition of ubiquitination attenuated hypoxia-induced proliferation of PASMCs. The levels of NEDD4L were increased, and those of ACE2 were decreased in lung tissues from patients with PAH and in PASMCs. NEDD4L, the E3 ligase of ACE2, inhibited the expression of ACE2 in PASMCs, possibly through ubiquitination-mediated degradation. PAH was associated with upregulation of NEDD4L expression and downregulation of ACE2 expression. CONCLUSIONS NEDD4L, the E3 ubiquitination enzyme of ACE2, promotes the proliferation of PASMCs, ultimately leading to PAH.
Collapse
Affiliation(s)
- Rui Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Rui Wang
- Department of Orthopedics, Xuzhou Central Hospital, 199 Jiefang South Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Drum Tower District, Nanjing, Jiangsu, China
| | - Tianya Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingjing Dang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Qianmin Chen
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingyu Chen
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Zhiping Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
22
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
23
|
Liu L, Zhang Y, Xu D, Zhu D, Zhou Y, Chen Z, Huang X. Overexpression of USP8 inhibits inflammation and ferroptosis in chronic obstructive pulmonary disease by regulating the OTUB1/SLC7A11 signaling pathway. Allergol Immunopathol (Madr) 2024; 52:60-67. [PMID: 38970266 DOI: 10.15586/aei.v52i4.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a familiar disease, and owns high morbidity and mortality, which critically damages the health of patients. Ubiquitin-specific peptidase 8 (USP8) is a pivotal protein to join in the regulation of some diseases. In a previous report, it was determined that USP8 expression is down-regulated in LPS-treated BEAS-2B cells, and USP8 restrains inflammatory response and accelerates cell viability. However, the regulatory roles of USP8 on ferroptosis in COPD are rarely reported, and the associated molecular mechanisms keep vague. OBJECTIVE To investigate the regulatory functions of USP8 in COPD progression. MATERIAL AND METHODS The lung functions were measured through the Buxco Fine Pointe Series Whole Body Plethysmography (WBP). The Fe level was tested through the Fe assay kit. The protein expressions were assessed through western blot. The levels of tumor necrosis -factor-α, interleukin 6, and interleukin 8 were evaluated through enzyme-linked immunosorbent serologic assay. Cell viability was tested through CCK-8 assay. RESULTS In this work, it was discovered that overexpression of USP8 improved lung function in COPD mice. In addition, overexpression of USP8 repressed ferroptosis by regulating glutathione peroxidase 4 and acyl-CoA synthetase long-chain family 4 expressions in COPD mice. Overexpression of USP8 suppressed inflammation in COPD mice. Furthermore, overexpression of USP8 suppressed ferroptosis in COPD cell model. At last, it was verified that overexpression of USP8 accelerated ubiquitin aldehyde-binding protein 1 (OTUB1)/solute carrier family 7 member 11 (SLC7A11) pathway. CONCLUSION This study manifested that overexpression of USP8 restrained inflammation and ferroptosis in COPD by regulating the OTUB1/SLC7A11 signaling pathway. This discovery hinted that USP8 could be a potential target for COPD treatment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Yu Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China;
| | - Di Xu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Dan Zhu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Zhihai Chen
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xiufeng Huang
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
25
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
26
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
27
|
Huang J, Xie Y, Chen B, Xia Y, Jiang Y, Sun Z, Liu Y. GPR146 regulates pulmonary vascular remodeling by promoting pulmonary artery smooth muscle cell proliferation through 5-lipoxygenase. Eur J Pharmacol 2023; 961:176123. [PMID: 37926274 DOI: 10.1016/j.ejphar.2023.176123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The pathological feature of hypoxic pulmonary hypertension (PH) is pulmonary vascular remodeling (PVR), primarily attributed to the hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Existing PH-targeted drugs have difficulties in reversing PVR. Therefore, it is vital to discover a new regulatory mechanism for PVR and develop new targeted drugs. G protein-coupled receptor 146 (GPR146) is believed to participate in this process. This study aimed to investigate the role of GPR146 in PASMCs during PH. We investigated the role of GPR146 in PVR and its underlying mechanism using hypoxic PASMCs and mouse model (Sugen 5416 (20 mg/kg)/hypoxia). In our recent study, we have observed a significant increase in the expression of GPR146 protein in animal models of PH as well as in patients diagnosed with pulmonary arterial hypertension (PAH). Through immunohistochemistry, we found that GPR146 was mainly localized in the smooth muscle and endothelial layers of the pulmonary vasculature. GPR146 deficiency induction exhibited protective effects against hypoxia-induced elevation of right ventricular systolic blood pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling in mice. In particular, the deletion of GPR146 attenuated the hypoxia-triggered proliferation of PASMCs. Furthermore, 5-lipoxygenase (5-LO) was related to PH development. Hypoxia and overexpression of GPR146 increased 5-LO expression, which was reversed through GPR146 knockdown or siRNA intervention. Our study discovered that GPR146 exhibited high expression in the pulmonary vessels of pulmonary hypertension. Subsequent research revealed that GPR146 played a crucial role in the development of hypoxic PH by promoting lipid peroxidation and 5-LO expression. In conclusion, GPR146 may regulate pulmonary vascular remodeling by promoting PASMCs proliferation through 5-LO, which presents a feasible target for PH prevention and treatment.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yongpeng Xie
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Bing Chen
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China; Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China.
