1
|
Karaer D, Özçelik AA, Karaer K. NRXN2 Homozygous Variant Identified in a Family with Global Developmental Delay, Severe Intellectual Disability, EEG Abnormalities and Speech Delay: A new Syndrome? Clin EEG Neurosci 2025:15500594241309948. [PMID: 39748282 DOI: 10.1177/15500594241309948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. This study aims to characterize the clinical phenotype of a family with two siblings exhibiting neurological manifestations, utilizing whole exome sequencing (WES) to identify potential pathogenic variants within the NRXN2 gene. Methods. A consanguineous family with two affected siblings displaying developmental delay, severe intellectual disability, epilepsy, and speech delay was examined. WES was performed on DNA samples from affected and unaffected family members, followed by a comprehensive bioinformatics analysis. In-silico tools were employed for variant interpretation and structural modeling of the NRXN2 protein. Clinical and genetic data were integrated to elucidate the potential impact of the identified variant. Results. WES revealed a novel homozygous missense variant (c.1475T>G, p.Leu492Arg) in the NRXN2 gene in both affected siblings. This variant was absent in healthy family members and public databases. In-silico analysis predicted a detrimental effect on protein function. Parental segregation confirmed heterozygous carrier status. The variant was classified as 'Likely Pathogenic' based on ACMG/AMP criteria. Conclusion. This study identifies a novel homozygous missense variant in NRXN2 associated with global developmental delay, severe intellectual disability, speech delay and epilepsy. The findings underscore the critical role of NRXN2 in neurodevelopment and highlight the potential implications of genetic variations within this gene in neurodevelopmental disorders. Further research and functional validation are warranted to deepen our understanding of NRXN2-related disorders and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Derya Karaer
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkiye
| | - Ayşe Aysima Özçelik
- Department of Pediatric Neurology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Kadri Karaer
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkiye
| |
Collapse
|
2
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
3
|
Uzunhan TA, Ayaz A. Homozygous exonic and intragenic NRXN1 deletion presenting as either West syndrome or autism spectrum disorder in two siblings. Clin Neurol Neurosurg 2022; 214:107141. [DOI: 10.1016/j.clineuro.2022.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
|
4
|
Posar A, Visconti P, Magini P, Ambrosini E, Severi G, Seri M. Deletion of 4q13.2q21.1 chromosome and autism spectrum disorder. J Pediatr Neurosci 2022. [DOI: 10.4103/jpn.jpn_98_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Jiang E, Fitzgerald MP, Helbig KL, Goldberg EM. IL1RAPL1 Gene Deletion in a Female Patient with Developmental Delay and Continuous Spike-Wave during Sleep. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1731816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractInterleukin-1 receptor accessory protein-like 1 (IL1RAPL1) encodes a protein that is highly expressed in neurons and has been shown to regulate neurite outgrowth as well as synapse formation and synaptic transmission. Clinically, mutations in or deletions of IL1RAPL1 have been associated with a spectrum of neurological dysfunction including autism spectrum disorder and nonsyndromic X-linked developmental delay/intellectual disability of varying severity. Nearly all reported cases are in males; in the few reported cases involving females, the clinical presentation was mild or the deletion was identified in phenotypically normal carriers in accordance with X-linked inheritance. Using genome-wide microarray analysis, we identified a novel de novo 373 kb interstitial deletion of the X chromosome (Xp21.1-p21.2) that includes exons 4 to 6 of the IL1RAPL1 gene in an 8-year-old girl with severe intellectual disability and behavioral disorder with a history of developmental regression. Overnight continuous video electroencephalography revealed electrical status epilepticus in sleep (ESES). This case expands the clinical genetic spectrum of IL1RAPL1-related neurodevelopmental disorders and highlights a new genetic association of ESES.
