1
|
Bidabad S, Ahmadpour Yazdi H, Zolghadr L, Valivand N, Gheibi N. Evaluation of Liposome Encapsulated Propolis Nanoparticles on Cell Proliferation and Apoptosis in A375 Melanoma Cancer Cell Line. Food Sci Nutr 2025; 13:e70303. [PMID: 40444124 PMCID: PMC12121438 DOI: 10.1002/fsn3.70303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/17/2025] [Accepted: 05/04/2025] [Indexed: 06/02/2025] Open
Abstract
Malignant melanoma is the deadliest type of skin cancer, and its global incidence has increased in the last decades. Recent studies have shown that propolis has an antitumor effect against various types of cancers. The aim of this study was to investigate the effects of Qazvin propolis nanoparticles encapsulated in liposomes on the A375 and HDF cell lines. For this purpose, the thin film hydration method was used to encapsulate nanopropolis within the liposomal formulation. Then, the physicochemical properties of the prepared liposomes were determined using DLS, FTIR, and SEM. In addition, the effects of this formulation on cell apoptosis, cell adhesion, cancer cell migration, and BAX, Bcl-2, and Caspase-3 gene expressions were evaluated using flow cytometry, atomic force microscopy, scratch, and q-real time PCR, respectively. According to the results, propolis nanoparticle-liposomes have a cytotoxic effect on the A375 cell line in a dose- and time-dependent manner through the induction of apoptosis, without having a toxic effect on the HDF cell line. The drug release results showed that more than 75% of the drug was released after 48 h at pH 5.4. The AFM and scratch analyses showed that Young's modulus and adhesion force values were increased. Therefore, this formulation significantly decreased the expression of Bcl-2 and increased the expression of BAX and Caspase-3 genes.
Collapse
Affiliation(s)
- Shima Bidabad
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineQazvin University of Medical SciencesQazvinIran
| | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Leila Zolghadr
- Cellular and Molecular Research Center, Research Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
- Department of ChemistryFaculty of Science, Imam Khomeini International UniversityQazvinIran
- Department of ChemistryQazvin Islamic Azad UniversityQazvinIran
| | - Nassim Valivand
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineQazvin University of Medical SciencesQazvinIran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
2
|
Ochoa-Sánchez C, Rodríguez-León E, Iñiguez-Palomares R, Rodríguez-Beas C. Brief Comparison of the Efficacy of Cationic and Anionic Liposomes as Nonviral Delivery Systems. ACS OMEGA 2024; 9:46664-46678. [PMID: 39619565 PMCID: PMC11603276 DOI: 10.1021/acsomega.4c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 01/05/2025]
Abstract
In recent decades, the development and application of nonviral vectors, such as liposomes and lipidic nanoparticles, for gene therapy and drug delivery have seen substantial progress. The interest in the physicochemical properties and structures of the complexes liposome/DNA and liposome/RNA is due to their potential to substitute viruses as carriers of drugs or genetic material into cells with minimal cytotoxicity, which could lead to their use in gene therapy. Initially, cationic liposomes were utilized as nonviral DNA delivery vectors; subsequently, different molecules, such as polymers, were incorporated to enhance transfection efficiency. Additionally, liposome/protein complexes have been developed as nonviral vectors for the treatment of diseases. The most relevant internalization pathways of these vectors and the few transfection results obtained using targeted and nontargeted liposomes are discussed below. The high cytotoxicity of cationic liposomes represents a significant challenge for the development of gene therapy and drug delivery. Anionic liposomes offer a promising alternative to address the limitations of conventional cationic liposomes, including immune response, short circulation time, and low toxicity. This review will discuss the advantages of cationic liposomes and the novel anionic liposome-based systems that have emerged as a result. The advent of novel designs and manufacturing techniques has facilitated the development of innovative systems, designated as lipid nanoparticles (LNPs), which serve as highly efficacious regulators of the immune system.
Collapse
Affiliation(s)
- Carlos Ochoa-Sánchez
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ericka Rodríguez-León
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ramón Iñiguez-Palomares
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - César Rodríguez-Beas
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| |
Collapse
|
3
|
Ottonelli I, Adani E, Bighinati A, Cuoghi S, Tosi G, Vandelli MA, Ruozi B, Marigo V, Duskey JT. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology. Int J Nanomedicine 2024; 19:4235-4251. [PMID: 38766661 PMCID: PMC11102183 DOI: 10.2147/ijn.s457302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Alaaeldin E, Refaat H, Saber EA, Aziz NM, Abdel-Maqsoud NMR, Aleem MMAE, Kamel MY, Mady FM. Co-administration of Thymoquinone and Propolis in Liposomal Formulations as a Potential Approach for Treatment of Acetic Acid-Induced Ulcerative Colitis: Physiological and Histopathological Analysis. AAPS PharmSciTech 2023; 24:190. [PMID: 37726590 DOI: 10.1208/s12249-023-02637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
A severe form of autoimmune-mediated inflammatory bowel disease (IBD) is termed as ulcerative colitis (UC) which ultimately results in significant mucosal damage and ulceration. Herbal remedies may be employed as an alternative for treatment of UC instead of conventional medications such as Sulfasalazine. Promising natural remedies for the treatment of IBD, including colitis, are propolis extract (PP) and thymoquinone (TQ). This study is aimed at assessing the potential of liposomal formulations of TQ and Egyptian PP in combination therapy on improving their therapeutic efficacy against ulcerative colitis in order to maximize the potential of their beneficial clinical effects. Clinical, biochemical, and histological evaluations of colonic mucosal damage and inflammation were evaluated. The results exhibited a significant increase in tissue MDA, TNFα, and nitrite levels with activation of caspase-3 in the acetic acid-induced colitis group, which is predominantly downregulated in the treatment groups. The prepared formulations of TQ and PP revealed liposomal vesicles in a nanoscale size (192 ± 20.3 and 98.2 ± 20.3 nm, respectively) and accepted stability indicated with a zeta potential of 19.3 ± 0.11 and 17.1 ± 0.25 mV, respectively. They showed an entrapment efficiency of 85.3 ± 12.6% and 69.3 ± 11.8%, respectively. At comparable doses, combination therapy with thymoquinone liposomes and propolis liposomes considerably outperformed free TQ and free PP in reducing inflammation of UC as shown in the present study by clinical, biochemical, and histological evaluations.