| |
Collapse
|
28
|
Liu Y, Guo Y, Li P, Guo H, Xu M. Editorial: Crosstalk between lipid metabolism and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1296935. [PMID: 37868779 PMCID: PMC10588742 DOI: 10.3389/fcvm.2023.1296935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Yuliang Liu
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Pengyong Li
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haipeng Guo
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
29
|
Jiang Y, Song S, Liu J, Zhang L, Guo X, Lu J, Li L, Yang C, Fu Q, Zeng B. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Front Immunol 2023; 14:1206452. [PMID: 37753070 PMCID: PMC10518698 DOI: 10.3389/fimmu.2023.1206452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe progressive disease that may cause early right ventricular failure and eventual cardiac failure. The pathogenesis of PAH involves endothelial dysfunction, aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs), and vascular fibrosis. Hypoxia has been shown to induce elevated secretion of vascular endothelial growth factor (VEGF), leading to the development of hypoxic PAH. However, the molecular mechanisms underlying hypoxic PAH remain incompletely understood. Programmed cell death (PCD) is a natural cell death and regulated by certain genes. Emerging evidence suggests that apoptotic resistance contributes to the development of PAH. Moreover, several novel types of PCD, such as autophagy, pyroptosis, and ferroptosis, have been reported to be involved in the development of PAH. Additionally, multiple diverse epigenetic mechanisms including RNA methylation, DNA methylation, histone modification, and the non-coding RNA molecule-mediated processes have been strongly linked to the development of PAH. These epigenetic modifications affect the expression of genes, which produce important changes in cellular biological processes, including PCD. Consequently, a better understanding of the PCD processes and epigenetic modification involved in PAH will provide novel, specific therapeutic strategies for diagnosis and treatment. In this review, we aim to discuss recent advances in epigenetic mechanisms and elucidate the role of epigenetic modifications in regulating PCD in hypoxia-induced PAH.
Collapse
Affiliation(s)
- Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Liyuan Zhang
- Shanghai Baoxing Biological Equipment Engineering Co., Ltd, Shanghai, China
| | - Xiaofei Guo
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Lie Li
- Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Qiang Fu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
30
|
Wang Y, Wu J. Ferroptosis: a new strategy for cardiovascular disease. Front Cardiovasc Med 2023; 10:1241282. [PMID: 37731525 PMCID: PMC10507265 DOI: 10.3389/fcvm.2023.1241282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Cardiovascular disease (CVD) is currently one of the prevalent causes of human death. Iron is one of the essential trace elements in the human body and a vital component of living tissues. All organ systems require iron for various metabolic processes, including myocardial and skeletal muscle metabolism, erythropoiesis, mitochondrial function, and oxygen transport. Its deficiency or excess in the human body remains one of the nutritional problems worldwide. The total amount of iron in a normal human body is about 3-5 g. Iron deficiency may cause symptoms such as general fatigue, pica, and nerve deafness, while excessive iron plays a crucial role in the pathophysiological processes of the heart through ferroptosis triggered by the Fenton reaction. It differs from other cell death modes based on its dependence on the accumulation of lipid peroxides and REDOX imbalance, opening a new pathway underlying the pathogenesis and mechanism of CVDs. In this review, we describe the latest research progress on the mechanism of ferroptosis and report its crucial role and association with miRNA in various CVDs. Finally, we summarise the potential therapeutic value of ferroptosis-related drugs or ferroptosis inhibitors in CVDs.