Collapse
Affiliation(s)
- Evan Jiang
- College of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mark P. Fitzgerald
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Katherine L. Helbig
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Ethan M. Goldberg
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
6
|
Arslan Satılmış SB, Kurt EE, Akçay EP, Sazci A, Ceylan AC. A novel missense mutation in the UBE2A gene causes intellectual disability in the large X-linked family. J Gene Med 2020; 23:e3307. [PMID: 33368912 DOI: 10.1002/jgm.3307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND X-linked intellectual disability type Nascimento (XIDTN) is a disorder of the ubiquitin-proteasome pathway of protein degradation controlled by the UBE2A gene. The disease is characterized by intellectual disability, speech impairment, dysmorphic facial features, skin and nail anomalies, and, frequently, seizures. Eight affected males from a four-generation family who have intellectual disability and speech disorders were examined within an extended family of 57 individuals. Methods A number of methods were used for the molecular diagnosis. Conventional karyotype analyses, array-based comparative genomic hybridization (aCGH), whole exome swquencing (WES), sanger sequencing were performed. Results First, the conventional karyotype analyses were normal, and the results of the aCGH analyses were normal. Then, WES revealed a novel missense mutation of the UBE2A gene at exon 4 NM_003336.3: c.182A>G (p.Glu61Gly). Seven affected individuals and nine carriers in the multigenerational, large family were diagnosed through Sanger sequencing. CONCLUSIONS We identified the mutation causing intellectual disability in the large family and demonstrated its phenotypic effects. Our cases showed that dysmorphic features could be considered mild, whereas intellectual disability and speech disorders are common features in XIDTN. The structure and function of the gene will be better understood in the novel UBE2A mutation. The genotype-phenotype correlation and phenotypic variations in XIDTN were identified through a literature review. Accordingly, XIDTN should be considered in individuals who exhibit an X-linked pedigree pattern and have intellectual disability and speech disorders.
Collapse
Affiliation(s)
| | - Emin Emre Kurt
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazit University, Ankara, Turkey
| | - Ebru Perim Akçay
- Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Ali Sazci
- Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Wang F, Zhao B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int J Mol Sci 2019; 20:ijms20092250. [PMID: 31067743 PMCID: PMC6539292 DOI: 10.3390/ijms20092250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Questions have been raised since the discovery of UBA6 and its significant coexistence with UBE1 in the ubiquitin–proteasome system (UPS). The facts that UBA6 has the dedicated E2 enzyme USE1 and the E1–E2 cascade can activate and transfer both ubiquitin and ubiquitin-like protein FAT10 have attracted a great deal of attention to the regulational mechanisms of the UBA6–USE1 cascade and to how FAT10 and ubiquitin differentiate with each other. This review recapitulates the latest advances in UBA6 and its bispecific UBA6–USE1 pathways for both ubiquitin and FAT10. The intricate networks of UBA6 and its interplays with ubiquitin and FAT10 are briefly reviewed, as are their individual and collective functions in diverse physiological conditions.
Collapse
Affiliation(s)
- Fengting Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F, Frittoli M, Lintas C, Sacco R, Persico AM. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: A systematic review. Clin Genet 2019; 97:125-137. [PMID: 30873608 DOI: 10.1111/cge.13537] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/13/2023]
Abstract
Neurexins are presynaptic cell adhesion molecules critically involved in synaptogenesis and vesicular neurotransmitter release. They are encoded by three genes (NRXN1-3), each yielding a longer alpha (α) and a shorter beta (β) transcript. Deletions spanning the promoter and the initial exons of the NRXN1 gene, located in chromosome 2p16.3, are associated with a variety of neurodevelopmental, psychiatric, neurological and neuropsychological phenotypes. We have performed a systematic review to define (a) the clinical phenotypes most associated with mono-allelic exonic NRXN1 deletions, and (b) the phenotypic features of NRXN1 bi-allelic deficiency due to compound heterozygous deletions/mutations. Clinically, three major conclusions can be drawn: (a) incomplete penetrance and pleiotropy do not allow reliable predictions of clinical outcome following prenatal detection of mono-allelic exonic NRXN1 deletions. Newborn carriers should undergo periodic neuro-behavioral observations for the timely detection of warning signs and the prescription of early behavioral intervention; (b) the presence of additional independent genetic risk factors should always be sought, as they may influence prognosis; (c) children with exonic NRXN1 deletions displaying early-onset, severe psychomotor delay in the context of a Pitt-Hopkins-like syndrome 2 phenotype, should undergo DNA sequencing of the spared NRXN1 allele in search for mutations or very small insertions/deletions.
