1
|
Zhou Q, Li X, Hou D. Perillaldehyde protect chondrocytes from mitophagy-associated apoptosis and NLRP3-mediated inflammation by regulating ALOX5/NF-kB signaling in osteoarthritis. Int Immunopharmacol 2025; 158:114820. [PMID: 40378435 DOI: 10.1016/j.intimp.2025.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related progressive joint disease characterized by loss of cartilage and subsequent inflammation. Perillaldehyde is a compound extracted from Perilla, which has multiple pharmacological activities including anti-inflammatory, and anti-apoptosis. However, it still remains unknown whether and how perillaldehyde could regulate chondrocyte apoptosis and inflammation in OA. METHODS The interleukin-1beta (IL-1β)-treated chondrocytes and destabilized medial meniscus (DMM) -induced rats were used as in vitro and in vivo models of OA. Cell viability, proliferation, and apoptosis were investigated by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays. The mitochondrial membrane potential was analyzed by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining. Light chain 3 (LC3) location, and expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) were detected by immunofluorescence staining. Relative protein levels were measured via western blotting. Tumor necrosis factor-alpha (TNF-α), IL-6 and IL-8 levels were measured by enzyme-linked immunosorbent assay (ELISA). The cartilage injury in rats was investigated via hematoxylin-eosin (HE) staining. RESULTS Perillaldehyde attenuated IL-1β-induced inhibition of viability (from 44.45 % to 92.72 %, p < 0.05) and proliferative potential of chondrocytes (p < 0.05). Perillaldehyde mitigated mitophagy-associated apoptosis of chondrocytes by enhancing mitophagy (p < 0.05) and reducing cell apoptosis (from 32.36 % to 8.00 %, p < 0.05). Perillaldehyde attenuated NLRP3-mediated inflammation through reducing NLRP3, ASC, TNF-α, IL-6 and IL-8 levels (p < 0.05). ALOX5 expression was upregulated in OA (fold change: 2.61, p < 0.05), and decreased by perillaldehyde treatment (fold change: 1.34, p < 0.05). Perillaldehyde inhibits p65 nuclear factor kappa B (NF-κB) signaling activation (fold change: 3.19 to 1.33, p < 0.05) by regulating ALOX5 expression. ALOX5 overexpression reversed the effects of perillaldehyde on mitophagy-associated apoptosis and NLRP3-mediated inflammation (p < 0.05), and these roles were mitigated due to NF-κB inactivation (p < 0.05). Perillaldehyde attenuated cartilage injury in OA rats (p < 0.05). CONCLUSION Perillaldehyde attenuated IL-1β-induced mitophagy-associated apoptosis and NLRP3-mediated inflammation through decreasing ALOX5 and inactivating NF-κB signaling, indicating the potentially protective potential of perillaldehyde in osteoarthritis.
Collapse
Affiliation(s)
- Qingqi Zhou
- Second Department of Orthopaedics, Dalian Hospital of Traditional Chinese Medicine, Dalian 116031, China
| | - Xun Li
- Second Department of Orthopaedics, Dalian Hospital of Traditional Chinese Medicine, Dalian 116031, China
| | - Decai Hou
- Second Department of Orthopaedics, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China.