Collapse
Affiliation(s)
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
33
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
34
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
35
|
Sun Y, Liu S, Chen C, Yang S, Pei G, Lin M, Wang T, Long J, Yan Q, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. The mechanism of programmed death and endoplasmic reticulum stress in pulmonary hypertension. Cell Death Discov 2023; 9:78. [PMID: 36841823 PMCID: PMC9968278 DOI: 10.1038/s41420-023-01373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Pulmonary hypertension (PH) was a cardiovascular disease with high morbidity and mortality. PH was a chronic disease with complicated pathogenesis and uncontrollable factors. PH was divided into five groups according to its pathogenesis and clinical manifestations. Although the treatment and diagnosis of PH has made great progress in the past ten years. However, the diagnosis and prognosis of the PAH had a great contrast, which was not conducive to the diagnosis and treatment of PH. If not treated properly, it will lead to right ventricular failure or even death. Therefore, it was necessary to explore the pathogenesis of PH. The problem we urgently need to solve was to find and develop drugs for the treatment of PH. We reviewed the PH articles in the past 10 years or so as well as systematically summarized the recent advance. We summarized the latest research on the key regulatory factors (pyroptosis, apoptosis, necroptosis, ferroptosis, and endoplasmic reticulum stress) involved in PH. To provide theoretical basis and basis for finding new therapeutic targets and research directions of PH.
Collapse
Affiliation(s)
- Yang Sun
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal & Child Health Care, Changsha, P. R. China
| | - Chen Chen
- grid.412643.60000 0004 1757 2902Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Songwei Yang
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Gang Pei
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Meiyu Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Ting Wang
- grid.501248.aDepartment of Rehabilitation Medicine, Zhuzhou Central Hospital, Zhuzhou, P. R. China
| | - Junpeng Long
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Qian Yan
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Jiao Yao
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yuting Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Fan Yi
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Lei Meng
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yong Tan
- Department of nephrology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China. .,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| |
Collapse
|
36
|
Zhao H, Ding Y, Zhang L. SIRT1/APE1 promotes the viability of gastric cancer cells by inhibiting p53 to suppress ferroptosis. Open Med (Wars) 2023; 18:20220620. [PMID: 36820068 PMCID: PMC9938643 DOI: 10.1515/med-2022-0620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with high mortality. Sirtuin 1 (SIRT1) and apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) are abnormally expressed in GC cells and related to p53, which is involved in ferroptosis. Thus, we explore the mechanism via which SIRT1, APE1, and p53 impact ferroptosis in GC cells. Specifically, GC cells were transfected with small-interfering RNA for SIRT1 (SiSIRT1) or small-interfering RNA for APE1 (SiAPE1) or with short-hairpin RNA for p53, and the cell viability, Fe2+, malondialdehyde (MDA), and glutathione (GSH) contents were detected by cell counting kit-8 assay and enzyme-linked immunosorbent assay. Western blot, immunofluorescence, and quantitative real-time polymerase chain reaction were conducted to quantify SIRT1, APE1, p53, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) levels in GC cells. Silencing of SIRT1 decreased viability, GSH content, and expressions of GPX4 and SLC7A11, while increased Fe2+, MDA content, and p53 expression in GC cells. Such aforementioned effects were reversed by APE1 overexpression. Also, SiAPE1 generated the same effects as SiSIRT1 on the above aspects, which was offset by p53 silencing. In short, SIRT1/APE1 promotes the growth of GC cells by targeting p53 to inhibit ferroptosis.
Collapse
Affiliation(s)
- Huijin Zhao
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Yuanyi Ding
- Department of No. 2 General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Lan Zhang
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
37
|
Chen Y, Li X, Wang S, Miao R, Zhong J. Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients 2023; 15:nu15030591. [PMID: 36771298 PMCID: PMC9921472 DOI: 10.3390/nu15030591] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Iron functions as an essential micronutrient and participates in normal physiological and biochemical processes in the cardiovascular system. Ferroptosis is a novel type of iron-dependent cell death driven by iron accumulation and lipid peroxidation, characterized by depletion of glutathione and suppression of glutathione peroxidase 4 (GPX4). Dysregulation of iron metabolism and ferroptosis have been implicated in the occurrence and development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, pulmonary hypertension, myocardial ischemia/reperfusion injury, cardiomyopathy, and heart failure. Iron chelators deferoxamine and dexrazoxane, and lipophilic antioxidants ferrostatin-1 and liproxstatin-1 have been revealed to abolish ferroptosis and suppress lipid peroxidation in atherosclerosis, cardiomyopathy, hypertension, and other CVDs. Notably, inhibition of ferroptosis by ferrostatin-1 has been demonstrated to alleviate cardiac impairments, fibrosis and pathological remodeling during hypertension by potentiating GPX4 signaling. Administration of deferoxamine improved myocardial ischemia/reperfusion injury by inhibiting lipid peroxidation. Several novel small molecules may be effective in the treatment of ferroptosis-mediated CVDs. In this article, we summarize the regulatory roles and underlying mechanisms of iron metabolism dysregulation and ferroptosis in the occurrence and development of CVDs. Targeting iron metabolism and ferroptosis are potential therapeutic strategies in the prevention and treatment of hypertension and other CVDs.
Collapse
Affiliation(s)
- Yufei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (R.M.); (J.Z.)
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (R.M.); (J.Z.)
| |
Collapse
|