Collapse
Affiliation(s)
- Paola Castronovo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Marco Baccarin
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Chiara Picinelli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Pasquale Tomaiuolo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Myriam Frittoli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Abstract
UBE2A-related X-linked intellectual disability is characterized by a distinctive facial phenotype (dense eyebrows and eyelashes, synophrys, hypertelorism, upslanted palpebral fissures, wide mouth, and thin lips), generalized hirsutism, hypoplastic genitalia, short stature, hypotonia, seizures, and severe intellectual disability. Five affected males in two families are described here and compared with the previously reported 17 males in eight families. The new cases are notable for the absence of nail dystrophy, previously considered a defining manifestation, and for the presence of hypogammaglobulinemia and adult-onset ataxia.
Collapse
|
10
|
de Oliveira JF, do Prado PFV, da Costa SS, Sforça ML, Canateli C, Ranzani AT, Maschietto M, de Oliveira PSL, Otto PA, Klevit RE, Krepischi ACV, Rosenberg C, Franchini KG. Mechanistic insights revealed by a UBE2A mutation linked to intellectual disability. Nat Chem Biol 2018; 15:62-70. [PMID: 30531907 DOI: 10.1038/s41589-018-0177-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Ubiquitin-conjugating enzymes (E2) enable protein ubiquitination by conjugating ubiquitin to their catalytic cysteine for subsequent transfer to a target lysine side chain. Deprotonation of the incoming lysine enables its nucleophilicity, but determinants of lysine activation remain poorly understood. We report a novel pathogenic mutation in the E2 UBE2A, identified in two brothers with mild intellectual disability. The pathogenic Q93E mutation yields UBE2A with impaired aminolysis activity but no loss of the ability to be conjugated with ubiquitin. Importantly, the low intrinsic reactivity of UBE2A Q93E was not overcome by a cognate ubiquitin E3 ligase, RAD18, with the UBE2A target PCNA. However, UBE2A Q93E was reactive at high pH or with a low-pKa amine as the nucleophile, thus providing the first evidence of reversion of a defective UBE2A mutation. We propose that Q93E substitution perturbs the UBE2A catalytic microenvironment essential for lysine deprotonation during ubiquitin transfer, thus generating an enzyme that is disabled but not dead.
Collapse
Affiliation(s)
| | | | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Americo Tavares Ranzani
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Paulo A Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil. .,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, Brazil.
| |
Collapse
|
11
|
Ceylan AC, Citli S, Erdem HB, Sahin I, Acar Arslan E, Erdogan M. Importance and usage of chromosomal microarray analysis in diagnosing intellectual disability, global developmental delay, and autism; and discovering new loci for these disorders. Mol Cytogenet 2018; 11:54. [PMID: 30258496 PMCID: PMC6154794 DOI: 10.1186/s13039-018-0402-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background Chromosomal microarray analysis is a first-stage test that is used for the diagnosis of intellectual disability and global developmental delay. Chromosomal microarray analysis can detect well-known microdeletion syndromes. It also contributes to the identification of genes that are responsible for the phenotypes in the new copy number variations. Results Chromosomal microarray analysis was conducted on 124 patients with intellectual disability and global developmental delay. Multiplex ligation-dependent probe amplification was used for the confirmation of chromosome 22q11.2 deletion/duplication. 26 pathogenic and likely pathogenic copy number variations were detected in 23 patients (18.55%) in a group of 124 Turkish patients with intellectual disability and global developmental delay. Chromosomal microarray analysis revealed pathogenic de novo Copy number variations, such as a novel 2.9-Mb de novo deletion at 18q22 region with intellectual disability and autism spectrum disorder, and a 22q11.2 region homozygote duplication with new clinical features. Conclusion Our data expand the spectrum of 22q11.2 region mutations, reveal new loci responsible from autism spectrum disorder and provide new insights into the genotype–phenotype correlations of intellectual disability and global developmental delay.