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Hesham Refaat
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52264, USA
| | | | | | | | | | - Maha Yehia Kamel
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
6
|
Panchal K, Katke S, Dash SK, Gaur A, Shinde A, Saha N, Mehra NK, Chaurasiya A. An expanding horizon of complex injectable products: development and regulatory considerations. Drug Deliv Transl Res 2023; 13:433-472. [PMID: 35963928 PMCID: PMC9376055 DOI: 10.1007/s13346-022-01223-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
There has been a constant evolution in the pharmaceutical market concerning the new technologies imbibed in delivering drug substances for various indications. This is either market-driven or technology-driven to improve the overall therapeutic efficacy and patients' quality of life. The pharmaceutical industry has experienced rapid growth in the area of complex injectable products because of their effectiveness in the unmet market. These novel parenteral products, viz, the nanoparticles, liposomes, microspheres, suspensions, and emulsions, have proven their worth as "Safe and Effective" products. However, the underlying challenges involved in the development, scalability, and characterization of these injectable products are critical. Moreover, the guidelines available do not provide a clear understanding of these complex products, making it difficult to anticipate the regulatory requirements. Thus, it becomes imperative to comprehend the criticalities and develop an understanding of these products. This review discusses various complexities involved in the parenteral products such as complex drug substances, excipients, dosage forms, drug administration devices like pre-filled syringes and injector pens, and its different characterization tools and techniques. The review also provides a brief discussion on the regulatory aspects and associated hurdles with other parenteral products.
Collapse
Affiliation(s)
- Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sanat Kumar Dash
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Ankit Gaur
- Formulation Development, Par Formulations Pvt. Ltd, Navi Mumbai, Endo India, 400 708, India
| | - Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Nithun Saha
- Research & Development - Injectables, MSN Laboratories Pvt. Ltd, Pashamaylaram, Sangareddy, Telangana, 502307, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India.
| |
Collapse
|
7
|
Li Y, Zhang X, He D, Ma Z, Xue K, Li H. 45S5 Bioglass® works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds. Acta Biomater 2022; 145:372-389. [PMID: 35421617 DOI: 10.1016/j.actbio.2022.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 01/06/2023]
Abstract
Diabetic chronic wounds are difficult to heal because of the presence of excessive inflammation and high overexpression of matrix metalloproteinase-9 (MMP-9), which greatly affects the quality of life of patients with diabetes and increases the risk of death. Thus, the regulation of excessive inflammation and inhibition of MMP-9 overexpression are effective strategies to improve diabetic wound healing. The present study is the first to demonstrate that ion products of 45S5 Bioglass® (BG) can work with small interfering RNA of MMP9 (MMP9-siRNA) to reduce MMP-9 expression in tissue-forming cells and enhance the synthesis of extracellular matrix proteins (ECMs). Specifically, the BG ionic products can stimulate macrophages to convert to M2 phenotype, thereby creating a proregenerative inflammation microenvironment to indirectly suppress the expression of MMP-9 in tissue-forming cells. Chitosan nanoparticles encapsulating MMP9-siRNA (MMP9-siNP) can directly lower MMP-9 expression in tissue-forming cells. In addition, BG ionic products can promote the vascularization of endothelial cells and ECM protein synthesis by fibroblasts. Thus, injectable BG/sodium alginate (BG/SA) hydrogels loaded with MMP9-siNP can significantly accelerate the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen synthesis, and enhancing angiogenesis in the wounds, thereby demonstrating their great application potential in treating diabetic chronic wounds. STATEMENT OF SIGNIFICANCE: Excessive inflammation and high overexpression of MMP-9 have been considered as factors that severely hinder the healing process of diabetic chronic wounds. Effective strategies are required for the regulation of excessive inflammation and inhibition of MMP-9 overexpression to enhance diabetic wound healing. In the present work, an injectable bioglass/sodium alginate (BG/SA) hydrogel loaded with MMP9-siNP was developed; this hydrogel significantly accelerated the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen accumulation, and enhancing angiogenesis in the wounds. Thus, the BG/SA hydrogel loaded with MMP9-siNP has great potential for use in healing of diabetic chronic wounds.
Collapse
|
8
|
Elfakhri KH, Niu M, Ghosh P, Ramezanli T, Raney SG, Ahmed S, Willett DR, Yilmaz H, Ashraf M, Zidan AS. Physicochemical and structural evaluation of microparticles in tretinoin topical gels. Int J Pharm 2022; 620:121748. [DOI: 10.1016/j.ijpharm.2022.121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
9
|
Jatal R, Mendes Saraiva S, Vázquez-Vázquez C, Lelievre E, Coqueret O, López-López R, de la Fuente M. Sphingomyelin nanosystems decorated with TSP-1 derived peptide targeting senescent cells. Int J Pharm 2022; 617:121618. [DOI: 10.1016/j.ijpharm.2022.121618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
|
10
|
El-aziz EAEDA, Elgayar SF, Mady FM, Abourehab MAS, Hasan OA, Reda LM, Alaaeldin E. The Potential of Optimized Liposomes in Enhancement of Cytotoxicity and Apoptosis of Encapsulated Egyptian Propolis on Hep-2 Cell Line. Pharmaceutics 2021; 13:2184. [PMID: 34959465 PMCID: PMC8704699 DOI: 10.3390/pharmaceutics13122184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Development of pharmaceutical dosage forms of natural products has gained great interest recently. Propolis is a natural product with various active compounds and multiple pharmacological activities. Its resinous nature and low bioavailability were obstacles in the optimum use of this magnificent natural product. AIM This study evaluates the effect of using liposomes as a drug delivery system on the enhancement of the cytotoxic effect of propolis on squamous cell carcinoma cell lines (Hep-2) of head and neck. METHODS An optimized liposomal formulation of propolis was prepared using the conventional thin film hydration method 1, 2. The prepared (Hep-2) cell line was treated with different concentrations of propolis and optimized propolis liposomes for 24 h. The effect of both propolis and propolis liposomes on cell line was investigated using MTT assay, cytological examination, and nuclear morphometric analysis. The effect of the drugs on the cell apoptosis was evaluated using Annexin V. RESULTS The findings revealed that both propolis and propolis liposomes have a cytotoxic effect on Hep-2 cell line through induction of apoptosis. The effect was dose dependent. However, a statistically significant enhancement in propolis-mediated apoptosis on Hep-2 cells was elucidated due to encapsulation within the prepared liposomes. CONCLUSION Liposome is a powerful tool for enhancing the cytotoxicity of propolis against Hep-2 cell line.
