1
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Thiolated chitosan nanoparticles encapsulated nisin and selenium: antimicrobial/antibiofilm/anti-attachment/immunomodulatory multi-functional agent. BMC Microbiol 2024; 24:257. [PMID: 38997643 PMCID: PMC11241873 DOI: 10.1186/s12866-024-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The increase in the resistance of bacterial strains to antibiotics has led to research into the bactericidal potential of non-antibiotic compounds. This study aimed to evaluate in vitro antibacterial/ antibiofilm properties of nisin and selenium encapsulated in thiolated chitosan nanoparticles (N/Se@TCsNPs) against prevalent enteric pathogens including standard isolates of Vibrio (V.) cholerae O1 El Tor ATCC 14,035, Campylobacter (C.) jejuni ATCC 29,428, Salmonella (S.) enterica subsp. enterica ATCC 19,430, Shigella (S.) dysenteriae PTCC 1188, Escherichia (E.) coli O157:H7 ATCC 25,922, Listeria (L.) monocytogenes ATCC 19,115, and Staphylococcus (S.) aureus ATCC 29,733. METHODS The synthesis and comprehensive analysis of N/Se@TCsNPs have been completed. Antibacterial and antibiofilm capabilities of N/Se@TCsNPs were evaluated through broth microdilution and crystal violet assays. Furthermore, the study included examining the cytotoxic effects on Caco-2 cells and exploring the immunomodulatory effects of N/Se@TCsNPs. This included assessing the levels of both pro-inflammatory (IL-6 and TNFα) and anti-inflammatory (IL-10 and TGFβ) cytokines and determining the gene expression of TLR2 and TLR4. RESULTS The N/Se@TCsNPs showed an average diameter of 136.26 ± 43.17 nm and a zeta potential of 0.27 ± 0.07 mV. FTIR spectroscopy validated the structural features of N/Se@TCsNPs. Scanning electron microscopy (SEM) images confirmed their spherical shape and uniform distribution. Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC) tests demonstrated the thermal stability of N/Se@TCsNPs, showing minimal weight loss of 0.03%±0.06 up to 80 °C. The prepared N/Se@TCsNPs showed a thiol content of 512.66 ± 7.33 µmol/g (p < 0.05), an encapsulation efficiency (EE) of 69.83%±0.04 (p ≤ 0.001), and a drug release rate of 74.32%±3.45 at pH = 7.2 (p ≤ 0.004). The synthesized nanostructure demonstrated potent antibacterial activity against various isolates, with effective concentrations ranging from 1.5 ± 0.08 to 25 ± 4.04 mg/mL. The ability of N/Se@TCsNPs to reduce bacterial adhesion and internalization in Caco-2 cells underscored their antibiofilm properties (p ≤ 0.0001). Immunological studies indicated that treatment with N/Se@TCsNPs led to decreased levels of inflammatory cytokines IL-6 (14.33 ± 2.33 pg/mL) and TNFα (25 ± 0.5 pg/mL) (p ≤ 0.0001), alongside increased levels of anti-inflammatory cytokines IL-10 (46.00 ± 0.57 pg/mL) and TGFβ (42.58 ± 2.10 pg/mL) in infected Caco-2 cells (p ≤ 0.0001). Moreover, N/Se@TCsNPs significantly reduced the expression of TLR2 (0.22 ± 0.09) and TLR4 (0.16 ± 0.05) (p < 0.0001). CONCLUSION In conclusion, N/Se@TCsNPs exhibited significant antibacterial/antibiofilm/anti-attachment/immunomodulatory effectiveness against selected Gram-positive and Gram-negative enteric pathogens. However, additional ex-vivo and in-vivo investigations are needed to fully assess the performance of nanostructured N/Se@TCsNPs.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
3
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
4
|
Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Diaz-Salmeron R, Toussaint B, Cailleau C, Ponchel G, Bouchemal K. Morphology‐Dependent Bioadhesion and Bioelimination of Hyaluronan Particles Administered in the Bladder. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Raul Diaz-Salmeron
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Balthazar Toussaint
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Catherine Cailleau
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Gilles Ponchel
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| |
Collapse
|
6
|
Shape stability of ellipsoidal nanomaterials prepared by physical deformation. Int J Pharm 2021; 609:121178. [PMID: 34662649 DOI: 10.1016/j.ijpharm.2021.121178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023]
Abstract
The nonspherical shape of nanomaterials (NMs) represents a key attribute for controlling their biological behaviors. Analyzing shape stability over time represents a significant concern because nonspherical NMs are likely to rearrange into a thermodynamically more stable spherical shape. In this investigation, ellipsoidal NMs were designed by physical deformation of core/shell nanospheres composed of poly(isobutylcyanoacrylate) and chitosan or a mixture of chitosan and thiolated chitosan. After optimizing the process parameters for designing ellipsoidal NMs, the shape stability during storage was investigated for 6 months at different temperatures (4 °C, 20 °C and 40 °C). The NM shape was examined by analyzing the aspect ratio from images obtained by electron microscopy techniques. The results demonstrated the feasibility of designing shape-persistent ellipsoidal NMs by physical deformation of spherical particles.