Collapse
Affiliation(s)
- Ahmet Cevdet Ceylan
- Trabzon Kanuni Training and Research Hospital, Medical Genetics Unit, Trabzon, Turkey.,2Ankara Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital, Department of Medical Genetics, Ankara, Turkey
| | - Senol Citli
- Trabzon Kanuni Training and Research Hospital, Medical Genetics Unit, Trabzon, Turkey
| | - Haktan Bagis Erdem
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Medical Genetics Unit, Ankara, Turkey
| | - Ibrahim Sahin
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Medical Genetics Unit, Ankara, Turkey
| | - Elif Acar Arslan
- 4Karadeniz Technical University, School of Medicine, Department of Child Neurology, Trabzon, Turkey
| | - Murat Erdogan
- 5Kayseri Training and Research Hospital, Department of Medical Genetics, Kayseri, Turkey
| |
Collapse
|
12
|
Lumaka A, Race V, Peeters H, Corveleyn A, Coban-Akdemir Z, Jhangiani SN, Song X, Mubungu G, Posey J, Lupski JR, Vermeesch JR, Lukusa P, Devriendt K. A comprehensive clinical and genetic study in 127 patients with ID in Kinshasa, DR Congo. Am J Med Genet A 2018; 176:1897-1909. [PMID: 30088852 DOI: 10.1002/ajmg.a.40382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Pathogenic variants account for 4 to 41% of patients with intellectual disability (ID) or developmental delay (DD). In Sub-Saharan Africa, the prevalence of ID is thought to be higher, but data in Central Africa are limited to some case reports. In addition, clinical descriptions of some syndromes are not available for this population. This study aimed at providing an estimate for the fraction of ID/DD for which an underlying etiological genetic cause may be elucidated and provide insights into their clinical presentation in special institutions in a Central African country. A total of 127 patients (33 females and 94 males, mean age 10.03 ± 4.68 years), were recruited from six institutions across Kinshasa. A clinical diagnosis was achieved in 44 but molecular confirmation was achieved in 21 of the 22 patients with expected genetic defect (95% clinical sensitivity). Identified diseases included Down syndrome (15%), submicroscopic copy number variants (9%), aminoacylase deficiency (0.8%), Partington syndrome in one patient (0.8%) and his similarly affected brother, X-linked syndromic Mental Retardation type 33 (0.8%), and two conditions without clear underlying molecular genetic etiologies (Oculo-Auriculo-Vertebral and Amniotic Bands Sequence). We have shown that genetic etiologies, similar to those reported in Caucasian subjects, are a common etiologic cause of ID in African patients from Africa. We have confirmed the diagnostic utility of clinical characterization prior to genetic testing. Finally, our clinical descriptions provide insights into the presentation of these genetic diseases in African patients.
Collapse
Affiliation(s)
- Aimé Lumaka
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Département des Sciences Biomédicales et Précliniques, GIGA-R, Laboratoire de Génétique Humaine, University of Liège, Liège, Belgium.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Department of Pediatrics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo
| | - Valerie Race
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Hilde Peeters
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Gerrye Mubungu
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Department of Pediatrics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Jennifer Posey
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Genetics Clinic service, Texas Children's Hospital, Houston, Texas
| | - Joris R Vermeesch
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Prosper Lukusa
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR, Congo.,Département des Sciences Biomédicales et Précliniques, GIGA-R, Laboratoire de Génétique Humaine, University of Liège, Liège, Belgium.,Institut National de Recherche Biomédicale, Kinshasa, DR, Congo.,Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Giugliano T, Santoro C, Torella A, Del Vecchio Blanco F, Bernardo P, Nigro V, Piluso G. UBE2A
deficiency in two siblings: A novel splicing variant inherited from a maternal germline mosaicism. Am J Med Genet A 2017; 176:722-726. [DOI: 10.1002/ajmg.a.38589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Claudia Santoro
- Dipartimento della Donna, del Bambino e della Chirurgia generale e specialistica; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Annalaura Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Francesca Del Vecchio Blanco
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Pia Bernardo
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Clinica di Neuropsichiatria Infantile; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| |
Collapse
|
14
|
Chatron N, Thibault L, Lespinasse J, Labalme A, Schluth-Bolard C, Till M, Edery P, Touraine R, des Portes V, Lesca G, Sanlaville D. Genetic Counselling Pitfall: Co-Occurrence of an 11.8-Mb Xp22 Duplication and an Xp21.2 Duplication Disrupting IL1RAPL1. Mol Syndromol 2017; 8:325-330. [PMID: 29230163 DOI: 10.1159/000479455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 01/19/2023] Open
Abstract
We report a 3-generation family in which 2 Xp copy number variations (CNVs) co-segregate. The proband presented with syndromic intellectual disability. The CNV had been revealed by conventional karyotyping, identifying a large Xp22 duplication causing an Xp functional disomy. Family studies found that this duplication was inherited from the proband's mother and was also present in one of his sisters. This sister had conventional karyotyping performed during pregnancy with a normal result. Postnatally, her child, the proband's nephew, presented with autism spectrum disorders. aCGH revealed a 339-kb IL1RAPL1 duplication. Overall, the proband, his mother, and one of his sisters all harboured both CNVs, while his other sister and the 2 sons of each sister only carried the IL1RAPL1 intragenic duplication. As seen in this family, we emphasise the importance of small CNV detection, the pathogenicity of IL1RAPL1 exonic duplications in male carriers, and the difficulties for genetic counselling with the risk of double diagnosis in a single patient.