Collapse
Affiliation(s)
- Enas Alaa El-din Abd El-aziz
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Minia University, Minia 61519, Egypt; (E.A.E.-d.A.E.-a.); (S.F.E.)
| | - Sherif Farouk Elgayar
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Minia University, Minia 61519, Egypt; (E.A.E.-d.A.E.-a.); (S.F.E.)
| | - Fatma M. Mady
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (F.M.M.); (M.A.S.A.)
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (F.M.M.); (M.A.S.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qurra University, Makkah 21955, Saudi Arabia
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Lamis M. Reda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt;
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (F.M.M.); (M.A.S.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt;
| |
Collapse
|
11
|
Andrade Chaves M, Pinho SC. Influence of phospholipid saturation on the physicochemical characteristics of curcumin/vitamin D
3
co‐loaded proliposomes obtained by the micronized sucrose coating process. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matheus Andrade Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis) Department of Food Engineering School of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Samantha Cristina Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis) Department of Food Engineering School of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| |
Collapse
|
12
|
Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An In Vitro and In Silico Study of the Enhanced Antiproliferative and Pro-Oxidant Potential of Olea europaea L. cv. Arbosana Leaf Extract via Elastic Nanovesicles (Spanlastics). Antioxidants (Basel) 2021; 10:antiox10121860. [PMID: 34942963 PMCID: PMC8698813 DOI: 10.3390/antiox10121860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC50 values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC50 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC50 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.
Collapse
Affiliation(s)
- Taghreed S. Alnusaire
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mha Albqmi
- Chemistry Department, College of Science and Arts, Jouf University, P.O. Box 756 Alqurayyat, Saudi Arabia;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ehab M. Mostafa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (A.M.); (U.R.A.)
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Hesham Refaat
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence: (A.M.); (U.R.A.)
| |
Collapse
|
13
|
Preparation and characterization of withaferin A loaded pegylated nanoliposomal formulation with high loading efficacy: In vitro and in vivo anti-tumour study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112335. [PMID: 34474886 DOI: 10.1016/j.msec.2021.112335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 12/09/2022]
Abstract
Withaferin A (WA) is a natural steroidal lactone with promising therapeutic applications. However, its clinical application is limited due to the low bioavailability and hydrophobic nature. In this study, we had prepared PEGylated nanoliposomal withaferin A (LWA) using thin-film hydration method. Dynamic light scattering, Transmission electron microscopy, and HPLC were used to investigate the impact of prepared formulations on the size, charge, morphology, and encapsulation efficiency of the LWA. The prepared nanoliposomal system had spherical vesicles, with the mean particle size of 125 nm and had an encapsulation efficiency of 83.65% with good stability. The characterization results indicated that nanoliposomal formulation is able to improve biocompatibility and bioavailability of WA. In vitro drug release study showed that LWA had an enhanced sustained drug release effect than the free drug. In vitro studies using ascites cell lines (DLA and EAC) showed that LWA treatment could induce apoptosis in ascites cells evidenced by acridine orange/ethidium bromide, Hoechst, and Giemsa staining. In vivo tumour study revealed that LWA treatment significantly reduced tumour growth and improved survival in DLA tumour bearing mice. In vivo results further demonstrated that LWA mitigated solid tumour development by regulating Ki-67 and cyclin D1 protein expression. The overall study results reveal that nanoliposome encapsulated WA exhibits therapeutic efficacy over WA in regulating tumour development as evidenced from ascites cell apoptosis as well as experimental tumour reduction studies.
Collapse
|
14
|
Weng W, Wang Q, Wei C, Adu-Frimpong M, Toreniyazov E, Ji H, Yu J, Xu X. Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2021; 47:308-318. [PMID: 33494627 DOI: 10.1080/03639045.2021.1879839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Liquiritin, as one of the main flavonoids in Glycyrrhiza, exhibits extensive pharmacological effects, such as the anti-oxidant, anti-inflammatory, anti-tumor and so on. Herein, the aqueous solubility and oral bioavailability of liquiritin was purposely enhanced via the preparation of the mixed micelles. METHODS The liquiritin-loaded micelles (LLM) were fabricated via thin-film dispersion method. The optimal LLM formulation was evaluated through physical properties including particle size (PS), encapsulation efficiency (EE) and drug loading (DL). In vitro accumulate release as well as in vivo pharmacokinetics were also evaluated. Moreover, the hypolipidemic activity of LLM was observed in the hyperlipidemia mice model. RESULTS The LLM exhibited a homogenous spherical shape with small mean PS, good stability and high encapsulation efficiency. The accumulate release rates in vitro of the LLM were obviously higher than free liquiritin. The oral bioavailability of the formulation was heightened by 3.98 times in comparison with the free liquiritin. More importantly, LLM increased the hypolipidemic and effect of alleviating lipid metabolism disorder in hepatocytes of liquiritin in hyperlipidemia mice model. CONCLUSIONS Collectively, the improved solubility of liquiritin in water coupled with its enhanced oral bioavailability and concomitant hypolipidemic activity could be attributed to the incorporation of the drug into the mixed micelles.
Collapse
Affiliation(s)
- Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus branch), Nukus, The Republic of Uzbekistan.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China.,Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| |
Collapse
|
15
|
Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. Int J Food Microbiol 2021; 342:109071. [PMID: 33578302 DOI: 10.1016/j.ijfoodmicro.2021.109071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022]
Abstract
Biodegradable films reinforced with bio-nanomaterials are a solution for developing active packaging systems, shelf-life extension and protection of environment against conventional packaging. This study aimed to characterize the biocompatible chitosan (CS) films formulated with nano-liposomal garlic essential oil (NLGEO) and assess the physicho-mechanical, morphology properties and also microbial and chemical changes in chicken fillets during storage time at 4 °C. NLGEO was obtained by thin-layer hydration-sonication method using glycerol and tween 80 as plasticizer and emulsifier, respectively. Different levels (0, 0.5, 1 and 2%) of NLGEO with average size of ~101 nm were added into the chitosan matrix and films fabricated by casting method. The average size, polydispersity index and zeta potential were ~101 nm, 0.127 and -7.23, respectively. Control samples showed higher values for pH, total volatile nitrogen (TVN), peroxide value (PV), thiobarbituric acid-reactive substances (TBARS), and microbial count including total viable count (TVC), coliforms, Staphylococcus aureus and psychrotroph bacteria than treated samples. The films with higher NLGEO content represented stronger inhibitory effects. The incorporation of NLGEO improved the mechanical properties and water resistance of active films. Microstructure analysis also showed a nearly smooth surface morphology and homogenous structure with a good dispersion for NLGEO films. Significant synergistic effects in chemical and bacterial preservation of chicken fillet samples were observed by NLGEO films. The optimal mechanical and barrier properties of chitosan-NLGEO films introduced it a potential active packaging to extend the shelf life of chicken fillet.