| |
Collapse
|
2
|
Yang F, Qin Q, Liu J. Predictive value of microRNA-133a-3p for early urinary incontinence after radical prostatectomy for prostate cancer and its correlation with rehabilitation effects. Hereditas 2025; 162:75. [PMID: 40350457 PMCID: PMC12067700 DOI: 10.1186/s41065-025-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
AIM The present study was conducted with the objective ascertaining the clinical implication of microRNA-133a-3p (miR-133a-3p) for urinary incontinence (UI) and rehabilitation effects in prostate cancer after radical prostatectomy. METHODS The measurements of miR-133a-3p in urethral tissue samples from prostate cancer patients after radical prostatectomy were carried out via quantitative real-time polymerase chain reaction (qRT-PCR) detection. Receiver operation characteristic (ROC) curve and logistic regression analysis were employed for evaluating the predictive significance of miR-133a-3p for the early UI of prostate cancer patients with radical prostatectomy. Bioinformatics tools were employed for mining the miR-133a-3p possible genes. RESULTS An obvious reduction of miR-133a-3p was detected in patients with UI compared with those with urinary continence (UC) (P < 0.001), demonstrating a high diagnostic capacity for patients with UI. Moreover, miR-133a-3p could be an independent predictive index for the early UI in patients with prostate cancer after radical prostatectomy (P < 0.001). Additionally, urine miR-133a-3p was notably increased in the UI patients after rehabilitation (P < 0.001). MiR-133a-3p largely concentered on the muscle-related diseases pathways using bioinformatics tools. CONCLUSION MiR-133a-3p was a promising indicator for predicting early UI in patients with prostate cancer after radical prostatectomy. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Fan Yang
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Qiuxia Qin
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Juan Liu
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Tan Y, Ouyang Y, Xiao L, Huang J, Li F, Ma Z, Tan C, Feng W, Davis E, Tang Y, Chang X, Li H. Lipopolysaccharide-induced DNA damage response activates DNA-PKcs to drive actin cytoskeleton disruption and cardiac microvascular dysfunction in endotoxemia. Theranostics 2025; 15:5969-5997. [PMID: 40365284 PMCID: PMC12068286 DOI: 10.7150/thno.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Sepsis-induced cardiomyopathy is characterized by microvascular injury, which is linked to lipopolysaccharide (LPS)-induced DNA damage response (DDR). This study investigates the role of DNA-PKcs, a key enzyme in the DDR pathway, in driving actin disruption and microvascular dysfunction following LPS exposure. Methods: We analyzed diverse transcriptomic datasets from septic human and murine models using bioinformatics tools to assess DDR pathway activation, correlations, and prognosis. In vivo, LPS-challenged mice were treated with inhibitors of DNA-PKcs or mitochondrial fission, and we evaluated cardiac function, microvascular integrity, mitochondrial status, and actin polymerization. Results: Bioinformatic analyses consistently revealed significant activation of the DDR pathway and upregulation of key genes across diverse septic models. Notably, elevated DDR pathway activity was significantly correlated with poor 28-day survival in human sepsis patients. Single-cell analysis localized this DDR gene upregulation predominantly to cardiac endothelial cells (ECs), fibroblasts, and macrophages during sepsis. Within septic capillary ECs, DDR pathway activity scores strongly correlated spatially and functionally with heightened mitochondrial fission and cytoskeletal remodeling pathway activities. In vivo experiments confirmed that LPS induced severe systolic and diastolic dysfunction, microvascular damage, and mitochondrial fragmentation, as well as significant actin depolymerization. Inhibition of DNA-PKcs with NU7441 markedly attenuated all these LPS-induced pathologies, improving cardiac function, preserving microvascular structure, preventing mitochondrial fragmentation, and normalizing related gene expression and actin cytoskeleton stability. Additionally, inhibiting mitochondrial fission with Mdivi-1 significantly ameliorated LPS-induced cardiac dysfunction and microvascular injury. Conclusions: Our findings suggest that LPS triggers a DNA-PKcs-dependent DDR that promotes mitochondrial fragmentation and actin disruption, particularly in cardiac ECs, contributing to sepsis-induced cardiomyopathy. Targeting DNA-PKcs or mitochondrial fission may hold therapeutic potential for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yue Ouyang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lushan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianming Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fuye Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zisheng Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Weibin Feng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Erica Davis
- School of Pharmacy, University of Phoenix, 4035 S Riverpoint Pkwy, Phoenix, AZ 85040, United States
- Faculty of International Education Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Yaoping Tang
- Faculty of International Education Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Xing Chang
- School of Pharmacy, University of Phoenix, 4035 S Riverpoint Pkwy, Phoenix, AZ 85040, United States
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haixia Li