Collapse
Affiliation(s)
- Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Lucie Thibault
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | | | - Audrey Labalme
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | - Caroline Schluth-Bolard
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Marianne Till
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Renaud Touraine
- Service de Génétique, CHU de Saint Etienne, Saint Etienne, HFME, Bron, France
| | - Vincent des Portes
- Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Centre de Référence National "Déficiences Intellectuelles de Causes Rares", HFME, Bron, France.,CNRS UMR 5304, ISC, Bron, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
15
|
Laino L, Bottillo I, Piedimonte C, Bernardini L, Torres B, Grammatico B, Bargiacchi S, Mulargia C, Calvani M, Cardona F, Castori M, Grammatico P. Clinical and molecular characterization of a boy with intellectual disability, facial dysmorphism, minor digital anomalies and a complex IL1RAPL1 intragenic rearrangement. Eur J Paediatr Neurol 2016; 20:971-976. [PMID: 27470653 DOI: 10.1016/j.ejpn.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 01/16/2023]
Abstract
X-linked intellectual disability accounts for 10-12% of cases of cognitive impairment in males. Mutations in IL1RAPL1 are an emerging form of apparently non-syndromic X-linked intellectual disability. We report a 8-year-old intellectually disabled boy with speech delay, and unusual facial and digital anomalies who showed a novel and complex IL1RAPL1 rearrangement. It was defined by two intragenic non-contiguous duplications inherited from the unaffected mother. Chromosome X inactivation study on the mother's blood leukocytes, urinary sediment and buccal swab did not show a significant skewed inactivation. Comparison with previously described patients with IL1RAPL1 disruption was carried. Although data on craniofacial features were scanty in many papers, subtle facial dysmorphism with a thin upper lip seemed a quietly represented picture without any other genotype-phenotype correlations. Our study expands the molecular repertoire of IL1RAPL1 mutations in intellectual disability and points out the need of more accurate clinical descriptions to better define the related phenotype.
Collapse
Affiliation(s)
- Luigi Laino
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Irene Bottillo
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Caterina Piedimonte
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University, Policlinico Umberto I University Hospital, Rome, Italy
| | - Laura Bernardini
- Unit of Cytogenetics, Mendel Laboratory, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Barbara Torres
- Unit of Cytogenetics, Mendel Laboratory, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Barbara Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simone Bargiacchi
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Claudia Mulargia
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Mauro Calvani
- Division of Pediatrics, San Camillo-Forlanini Hospital, Rome, Italy
| | - Francesco Cardona
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University, Policlinico Umberto I University Hospital, Rome, Italy
| | - Marco Castori
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
16
|
Dachtler J, Ivorra JL, Rowland TE, Lever C, Rodgers RJ, Clapcote SJ. Heterozygous deletion of α-neurexin I or α-neurexin II results in behaviors relevant to autism and schizophrenia. Behav Neurosci 2016; 129:765-76. [PMID: 26595880 PMCID: PMC4655861 DOI: 10.1037/bne0000108] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neurexins are a family of presynaptic cell adhesion molecules. Human genetic studies have found heterozygous deletions affecting NRXN1 and NRXN2, encoding α-neurexin I (Nrxn1α) and α-neurexin II (Nrxn2α), in individuals with autism spectrum disorders and schizophrenia. However, the link between α-neurexin deficiency and the manifestation of psychiatric disorders remain unclear. To assess whether the heterozygous loss of neurexins results in behaviors relevant to autism or schizophrenia, we used mice with heterozygous (HET) deletion of Nrxn1α or Nrxn2α. We found that in a test of social approach, Nrxn1α HET mice show no social memory for familiar versus novel conspecifics. In a passive avoidance test, female Nrxn1α HET mice cross to the conditioned chamber sooner than female wild-type and Nrxn2α HET mice. Nrxn2α HET mice also express a lack of long-term object discrimination, indicating a deficit in cognition. The observed Nrxn1α and Nrxn2α genotypic effects were specific, as neither HET deletion had effects on a wide range of other behavioral measures, including several measures of anxiety. Our findings demonstrate that the heterozygous loss of α-neurexin I and α-neurexin II in mice leads to phenotypes relevant to autism and schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - R John Rodgers
- Institute of Psychological Sciences, University of Leeds
| | | |
Collapse
|
17
|
The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep 2016; 6:20911. [PMID: 26867680 PMCID: PMC4751435 DOI: 10.1038/srep20911] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo.