Collapse
|
16
|
Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical Nano-Vesicular Spanlastics of Celecoxib: Enhanced Anti-Inflammatory Effect and Down-Regulation of TNF-α, NF-кB and COX-2 in Complete Freund's Adjuvant-Induced Arthritis Model in Rats. Int J Nanomedicine 2021; 16:133-145. [PMID: 33447032 PMCID: PMC7802787 DOI: 10.2147/ijn.s289828] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that underlies chronic inflammation of the synovial membrane. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat RA. However, a long list of adverse events associated with long-term treatment regimens with NSAIDs negatively influences patient compliance and therapeutic outcomes. AIM The aim of this work was to achieve site-specific delivery of celecoxib-loaded spanlastic nano-vesicle-based delivery system to the inflamed joints, avoiding systemic administration of large doses. METHODOLOGY To develop spanlastic nanovesicles for transdermal delivery of celecoxib, modified injection method was adopted using Tween 80 or Brij as edge activators. Entrapment efficiency, vesicle size, ex vivo permeation, and morphology of the prepared nano-vesicles were characterized. Carbopol-based gels containing the selected formulations were prepared, and their clarity, pH, rheological performance, and ex vivo permeation were characterized. Celecoxib-loaded niosomes and noisome-containing gels were developed for comparison. The in vivo efficacy of the selected formulations was evaluated in a rat model of Freund's complete adjuvant-induced arthritis. Different inflammatory markers including TNF-α, NF-кB and COX-2 were assessed in paw tissue before and after treatment. RESULTS The size and entrapment efficiency of the selected spanlastic nano-vesicle formulation were 112.5 ± 3.6 nm, and 83.6 ± 2.3%, respectively. This formulation has shown the highest transdermal flux and permeability coefficient compared to the other investigated formulations. The spanlastics-containing gel of celecoxib has shown transdermal flux of 6.9 ± 0.25 µg/cm2/hr while the celecoxib niosomes-containing gel and unprocessed celecoxib-loaded gel have shown 5.2 ± 0.12 µg/cm2/hr and 0.64 ± 0.09 µg/cm2/hr, respectively. In the animal model of RA, the celecoxib-loaded spanlastics-containing gel significantly reduced edema circumference and significantly suppressed TNF-α, NF-кB and COX-2 levels compared to the niosomes-containing gel, the marketed diclofenac sodium gel, and unprocessed celecoxib-loaded gel. CONCLUSION The spanlastic nano-vesicle-containing gel represents a more efficient site-specific treatment for topical treatment of chronic inflammation like RA, compared to commercial and other conventional alternatives.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Celecoxib/pharmacology
- Celecoxib/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Drug Delivery Systems/methods
- Freund's Adjuvant
- Gene Expression Regulation/drug effects
- Kinetics
- Liposomes
- Male
- Mice
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nanoparticles/chemistry
- Particle Size
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Rheology
- Skin Absorption/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen S Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
17
|
El Hoffy NM, Abdel Azim EA, Hathout RM, Fouly MA, Elkheshen SA. Glaucoma: Management and Future Perspectives for Nanotechnology-Based Treatment Modalities. Eur J Pharm Sci 2020; 158:105648. [PMID: 33227347 DOI: 10.1016/j.ejps.2020.105648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Glaucoma, being asymptomatic for relatively late stage, is recognized as a worldwide cause of irreversible vision loss. The eye is an impervious organ that exhibits natural anatomical and physiological barriers which renders the design of an efficient ocular delivery system a formidable task and challenge scientists to find alternative formulation approaches. In the field of glaucoma treatment, smart delivery systems for targeting have aroused interest in the topical ocular delivery field owing to its potentiality to oppress many treatment challenges associated with many of glaucoma types. The current momentum of nano-pharmaceuticals, in the development of advanced drug delivery systems, hold promises for much improved therapies for glaucoma to reduce its impact on vision loss. In this review, a brief about glaucoma; its etiology, predisposing factors and different treatment modalities has been reviewed. The diverse ocular drug delivery systems currently available or under investigations have been presented. Additionally, future foreseeing of new drug delivery systems that may represent potential means for more efficient glaucoma management are overviewed. Finally, a gab-analysis for the required investigation to pave the road for commercialization of ocular novel-delivery systems based on the nano-technology are discussed.
Collapse
Affiliation(s)
- Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt
| | - Engy A Abdel Azim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
18
|
Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution. Pharmaceutics 2020; 12:pharmaceutics12111065. [PMID: 33182248 PMCID: PMC7695269 DOI: 10.3390/pharmaceutics12111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Intricate formulation methods and/or the use of sophisticated equipment limit the prevalence of liposomal dosage-forms. Simple techniques are developed to assemble amphiphiles into globular lamellae while transiting from the immiscible organic to the aqueous phase. Various parameters are optimized by injecting chloroform solution of amphiphiles into the aqueous phase and subsequent removal of the organic phase. Further simplification is achieved by reorienting amphiphiles through a spontaneous phase transition in a swirling biphasic system during evaporation of the organic phase under vacuum. Although the chloroform injection yields smaller Z-average and poly-dispersity-index the spontaneous phase transition method overrides simplicity and productivity. The increasing solid/solvent ratios results in higher Z-average and broader poly-dispersity-index of liposomes under a given set of experimental conditions, and vice versa. Surface charge dependent large unilamellar vesicles with a narrow distribution have poly-dispersity-index < 0.4 in 10 μM saline. As small and monodisperse liposomes are prerequisites in targeted drug delivery strategies, hence the desired Z-average < 200 d.nm and poly-dispersity-index < 0.15 is obtained through the serial membrane-filtration method. Phosphatidylcholine/water 4 μmol/mL is achieved at a temperature of 10°C below the phase-transition temperature of phospholipids, ensuring suitability for thermolabile entities and high entrapment efficiency. Both methods furnish the de-novo rearrangement of amphiphiles into globular lamellae, aiding in the larger entrapped volume. The immiscible organic phase benefits from its faster and complete removal from the final product. High cholesterol content (55.6 mol%) imparts stability in primary hydration medium at 5 ± 3 °C for 6 months in light-protected type-1 glass vials. Collectively, the reported methods are novel, scalable and time-efficient, yielding high productivity in simple equipment.