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
He Q, Chang X, Zhang H, Hao Q, Zhi J, Shi H, Tian Y, Zhou H, Tan Y, Zheng J, Qiu J, Tao J. Nuclear damage-induced DNA damage response coupled with IFI16-driven ECM remodeling underlies dilated cardiomyopathy. Theranostics 2025; 15:5998-6021. [PMID: 40365289 PMCID: PMC12068297 DOI: 10.7150/thno.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Dilated cardiomyopathy (DCM) is a severe cardiac condition characterized by ventricular dilation and systolic dysfunction, often leading to heart failure. While the DNA damage response (DDR) pathway is increasingly implicated in DCM pathogenesis, the precise mechanisms linking DDR activation to specific pathological features like adverse extracellular matrix (ECM) remodeling and fibrosis remain poorly understood. Interferon-inducible protein 16 (IFI16), a known DNA sensor involved in DDR and inflammatory signaling, emerges as a potential mediator in this process. This study aimed to investigate the role of the DDR-IFI16 axis in DCM, specifically exploring its connection to ECM dysregulation and cardiac dysfunction, and to evaluate its potential as a therapeutic target. Methods: W This study integrated bioinformatics analyses of human cardiac transcriptomic datasets with experimental validation in a doxorubicin-induced murine DCM model. Cardiac function was assessed by echocardiography. Key molecular pathways were investigated using qPCR, ELISA, and enrichment analyses. Mechanistic roles were tested via pharmacological DDR inhibition in vivo and targeted IFI16 siRNA knockdown in vitro, followed by analysis of fibrosis, cell viability, and cytotoxicity markers. Results: Bioinformatic analyses consistently revealed activation of DDR and cytosolic DNA sensing pathways across human iPSC-CM models and ex vivo DCM heart tissue. WGCNA identified a key gene module strongly associated with DCM, co-enriched for DDR, DNA replication, and ECM/TGF-β signaling pathways. Single-cell RNA-seq analysis confirmed significant IFI16 upregulation in human DCM samples. High IFI16 expression strongly correlated with pathways governing 'Extracellular matrix organization' and key fibrotic genes. Experimental validation in the doxorubicin mouse model confirmed DDR activation. Crucially, in vivo treatment with the DDR inhibitor NU7441 significantly attenuated IFI16 upregulation, ameliorated cardiac dysfunction, and decreased cardiac fibrosis markers. Complementarily, in vitro knockdown of IFI16 significantly reduced pro-fibrotic markers, increased cell viability, and decreased cell injury. Conclusions: Our findings delineate a novel pathogenic axis in DCM where nuclear stress-induced DDR activation drives the upregulation of the DNA sensor IFI16. IFI16 acts as a critical mediator linking DDR signaling to pathological ECM remodeling and fibrosis. Pharmacological inhibition of the upstream DDR pathway effectively mitigates IFI16 induction, attenuates cardiac fibrosis, and improves cardiac function. This study identifies the DDR-IFI16-ECM remodeling axis as a crucial contributor to DCM pathogenesis and highlights its potential as a therapeutic target for mitigating adverse cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Hubei University of Chinese Medicine, Hubei, Wuhan 430065, China
| | - Qianying Hao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianguo Zhi
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongshuo Shi
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingjie Tian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
5
|
Alabere HO, Taylor AD, Miller BR, Nohoesu R, Nicoletti R, Mogus J, Meadows EM, Hollander JM. Noncoding RNA as potential therapeutics to rescue mitochondrial dysfunction in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2025; 328:H846-H864. [PMID: 40019197 DOI: 10.1152/ajpheart.00774.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Noncoding RNAs (ncRNAs) are critical regulators of mitochondrial function in cardiovascular diseases. Several studies have explored the manipulation of ncRNAs in mitochondrial dysfunction in different cardiovascular disease contexts, however, there is a dearth of information on the exploration of these noncoding RNAs as actual therapeutics to ameliorate cardiovascular diseases. This systematic review examines the roles of various ncRNAs in modulating mitochondrial dysfunction across major cardiovascular diseases and how they can be targeted to the mitochondria. A comprehensive literature search was conducted using Web of Science and Scopus databases, following the PRISMA guidelines. Original research articles in the English language, focusing on ncRNAs and mitochondrial dysfunction in specific cardiovascular diseases, were eligible for inclusion. A total of 76 studies were included in the systematic review with up to 100 ncRNAs identified as therapeutic biomarkers. The identified ncRNAs participate in regulating mitochondrial processes including oxidative phosphorylation (OXPHOS), fission/fusion dynamics, apoptosis, and calcium handling in cardiovascular diseases. Mitochondrial targeting moieties including mitochondrial targeting cell-penetrating peptides, mitochondrial targeting liposomes, and aptamers can be conjugated to ncRNAs and delivered to the heart via various injection routes including the pericardium or the myocardium. However, significant challenges remain in developing effective delivery methods to modulate these ncRNAs in vivo.