Collapse
|
18
|
Bruinsma CF, Savelberg SMC, Kool MJ, Jolfaei MA, Van Woerden GM, Baarends WM, Elgersma Y. An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression. Hum Mol Genet 2015; 25:1-8. [PMID: 26476408 DOI: 10.1093/hmg/ddv436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
UBE2A deficiency syndrome (also known as X-linked intellectual disability type Nascimento) is an intellectual disability syndrome characterized by prominent dysmorphic features, impaired speech and often epilepsy. The syndrome is caused by Xq24 deletions encompassing the UBE2A (HR6A) gene or by intragenic UBE2A mutations. UBE2A encodes an E2 ubiquitin-conjugating enzyme involved in DNA repair and female fertility. A recent study in Drosophila showed that dUBE2A binds to the E3 ligase Parkin, which is required for mitochondrial function and responsible for juvenile Parkinson's disease. In addition, these studies showed impairments in synaptic transmission in dUBE2A mutant flies. However, a causal role of UBE2A in of cognitive deficits has not yet been established. Here, we show that Ube2a knockout mice have a major deficit in spatial learning tasks, whereas other tested phenotypes, including epilepsy and motor coordination, were normal. Results from electrophysiological measurements in the hippocampus showed no deficits in synaptic transmission nor in the ability to induce long-term synaptic potentiation. However, a small but significant deficit was observed in mGLUR-dependent long-term depression, a pathway previously implied in several other mouse models for neurodevelopmental disorders. Our results indicate a causal role of UBE2A in learning and mGLUR-dependent long-term depression, and further indicate that the Ube2a knockout mouse is a good model to study the molecular mechanisms underlying UBE2A deficiency syndrome.
Collapse
Affiliation(s)
- Caroline F Bruinsma
- Department of Neuroscience, ENCORE Expertise Centre for Neurodevelopmental Disorders, and
| | | | | | | | - Geeske M Van Woerden
- Department of Neuroscience, ENCORE Expertise Centre for Neurodevelopmental Disorders, and
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Centre for Neurodevelopmental Disorders, and
| |
Collapse
|
19
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
20
|
Celis K, Shuldiner S, Haverfield EV, Cappell J, Yang R, Gong DW, Chung WK. Loss of function mutation in glutamic pyruvate transaminase 2 (GPT2) causes developmental encephalopathy. J Inherit Metab Dis 2015; 38:941-8. [PMID: 25758935 PMCID: PMC4919120 DOI: 10.1007/s10545-015-9824-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/18/2015] [Accepted: 02/06/2015] [Indexed: 12/30/2022]
Abstract
Intellectual disability is genetically heterogeneous, and it is likely that many of the responsible genes have not yet been identified. We describe three siblings with isolated, severe developmental encephalopathy. After extensive uninformative genetic and metabolic testing, whole exome sequencing identified a homozygous novel variant in glutamic pyruvate transaminase 2 (GPT2) or alanine transaminase 2 (ALT2), c.459 C > G p.Ser153Arg that segregated with developmental encephalopathy in the family. This variant was predicted to be damaging by all in silico prediction algorithms. GPT2 is the gene encoding ALT2 which is responsible for the reversible transamination of alanine and 2-oxoglutarate to form pyruvate and glutamate. GPT2 is expressed in brain and is in the pathway to generate glutamate, an excitatory neurotransmitter. Functional assays of recombinant wild-type and mutant ALT2 proteins demonstrated the p.Ser153Arg mutation resulted in a severe loss of enzymatic function. We suggest that recessively inherited loss of function GPT2 mutations are a novel cause of intellectual disability.