Collapse
|
19
|
Chaves MA, Pinho SC. Unpurified soybean lecithins impact on the chemistry of proliposomes and liposome dispersions encapsulating vitamin D3. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100700] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Le-Deygen IM, Skuredina AA, Kudryashova EV. Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Liu G, Hou S, Tong P, Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Crit Rev Anal Chem 2020; 52:392-412. [DOI: 10.1080/10408347.2020.1805293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
22
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
23
|
Li Y, Zhu C, Wu H, Pan H, Liu H. Kolliphor® HS 15-cyclodextrin Complex for the Delivery of Voriconazole: Preparation, Characterization, and Antifungal Activity. Curr Drug Metab 2020; 21:379-389. [PMID: 32432999 DOI: 10.2174/1389200221666200520085915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study aimed to reduce the amount of sulfobutylether-β-cyclodextrin (SBECD) used in the marketed voriconazole injections to meet the clinical needs of patients with moderate-to-severe renal impairment (creatinine clearance rate <50 mL/min). OBJECTIVE This study found that the surfactant Kolliphor® HS 15 (HS 15) and SBECD had significant synergistic effects on solubilizing voriconazole, and a novel voriconazole complex delivery system (VRC-CD/HS 15) was established. METHODS The complex system was characterized, and its antifungal activity was studied by dynamic light scattering, dialysis bag method, disk diffusion, and broth microdilution. RESULTS Compared with the control, its encapsulation efficiency (90.07±0.48%), drug loading (7.37±0.25%) and zeta potential (-4.36±1.37 mV) were increased by 1.54%, 41.19%, and 296.36%, respectively; its average particle size (13.92±0.00 nm) was reduced by 15.69%, so the complex system had better stability. Simultaneously, its drug release behavior was similar to that of the control, and it was a first-order kinetic model. Antifungal studies indicated that the complex system had noticeable antifungal effects. With the increase of drug concentration, the inhibition zone increased. The minimum inhibitory concentrations of the complex system against Cryptococcus neoformans, Aspergillus niger and Candida albicans were 0.0313 μg/mL, 1 μg/mL and 128 μg/mL, respectively. CONCLUSION It showed a significant inhibitory effect on C. neoformans and had a visible therapeutic effect on Kunming mice infected with C. neoformans. Consequently, VRC-CD/HS 15 had better physicochemical properties and still had an apparent antifungal effect, and was promising as a potential alternative drug for clinical application.
Collapse
Affiliation(s)
- Yiqi Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Chao Zhu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hui Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hongchun Pan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hong Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| |
Collapse
|
24
|
Puglia C, Santonocito D, Bonaccorso A, Musumeci T, Ruozi B, Pignatello R, Carbone C, Parenti C, Chiechio S. Lipid Nanoparticle Inclusion Prevents Capsaicin-Induced TRPV1 Defunctionalization. Pharmaceutics 2020; 12:pharmaceutics12040339. [PMID: 32290081 PMCID: PMC7238012 DOI: 10.3390/pharmaceutics12040339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Capsaicin (CPS) is a highly selective agonist of the transient receptor potential vanilloid type 1 (TRPV1) with a nanomolar affinity. High doses or prolonged exposure to CPS induces TRPV1 defunctionalization and, although this effect is currently used for the treatment of thermal hyperalgesia in chronic pain conditions, it is responsible of detrimental effects, such as denervation of sensory fibers. The aim of the present study was to formulate CPS loaded lipid nanocarriers (CPS-LN) in order to optimize CPS release, thus preventing TRPV1 internalization and degradation. METHODS CPS-LNs were formulated and characterized by in vitro studies. The activation of TRPV1 receptors after CPS-LN administration was evaluated by measuring spontaneous pain that was induced by local injection into the plantar surface of the mouse hind-paw. Moreover, the expression of TRPV1 in the skin was evaluated by western blot analysis in CPS-LN injected mice and then compared to a standard CPS solution (CPS-STD). RESULTS CPS inclusion in LN induced a lower pain response when compared to CPS-STD; further, it prevented TRPV1 down-regulation in the skin, while CPS-STD induced a significant reduction of TRPV1 expression. CONCLUSIONS Drug encapsulation in lipid nanoparticles produced an optimization of CPS release, thus reducing mice pain behavior and avoiding the effects that are caused by TRPV1 defunctionalization related to a prolonged activation of this receptor.
Collapse
Affiliation(s)
- Carmelo Puglia
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
- Correspondence: ; Tel.: +39-957384206
| | - Debora Santonocito
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Angela Bonaccorso
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Teresa Musumeci
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Barbara Ruozi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41100 Modena, Italy;
| | - Rosario Pignatello
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Claudia Carbone
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Carmela Parenti
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Santina Chiechio
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
25
|
Curcumin-loaded proliposomes produced by the coating of micronized sucrose: Influence of the type of phospholipid on the physicochemical characteristics of powders and on the liposomes obtained by hydration. Food Chem 2019; 291:7-15. [DOI: 10.1016/j.foodchem.2019.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
|
26
|
Modulation effect of core-wall ratio on the stability and antibacterial activity of cinnamaldehyde liposomes. Chem Phys Lipids 2019; 223:104790. [DOI: 10.1016/j.chemphyslip.2019.104790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022]
|
27
|
Kumar S, Rao R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00903-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Mostafa M, Alaaeldin E, Aly UF, Sarhan HA. Optimization and Characterization of Thymoquinone-Loaded Liposomes with Enhanced Topical Anti-inflammatory Activity. AAPS PharmSciTech 2018; 19:3490-3500. [PMID: 30218265 DOI: 10.1208/s12249-018-1166-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/26/2018] [Indexed: 11/30/2022] Open
Abstract
Thymoquinone, the major constituent of Nigella sativa oil has been found to have a promising topical anti-inflammatory activity; however, exaggerated heat and photo-sensitivity and lipophilicity prevent the best use of this promising product. The present work aimed to formulate an ideal thymoquinone liposomal system for topical delivery. Different liposomal systems were developed using thin film hydration method by applying different cholesterol molar concentrations, different total lipid molar concentrations, and different drug-to-lipid ratios. Morphological characterization of the prepared formulae was performed using polarized light, scanning electron microscope, and transmission electron microscope. The optimized formula (F12) was selected on the basis of enhanced permeation through the skin and was incorporated into chitosan gel for topical application. The gel formulation was clear with suitable skin permeation and exhibited acceptable rheological properties. Using carrageenan-induced paw edema in rats, the developed chitosan gel (F12) showed significant superior in vivo anti-inflammatory activity over the chitosan gel of the TQ (p < 0.05) and comparable effect to the marketed indomethacin gel. As a conclusion, results revealed the potential of formulating thymoquinone as liposomal formulation in enhancing the anti-inflammatory effect compared to the TQ solution.