Collapse
Affiliation(s)
- Hafsat O Alabere
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Brianna R Miller
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Remi Nohoesu
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Roxy Nicoletti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Joshua Mogus
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ethan M Meadows
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
6
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Niu QQ, Fu ZZ, Mao BY, Zhang X, Wang HD, Li P, Lin LB, Xi YT, Yin YL, Kamal NNSNM, Lim V. Perillaldehyde targeting PARP1 to inhibit TRPM2-CaMKII/CaN signal transduction in diabetic cardiomyopathy. Int Immunopharmacol 2025; 150:114291. [PMID: 39970708 DOI: 10.1016/j.intimp.2025.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DC) is a serious complication of diabetes, characterized by myocardial fibrosis, hypertrophy, oxidative stress, and inflammation. Perillaldehyde (PAE), a natural monoterpene, has shown potential in mitigating cardiac damage. PURPOSE This study aims to elucidate the molecular mechanism of the protective effect of PAE on the DC and the interaction between DC pathogenesis. METHODS Network pharmacology and molecular docking were used to identify PARP1 as a core target for PAE in DC. Animal experiments involved intervening DC mice with PAE and assessing cardiac function, oxidative stress, and apoptosis. In vitro, high glucose-induced H9c2 cells were used to validate PAE's effects on cell viability and protein expression. RESULTS The results showed that PAE improved the general condition of DC mice, reduced cardiac injury and cardiac insufficiency, decreased myocardial mitochondrial damage, and reduced apoptosis. In addition, PAE upregulated the expression of Bcl-2, downregulated Bax protein expression, inhibited Caspase-3 activity, and inhibited the expression of PARP1, TRPM2, CaN, and CaMKII proteins in DC mice and high glucose-induced H9c2 cells. CONCLUSION Mechanically, this study clarified that PAE's inhibition of the PARP1-TRPM2-CaMKII/CaN pathway reduces calcium-activated mitochondrial damage, apoptosis, and oxidative stress in diabetic cardiomyopathy. This discovery provides an innovative therapeutic strategy for DC and an experimental foundation for PAE's drug development, with significant practical implications.
Collapse
Affiliation(s)
- Qian-Qian Niu
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang 13200, Malaysia.
| | - Zhan-Zhou Fu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Bing-Yan Mao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Dan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lai-Biao Lin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yu-Ting Xi
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China.
| | | | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang 13200, Malaysia.
| |
Collapse
|
8
|
Jiang R, Guo J, Yang S, Zeng H, Wei J, Jin X, Zheng X, Sun W, Zhang Y, Hu Z. Trichodenoids A and B, Two Skeletally Unprecedented Polyketides from Trichoderma reesei with Cardioprotective Effects against H 2O 2-Induced Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6736-6744. [PMID: 40047798 DOI: 10.1021/acs.jafc.5c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Trichoderma reesei, recognized by the FDA as a food-safe strain, plays a vital role in food fermentation. Although the enzymatic applications of T. reesei are well-established, the health benefits of its fermentation-derived metabolites are yet to be fully explored. Trichodenoids A (1) and B (2), two skeletally unprecedented polyketides, were isolated from the endophytic fungus T. reesei originating from the plant Gastrodia elata Blume. Their structures were elucidated via spectroscopic data, single-crystal X-ray crystallographic analysis, quantum chemical DP4+ analysis, and ECD calculation. Compounds 1 and 2 were uniquely defined by the unusual 6/6/5 and 6/6/5/6 ring systems, respectively, which were proposed to be formed through key Diels-Alder and Baeyer-Villiger reactions during biosynthesis. Compound 2 had the potential to mitigate H2O2-induced oxidative stress in H9C2 cells by reducing intracellular ROS levels, restoring mitochondrial function, and regulating the mRNA expression related to oxidative stress, inflammation, and autophagy. These findings highlight compound 2 as a potential candidate for natural antioxidants and even as dietary supplements for cardiovascular health.