Collapse
Affiliation(s)
- Katrina Celis
- Departments of Pediatrics and Medicine, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY 10032, USA
| | | | | | - Joshua Cappell
- Departments of Pediatrics and Medicine, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY 10032, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rongze Yang
- University of Maryland, College Park, MD, USA
| | - Da-Wei Gong
- University of Maryland, College Park, MD, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY 10032, USA
| |
Collapse
|
21
|
Quintela I, Barros F, Fernandez-Prieto M, Martinez-Regueiro R, Castro-Gago M, Carracedo A, Gomez-Lado C, Eiris J. Interstitial microdeletions including the chromosome band 4q13.2 and the UBA6 gene as possible causes of intellectual disability and behavior disorder. Am J Med Genet A 2015; 167A:3113-20. [PMID: 26284580 DOI: 10.1002/ajmg.a.37291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/02/2015] [Indexed: 12/27/2022]
Abstract
The few proximal 4q chromosomal aberrations identified in patients with neurodevelopmental phenotypes that have been published to date are variable in type, size and breakpoints and, therefore, encompass different chromosome bands and genes, making the establishment of genotype-phenotype correlations a challenging task. Here, microarray-based copy number analysis allowed us the detection of two novel and partially overlapping deletions in two unrelated families. In Family 1, a 4q13.1-q13.2 deletion of 3.84 Mb was identified in a mother with mild intellectual disability and in her two children, both with mild intellectual disability and attention deficit hyperactivity disorder. In Family 2, a de novo 4q13.2-q13.3 deletion of 6.81 Mb was detected in a female patient, born to unaffected parents, with a diagnosis of mild intellectual disability, behavioral disorder and facial dysmorphism. The shortest region of overlap between these two aberrations is located at chromosome 4q13.2 and includes 17 genes amongst of which we suggest UBA6 (ubiquitin-like modifier-activating enzyme 6) as a strong candidate gene for these phenotypes.
Collapse
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica - Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica-USC, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS, Santiago de Compostela, Spain
| | - Montse Fernandez-Prieto
- Grupo de Medicina Xenomica-USC, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Rocio Martinez-Regueiro
- Departamento de Psicologia Clinica y Psicobiologia - Universidade de Santiago de Compostela, Grupo de Medicina Xenomica-USC, Santiago de Compostela, Spain
| | - Manuel Castro-Gago
- Departamento de Pediatria, Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica - Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain.,Grupo de Medicina Xenomica-USC, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS, Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carmen Gomez-Lado
- Departamento de Pediatria, Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica, Santiago de Compostela, Spain
| | - Jesus Eiris
- Departamento de Pediatria, Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Pellanda G, Lava SAG, Ferrarini A, Ramelli GP. High prevalence of pathologic copy number variants detected by chromosomal microarray in Swiss-Italian children with autism spectrum disorders. Eur J Paediatr Neurol 2015; 19:386-7. [PMID: 25725507 DOI: 10.1016/j.ejpn.2015.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Giorgia Pellanda
- Pediatric Department of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, Switzerland
| | - Sebastiano A G Lava
- Pediatric Department of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, Switzerland; University Children's Hospital, Inselspital, 3010 Bern, Switzerland; University of Bern, 3010 Bern, Switzerland
| | - Alessandra Ferrarini
- Pediatric Department of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, Switzerland
| | - Gian Paolo Ramelli
- Pediatric Department of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, Switzerland.
| |
Collapse
|
23
|
Quintela I, Fernandez-Prieto M, Gomez-Guerrero L, Resches M, Eiris J, Barros F, Carracedo A. A 6q14.1-q15 microdeletion in a male patient with severe autistic disorder, lack of oral language, and dysmorphic features with concomitant presence of a maternally inherited Xp22.31 copy number gain. Clin Case Rep 2015; 3:415-23. [PMID: 26185640 PMCID: PMC4498854 DOI: 10.1002/ccr3.255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022] Open
Abstract
We report on a male patient with severe autistic disorder, lack of oral language, and dysmorphic features who carries a rare interstitial microdeletion of 4.96 Mb at chromosome 6q14.1-q15. The patient also harbors a maternally inherited copy number gain of 1.69 Mb at chromosome Xp22.31, whose pathogenicity is under debate.