Collapse
|
29
|
Robson AL, Dastoor PC, Flynn J, Palmer W, Martin A, Smith DW, Woldu A, Hua S. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology. Front Pharmacol 2018; 9:80. [PMID: 29467660 PMCID: PMC5808202 DOI: 10.3389/fphar.2018.00080] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.
Collapse
Affiliation(s)
- Annie-Louise Robson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Paul C Dastoor
- Centre for Organic Electronics, University of Newcastle, Callaghan, NSW, Australia
| | - Jamie Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - William Palmer
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Antony Martin
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ameha Woldu
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Susan Hua
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
30
|
Giacometti G, Marini M, Papadopoulos K, Ferreri C, Chatgilialoglu C. trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery. Molecules 2017; 22:E2082. [PMID: 29182583 PMCID: PMC6149667 DOI: 10.3390/molecules22122082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022] Open
Abstract
The use of liposomes has been crucial for investigations in biomimetic chemical biology as a membrane model and in medicinal chemistry for drug delivery. Liposomes are made of phospholipids whose biophysical characteristics strongly depend on the type of fatty acid moiety, where natural unsaturated lipids always have the double bond geometry in the cis configuration. The influence of lipid double bond configuration had not been considered so far with respect to the competence of liposomes in delivery. We were interested in evaluating possible changes in the molecular properties induced by the conversion of the double bond from cis to trans geometry. Here we report on the effects of the addition of trans-phospholipids supplied in different amounts to other liposome constituents (cholesterol, neutral phospholipids and cationic surfactants), on the size, ζ-potential and stability of liposomal formulations and on their ability to encapsulate two dyes such as rhodamine B and fluorescein. From a biotechnological point of view, trans-containing liposomes proved to have different characteristics from those containing the cis analogues, and to influence the incorporation and release of the dyes. These results open new perspectives in the use of the unnatural lipid geometry, for the purpose of changing liposome behavior and/or of obtaining molecular interferences, also in view of synergic effects of cell toxicity, especially in antitumoral strategies.
Collapse
Affiliation(s)
- Giorgia Giacometti
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.
| | - Kyriakos Papadopoulos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
| | - Carla Ferreri
- ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
- ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
31
|
Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, Pan X, Wu CY, Wu C. Ocular Cubosome Drug Delivery System for Timolol Maleate: Preparation, Characterization, Cytotoxicity, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2017; 18:2919-2926. [PMID: 28429294 DOI: 10.1208/s12249-017-0763-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/09/2017] [Indexed: 01/30/2023] Open
Abstract
Glaucoma is an ocular disease featuring increased intraocular pressure (IOP) and its primary treatment strategy is to lower IOP by medication. Current ocular drug delivery in treating glaucoma is confronting a variety of challenges, such as low corneal permeability and bioavailability due to the unique anatomical structure of the human eye. To tackle these challenges, a cubosome drug delivery system for glaucoma treatment was constructed for timolol maleate (TM) in this study. The TM cubosomes (liquid crystalline nanoparticles) were prepared using glycerol monooleate and poloxamer 407 via high-pressure homogenization. These constructed nanoparticles appeared spherical using transmission electron microscopy and had an average particle size of 142 nm, zeta potential of -6.27 mV, and over 85% encapsulation efficiency. Moreover, using polarized light microscopy and small-angle X-ray scattering (SAXS), it was shown that the TM cubosomes have cubic liquid crystalline D-type (Pn3m) structure, which provides good physicochemical stability and high encapsulation efficiency. Ex vivo corneal permeability experiments showed that the total amount of TM cubosomes penetrated was higher than the commercially available eye drops. In addition, in vivo studies revealed that TM cubosomes reduced the IOP in rabbits from 27.8∼39.7 to 21.4∼32.6 mmHg after 1-week administration and had a longer retention time and better lower-IOP effect than the commercial TM eye drops. Furthermore, neither cytotoxicity nor histological impairment in the rabbit corneas was observed. This study suggests that cubosomes are capable of increasing the corneal permeability and bioavailability of TM and have great potential for ocular disease treatment.
Collapse
|
32
|
Bolean M, Borin IA, Simão AMS, Bottini M, Bagatolli LA, Hoylaerts MF, Millán JL, Ciancaglini P. Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1911-1920. [PMID: 28549727 PMCID: PMC5793902 DOI: 10.1016/j.bbamem.2017.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
Abstract
Atomic force microscopy (AFM) is one of the most commonly used scanning probe microscopy techniques for nanoscale imaging and characterization of lipid-based particles. However, obtaining images of such particles using AFM is still a challenge. The present study extends the capabilities of AFM to the characterization of proteoliposomes, a special class of liposomes composed of lipids and proteins, mimicking matrix vesicles (MVs) involved in the biomineralization process. To this end, proteoliposomes were synthesized, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS), with inserted tissue-nonspecific alkaline phosphatase (TNAP) and/or annexin V (AnxA5), both characteristic proteins of osteoblast-derived MVs. We then aimed to study how TNAP and AnxA5 insertion affects the proteoliposomes' membrane properties and, in turn, interactions with type II collagen, thus mimicking early MV activity during biomineralization. AFM images of these proteoliposomes, acquired in dynamic mode, revealed the presence of surface protrusions with distinct viscoelasticity, thus suggesting that the presence of the proteins induced local changes in membrane fluidity. Surface protrusions were measurable in TNAP-proteoliposomes but barely detectable in AnxA5-proteoliposomes. More complex surface structures were observed for proteoliposomes harboring both TNAP and AnxA5 concomitantly, resulting in a lower affinity for type II collagen fibers compared to proteoliposomes harboring AnxA5 alone. The present study achieved the topographic analysis of lipid vesicles by direct visualization of structural changes, resulting from protein incorporation, without the need for fluorescent probes.