Collapse
Affiliation(s)
- Rui Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiayi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shenglan Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoqi Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan 430061, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Cai S, Wen W, Tan Y, Wang W, Xu J, Xiong P. A Network Pharmacology Study and In Vitro Evaluation of the Bioactive Compounds of Kadsura coccinea Leaf Extract for the Treatment of Type 2 Diabetes Mellitus. Molecules 2025; 30:1157. [PMID: 40076380 PMCID: PMC11901907 DOI: 10.3390/molecules30051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Kadsura coccinea is a traditional Chinese medicine whose roots have long been used to treat various ailments, but little is known about the efficacy of its leaves. In this study, the antidiabetic activity of K. coccinea leaf extract (KCLE) was determined, the main components of KCLE were identified using UPLC-TOF-MS, and network pharmacology and molecular docking were integrated to elucidate the antidiabetic mechanism of KCLE. The results showed that KCLE effectively increased the glucose consumption of IR-HepG2 cells through pyruvate kinase (PK) and hexokinase (HK), promoted glycogen synthesis, and inhibited α-glucosidase and α-amylase activities. KCLE also improves diabetes by regulating AKT1, TNF, EGFR, and GSK3β. These targets (especially AKT1 and TNF) have a high binding affinity with the main active ingredients of KCLE (rutin, luteolin, demethylwedelolactone, maritimetin, and polydatin). Pathway enrichment analysis showed that the antidiabetic effect of KCLE was closely related to the PI3K-Akt signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway, and FoxO signaling pathway. These findings provide a theoretical basis for promoting the pharmacodynamic development of K. coccinea and its application in treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Xiong
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Li Y, Tan P, Liu Q, Liu M, Wang Y, Kong W, Sun H, Shao X. MiRNA-133a-3p Attenuates Renal Tubular Epithelial Cell Injury via Targeting MALM1 and Suppressing the Notch Signaling Pathway in Diabetic Nephropathy. Cell Biochem Biophys 2024; 82:2401-2411. [PMID: 38878099 DOI: 10.1007/s12013-024-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes characterized by structural and functional changes of kidneys. Human renal tubular epithelial (HK-2) cells are important for kidney recovery post injury and usually used for establishment of DN cell models. The study explored the role of microRNA (miR)-133a-3p in DN cell model and animal model. A cell model for DN was established via high glucose (HG) stimulation to HK-2 cells. Cell viability and apoptotic rate were measured by cell counting kit 8 and flow cytometry. Polymerase chain reaction was performed to quantify levels of miR-133a-3p and targets. Luciferase reporter assay was conducted to verify the binding of miR-133a-3p and MAML1. After establishment of a mouse model of DN, levels of renal function indicators were measured by biochemical analysis. Hematoxylin-eosin and periodic acid-schiff staining of kidney samples were performed to analyze histological changes. Western blotting was conducted to quantify levels of apoptotic markers, MAML1, and factors related to Notch signaling. Results showed that HG induced HK-2 cell apoptosis and the reduction of cell viability. MiR-133a-3p was lowly expressed in HG-stimulated HK-2 cells. Overexpressed miR-133a-3p improved HK-2 cell injury by increasing cell viability and hampering apoptosis under HG condition. In addition, miR-133a-3p directly targets MAML1 3'-untranslated region. MAML1 overexpression countervailed the repressive impact of miR-133a-3p on cell apoptosis in the context of HG. Moreover, miR-133a-3p inhibited the activity of Notch pathway by downregulating MAML1. MiR-133a-3p inhibits DN progression in mice, as evidenced by reduced fasting blood glucose level, improved levels of renal function parameters, and alleviation of kidney atrophy. In conclusion, miR-133a-3p improves HG-induced HK-2 cell injury and inhibits DN progression by targeting MAML1 and inactivating Notch signaling.
Collapse
Affiliation(s)
- Yuting Li
- Department of Geriatrics, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Peng Tan
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Qianpan Liu
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Man Liu
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Yue Wang
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Weixin Kong
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Huaixin Sun
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China
| | - Xiang Shao
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China.
- Centralab, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215000, China.
| |
Collapse
|
12
|
Liang J, Yu M, Li Y, Zhao L, Wei Q. Glycogen synthase kinase-3: A potential immunotherapeutic target in tumor microenvironment. Biomed Pharmacother 2024; 173:116377. [PMID: 38442671 DOI: 10.1016/j.biopha.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Meng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
13
|
Pan G, Cui B, Han M, Lin L, Li Y, Wang L, Guo S, Yin Y, Zhan H, Li P. Puerarin inhibits NHE1 activity by interfering with the p38 pathway and attenuates mitochondrial damage induced by myocardial calcium overload in heart failure rats. Acta Biochim Biophys Sin (Shanghai) 2024; 56:270-279. [PMID: 38282474 PMCID: PMC10984851 DOI: 10.3724/abbs.2023269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 01/30/2024] Open
Abstract
Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-β and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.
Collapse
Affiliation(s)
- Guopin Pan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Baoyue Cui
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Nanyang Second General HospitalNanyang473001China
| | - Mingming Han
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Laibiao Lin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Yinlan Li
- College of PharmacyHeilongjiang University of Chinese MedicineHarbin150040China
| | - Ling Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Heqin Zhan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|