Collapse
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Montse Fernandez-Prieto
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Lorena Gomez-Guerrero
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Mariela Resches
- Departamento de Psicologia Evolutiva y de la Educacion, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Jesus Eiris
- Unidad de Neurologia Pediatrica, Departamento de Pediatria, Hospital Clinico Universitario de Santiago de Compostela Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Universidade de Santiago de Compostela Santiago de Compostela, Spain ; Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain ; Center of Excellence in Genomic Medicine Research, King Abdulaziz University Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Çöp E, Yurtbaşi P, Öner Ö, Münir KM. Genetic testing in children with autism spectrum disorders. ANADOLU PSIKIYATRI DERGISI-ANATOLIAN JOURNAL OF PSYCHIATRY 2015; 16:426-432. [PMID: 26345476 DOI: 10.5455/apd.1414607917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate karyotype abnormalities, MECP2 mutations, and Fragile X in a clinical population of children with Autism Spectrum Disorders (ASD) using The Clinical Report published by the American Academy of Pediatrics. METHODS Ninety-six children with ASD were evaluated for genetic testing and factors associated with this testing. RESULTS Abnormalities were found on karyotype in 9.7% and in DNA for fragile X in 1.4%. Karyotype abnormalities include inv(9)(p12q13); inv(9)(p11q13); inv(Y)(p11q11); Robertsonian translocation (13;14)(8q10q10) and (13,14)(q10q10); 9qh+; Yqh+; 15ps+; deletion 13(p11.2). CONCLUSION Genetic testing should be offered to all families of a child with an ASD, even not all of them would follow this recommendation. Although karyotype and FRAXA assessment will yield almost 10% positive results, a detailed history and physical examination are still the most important aspect of the etiological evaluation for children with ASD. Also, it is important to have geneticists to help in interpreting the information obtained from genetic testing.
Collapse
Affiliation(s)
- Esra Çöp
- Dr Sami Ulus Obstetrics and Pediatrics Training and Research Hospital, Child and Adolescent Psychiatry Clinic, Ankara, Turkey
| | | | - Özgür Öner
- Ankara University School of Medicine, Department of Psychiatry
| | - Kerim M Münir
- Developmental Medicine Center, Boston Children's Hospital, USA
| |
Collapse
|
25
|
Thunstrom S, Sodermark L, Ivarsson L, Samuelsson L, Stefanova M. UBE2A deficiency syndrome: a report of two unrelated cases with large Xq24 deletions encompassing UBE2A gene. Am J Med Genet A 2014; 167A:204-10. [PMID: 25287747 DOI: 10.1002/ajmg.a.36800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
Abstract
Intragenic mutations of the UBE2A gene, as well as larger deletions of Xq24 encompassing UBE2A have in recent years been associated with a syndromic form of X-linked intellectual disability called UBE2A deficiency syndrome or X-linked intellectual disability type Nascimento (OMIM#300860). Common clinical features in these patients include moderate to severe intellectual disability (ID), heart defects, dysmorphic features such as high forehead, synophrys, prominent supraorbital ridges, almond-shaped and deep-set eyes, wide mouth, myxedematous appearance, hirsutism, onychodystrophy, and genital anomalies. This study investigates clinical and molecular data of two unrelated, affected males with chromosome Xq24 deletions encompassing UBE2A. Both have been followed from birth until two years of age. A review of the previously published patients with deletions encompassing UBE2A is provided. Besides the common features, the two boys show anomalies not previously described, such as retinal coloboma, esophageal atresia with esophageal fistula, long fingers, camptodactyly, clinodactyly, and long broad toes. Analyses of the phenotype-genotype correlations suggest considerable prevalence of heart defects in the group of patients with larger deletions of Xq24 in comparison to the patients having intragenic UBE2A mutations. However, further studies are needed in order to establish statistically reliable phenotype-genotype correlations of this syndrome.
Collapse
Affiliation(s)
- Sofia Thunstrom
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|