Collapse
Affiliation(s)
- Maytê Bolean
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Ivana A Borin
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana M S Simão
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Inflammatory and Infectious Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - José L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pietro Ciancaglini
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
|
35
|
Rafiee Z, Barzegar M, Sahari MA, Maherani B. Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chem 2017; 220:115-122. [DOI: 10.1016/j.foodchem.2016.09.207] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023]
|
36
|
Bryła A, Juzwa W, Weiss M, Lewandowicz G. Lipid nanoparticles assessment by flow cytometry. Int J Pharm 2017; 520:149-157. [PMID: 28161665 DOI: 10.1016/j.ijpharm.2017.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Liposomes are promising carriers for drugs and bioactive compounds. Size and structure are their crucial parameters. Thus, it is essential to assess individual vesicles as prepared. Currently available techniques fail to measure liposome's size and structure simultaneously, with a high throughput. To solve this problem, we have developed a novel, flow cytometric method quantifying liposomes. METHODS Firstly, the following fluorescent staining combinations were tested: DiD/TO, Rh123/DiD, Syto9/DiD. Further, chosen fluorochromes were used to compare three populations of vesicles: raw (R), obtained by thin film hydration and extruded ones (populations E10 and E21). Dynamic light scattering (DLS) was used for determination of average diameter and size distribution of nanocarriers. Structural differences between the raw and the extruded liposomes, as well as additional information concerning vesicles size were acquired employing atomic force microscopy (AFM). RESULTS DLS analysis indicated that, three distinct populations of vesicles were obtained. Liposomes were characterized by mean diameter of 323nm, 220nm and 170nm for population R, E10 and E21 respectively. All the populations were stable and revealed zeta potential of -29mV. AFM confirmed that raw and extruded liposomes were differed in structure. CONCLUSIONS AND GENERAL SIGNIFICANCE DiD/TO was the optimal fluorochrome combination that enabled to resolve distinctly the sub-populations of liposomes. Results obtained by flow cytometry were in a good agreement with those from DLS and AFM. It was proved that, flow cytometry, when proper fluorescent dyes are used, is an adequate method for liposomes assessment. The proposed method enables fast and reliable analysis of liposomes in their native environment.
Collapse
Affiliation(s)
- Anna Bryła
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland.
| | - Marek Weiss
- Institute of Physics, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland.
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland.
| |
Collapse
|
37
|
Balanč B, Trifković K, Đorđević V, Marković S, Pjanović R, Nedović V, Bugarski B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Belletti D, Grabrucker AM, Pederzoli F, Menrath I, Cappello V, Vandelli MA, Forni F, Tosi G, Ruozi B. EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION. Int J Pharm 2016; 511:331-340. [PMID: 27418565 DOI: 10.1016/j.ijpharm.2016.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
The biocompatibility of polymers, lipids and surfactants used to formulate is crucial for the safe and sustainable development of nanocarriers (nanoparticles, liposomes, micelles, and other nanocarriers). In this study, Cholesterol (Chol), a typical biocompatible component of liposomal systems, was formulated in Chol-based solid nanoparticles (NPs) stabilized by the action of surfactant and without the help of any other formulative component. Parameters as type (Solutol HS 15, cholic acid sodium salt, poly vinyl alcohol and Pluronic-F68), concentration (0.2; 0.5 and 1% w/v) of surfactant and working temperature (r.t. and 45°C) were optimized and all samples characterized in terms of size, zeta potential, composition, thermal behavior and structure. Results demonstrated that only Pluronic-F68 (0.5% w/v) favors the organization of Chol chains in structured NPs with mean diameter less than 400nm. Moreover, we demonstrated the pivotal role of working temperature on surfactant aggregation state/architecture/stability of Chol-based nanoparticles. At room temperature, Pluronic-F68 exists in solution as individual coils. In this condition, nanoprecipitation of Chol formed the less stable NPs with a 14±3% (w/w) of Pluronic-F68 prevalently on surface (NP-Chol/0.5). On the contrary, working near the critical micelle temperature (CMT) of surfactant (45°C), Chol precipitates with Pluronic-F68 (9±5% w/w) in a compact stable matricial structure (NP-Chol/0.5-45). In vitro studies highlight the low toxicity and the affinity of NP-Chol/0.5-45 for neuronal cells suggesting their potential applicability in pathologies with a demonstrated alteration of neuronal plasticity and synaptic communication (i.e. Huntington's disease).
Collapse
Affiliation(s)
- D Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A M Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, Ulm, Germany; Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - F Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - I Menrath
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, Ulm, Germany; Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - V Cappello
- Center for Nanotechnology, Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - M A Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - B Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
39
|
Khatibi SA, Misaghi A, Moosavy MH, Basti AA, Koohi MK, Khosravi P, Haghirosadat F. Encapsulation of Zataria multiflora
Bioss. Essential Oil into Nanoliposomes and in Vitro Antibacterial Activity Against Escherichia coli
O157:H7. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seyed Amin Khatibi
- Department of Food Hygiene, Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Ali Misaghi
- Department of Food Hygiene, Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine; University of Tabriz; Tabriz Iran
| | | | - Mohammad Kazem Koohi
- Department of Toxicology, Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Parivash Khosravi
- Department of Food Hygiene, Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Fatemeh Haghirosadat
- Department of Nano-Biotechnology, Faculty of New Science and Technologies (FNST); University of Tehran; Tehran Iran
| |
Collapse
|
40
|
Juárez-Osornio C, Gracia-Fadrique J. Structures similar to lipid emulsions and liposomes. Dipalmitoylphosphatidylcholine, cholesterol, Tween 20–Span 20 or Tween 80–Span 80 in aqueous media. J Liposome Res 2016; 27:139-150. [DOI: 10.1080/08982104.2016.1174944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carlos Juárez-Osornio
- Facultad De Química, Departamento De Fisicoquímica, Universidad Nacional Autónoma De México (UNAM), México D.F., México
| | - Jesús Gracia-Fadrique
- Facultad De Química, Departamento De Fisicoquímica, Universidad Nacional Autónoma De México (UNAM), México D.F., México
| |
Collapse
|
41
|
Qadir A, Faiyazuddin M, Talib Hussain M, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq 2016; 214:7-18. [DOI: 10.1016/j.molliq.2015.11.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering. J Chromatogr A 2015; 1418:185-191. [DOI: 10.1016/j.chroma.2015.09.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022]
|
43
|
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5:231-42. [PMID: 25787731 DOI: 10.1007/s13346-015-0220-8] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol plays a strategic role in liposome composition; however, the quantity used to achieve an appropriate formulation has not been yet clarified. Therefore, by screening arrangement of lipids and cholesterol ratio, the main aim of this study is to investigate the most suitable amount of cholesterol in lipids in order to prepare stable and controlled drug release vehicles. For the preparation of liposomes, DMPC, DPPC and DSPC phospholipids were used and combined with different molar ratios of cholesterol (e.g. 100, 80-20, 70-30, 60-40 and 50-50%). Stability studies were conducted by storing the formulations at 37 and 50 °C for 30 days and by analysing them by AFM, DLS and FT-IR. By detecting the two most stable formulations from the stability results, drug encapsulation and in vitro release studies in PBS were performed by encapsulating atenolol and quinine. The release results were validated using a simulation model to ensure the reliability and suitable interpretation of the data. The generated model showed a good correlation between the prediction and the in vitro obtained results. By using 70:30% ratio (known in literature as 2:1), it is possible to reach the most stable formulation to guarantee a controlled and reproducible release for drugs with different physicochemical characteristics and pharmaceutical applications.
Collapse
Affiliation(s)
- Maria-Lucia Briuglia
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | | | | | | |
Collapse
|
44
|
Wang Q, Lv S, Lu J, Jiang S, Lin L. Characterization, Stability, andIn VitroRelease Evaluation of Carboxymethyl Chitosan Coated Liposomes Containing Fish Oil. J Food Sci 2015; 80:C1460-7. [DOI: 10.1111/1750-3841.12929] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Qianqian Wang
- School of Biotechnology and Food Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province; Hefei Univ. of Technology; 193 Tunxi Rd. Hefei 230009 Anhui China
| | - Shun Lv
- School of Biotechnology and Food Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province; Hefei Univ. of Technology; 193 Tunxi Rd. Hefei 230009 Anhui China
| | - Jianfeng Lu
- School of Biotechnology and Food Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province; Hefei Univ. of Technology; 193 Tunxi Rd. Hefei 230009 Anhui China
| | - Shaotong Jiang
- School of Biotechnology and Food Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province; Hefei Univ. of Technology; 193 Tunxi Rd. Hefei 230009 Anhui China
| | - Lin Lin
- School of Biotechnology and Food Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province; Hefei Univ. of Technology; 193 Tunxi Rd. Hefei 230009 Anhui China
| |
Collapse
|
45
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
46
|
Belletti D, Tosi G, Riva G, Lagreca I, Galliania M, Luppi M, Vandelli MA, Forni F, Ruozi B. Nutlin-3 loaded nanocarriers: Preparation, characterization and in vitro antineoplastic effect against primary effusion lymphoma. Int J Pharm 2015; 490:85-93. [PMID: 25987470 DOI: 10.1016/j.ijpharm.2015.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/09/2023]
Abstract
In this investigation, Nutlin-3 (Nut3), a novel antitumor drug with low water solubility (<0.1mg/L at 25°C), was loaded into liposomes (Lipo-Nut3), polymeric nanoparticles (NPs-Nut3) and nanoparticles engineered with an antibody direct against Syndecan-1/CD 138 (Syn-NPs-Nut3) to obtain carriers targeted to PEL (primary effusion lymphoma). The physicochemical properties of these carriers were determined. Atomic force microscopy showed that all the particles were well formed and spherical in shape. The presence of the antibody on surface led to a significant increase of mean diameter (280 ± 63 nm), PDI (0.3) and the shift of zeta potential towards neutrality (-1 mV). The entrapment efficiency of Lipo-Nut3, NPs-Nut3 and Syn-NPs-Nut3 was 30, 52 and 29%, and drug loading was 1.4, 4.5 and 2.6%, respectively. By performing cytofluorimetric analyses and bromodeoxyuridine (BrdU) assay, the efficacy of nanocarriers to deliver the antineoplastic drug into a PEL cell line namely BCBL-1 (immortalized body cavity B-cell lymphoma) was investigated. Two days after the treatment with 20 μM of Syn-NPs-Nut3, the cell density decreased at about 60% while the cell viability decreased at 56% only 5 days after transfection, when compared with untreated cells. A cell cycle arrest was observed with a significant decrease of cells in S-phase and increasing of apoptotic cell, if compared with untreated control. These results confirms the potential of nanocarriers approaches to deliver antitumor drug with unfavorable chemico-physical properties. Moreover, this study strongly suggests that Syn-NPs-Nut3 can be a valuable drug carrier system for the treatment of PEL lymphoma.
Collapse
Affiliation(s)
- D Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - G Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - G Riva
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Hematology Unit, AOU Policlinico, Modena, Italy
| | - I Lagreca
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Hematology Unit, AOU Policlinico, Modena, Italy
| | - M Galliania
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - M Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Hematology Unit, AOU Policlinico, Modena, Italy
| | - M A Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - F Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - B Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|
47
|
Abstract
Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- Chemical Methodology Institute, CNR, Rome, Italy ; Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
48
|
Mohammadi M, Ghanbarzadeh B, Hamishehkar H. Formulation of nanoliposomal vitamin d3 for potential application in beverage fortification. Adv Pharm Bull 2014; 4:569-75. [PMID: 25671191 DOI: 10.5681/apb.2014.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Vitamin D, a liposoluble vitamin has many benefits on health. Encapsulation of bioactives in lipid-based carrier systems like nanoliposomes preserves their native properties against oxidation over time along with providing its stable aqueous dispersion. METHODS In the current study, vitamin D3 nanoliposomes were prepared using thin-film hydration-sonication method and fully characterized by different instrumental techniques. RESULTS According to FTIR and DSC results, no interaction was observed between encapsulated nutraceutical and liposome constituents. The particle size and size distribution (Span value) were calculated 82-90 nm and 0.70-0.85, respectively. TEM analysis showed nano sized globular and bilayer vesicles. In all formations, the encapsulation efficiency of vitamin D3 was calculated more than 93%. Addition of cholesterol to lecithin bilayer increased the negative zeta potential from -29 to -43mV. CONCLUSION The results of this study concluded that the liposomal nanoparticles may be introduced as a suitable carrier for fortification of beverages with vitamin D3.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Bai C, Luo G, Liu Y, Zhao S, Zhu X, Zhao Q, Peng H, Xiong H. A Comparison Investigation of Coix Seed Oil Liposomes Prepared by Five Different Methods. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.893524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Belletti D, Vandelli MA, Tonelli M, Zapparoli M, Forni F, Tosi G, Ruozi B. Functionalization of liposomes: microscopical methods for preformulative screening. J Liposome Res 2014; 25:150-6. [DOI: 10.3109/08982104.2014.956221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|