Collapse
|
7
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
8
|
Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Dual charged folate labelled chitosan nanogels with enhanced mucoadhesion capacity for targeted drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol 2020; 150:281-288. [PMID: 32057846 DOI: 10.1016/j.ijbiomac.2020.02.079] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 01/27/2023]
Abstract
To improve the quality of life of diabetic patients, oral delivery of insulin would be better than subcutaneous injection, and the encapsulation of insulin for its oral delivery is a promising alternative one. In this study, we prepared an oral insulin delivery system using thiolated chitosan nanoparticles (TCNPs) loaded with insulin (Ins) and tested under in vitro and in vivo systems. TCNPs prepared from CS and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) at 4:1 ratio showed 220 ± 4 nm, 2.3 ± 1 mV, and 119 ± 4 μmol g-1 in their size, charge and sulfhydryl content, respectively. There was a sustained release of insulin from the TCNPs at pH 5.3. TCNPs treatment did not alter cell viability in vitro and oral administration of TCNPs reached over the tip of the microvilli near the intestinal mucosa in vivo. There were increased and decreased the levels of insulin and glucose in the blood, respectively when Ins-TCNPs were orally administered in the diabetes induced rats. Thus, our results suggested that the insulin stays significantly for a prolonged period to make bio-distribution and bioavailability due to its interaction with the mucus of the intestine, thus offering a better oral insulin delivery system for diabetic patients.
Collapse
Affiliation(s)
- Sekar Sudhakar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Mucoadhesive paclitaxel-loaded chitosan-poly (isobutyl cyanoacrylate) core-shell nanocapsules containing copaiba oil designed for oral drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019; 27:470-501. [PMID: 30720372 DOI: 10.1080/1061186x.2019.1579822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article covers the most important steps of the pioneering work of Patrick Couvreur and tries to shed light on his outstanding career that has been a source of inspiration for many decades. His discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) has opened large perspectives in nanomedicine. Indeed, NPs made from various types of alkyl cyanoacrylate monomers have been used in different applications, such as the treatment of intracellular infections or the treatment of multidrug resistant hepatocarcinoma. This latest application led to the Phase III clinical trial of Livatag®, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA NPs, the development of a novel type of NP with higher drug loadings and lower burst release was tackled by the discovery of squalene-based nanomedicines where the drug is covalently linked to the lipid derivative and the resulting conjugate is self-assembled into NPs. This pioneering work was accompanied by a wide range of novel applications which mainly dealt with the management of unmet medical needs (e.g. pancreatic cancer, brain ischaemia and spinal cord injury).
Collapse
Affiliation(s)
- Simona Mura
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Elias Fattal
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Julien Nicolas
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
12
|
Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications. MATERIALS 2019; 12:ma12040617. [PMID: 30791358 PMCID: PMC6416629 DOI: 10.3390/ma12040617] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
The recent, fast development of nanotechnology is reflected in the medical sciences. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are an excellent example. Thanks to their superparamagnetic properties, SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. This makes them also useful as a component of the advanced drug delivery systems. Due to their easy synthesis, biocompatibility, multifunctionality, and possibility of further surface modification with various chemical agents, SPIONs could support many fields of medicine. SPIONs have also some disadvantages, such as their high uptake by macrophages. Nevertheless, based on the ongoing studies, they seem to be very promising in oncological therapy (especially in the brain, breast, prostate, and pancreatic tumors). The main goal of our paper is, therefore, to present the basic properties of SPIONs, to discuss their current role in medicine, and to review their applications in order to inspire future developments of new, improved SPION systems.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland.
| | - Agnieszka Łazarczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland.
| | - Przemysław Hałubiec
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland.
| | - Oskar Szafrański
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland.
| | - Karolina Karnas
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland.
| | - Anna Karewicz
- Department of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland.
| |
Collapse
|
13
|
Duffy C, Zetterlund PB, Aldabbagh F. Radical Polymerization of Alkyl 2-Cyanoacrylates. Molecules 2018; 23:molecules23020465. [PMID: 29461508 PMCID: PMC6017548 DOI: 10.3390/molecules23020465] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 11/27/2022] Open
Abstract
Cyanoacrylates (CAs) are well-known fast-setting adhesives, which are sold as liquids in the presence of stabilizers. Rapid anionic polymerization on exposure to surface moisture is responsible for instant adhesion. The more difficult, but synthetically more useful radical polymerization is only possible under acidic conditions. Recommendations on the handling of CAs and the resulting polymers are provided herein. In this review article, after a general description of monomer and polymer properties, radical homo- and copolymerization studies are described, along with an overview of nanoparticle preparations. A summary of our recently reported radical polymerization of CAs, using reversible addition-fragmentation chain transfer (RAFT) polymerization, is provided.
Collapse
Affiliation(s)
- Cormac Duffy
- Henkel Ireland Operations & Research Limited, Whitestown, Dublin 24, Ireland.
- School of Chemistry, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Fawaz Aldabbagh
- School of Chemistry, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
- Present address: Department of Pharmacy, School of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
14
|
Palazzo C, Ponchel G, Vachon JJ, Villebrun S, Agnely F, Vauthier C. Obtaining nonspherical poly(alkylcyanoacrylate) nanoparticles by the stretching method applied with a marketed water-soluble film. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1233420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Claudio Palazzo
- Institut Galien Paris-Sud, Université Paris‐Saclay, Chatenay-Malabry, France
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
- Laboratory of Pharmaceutical Technology & Biopharmacy, University of Liege, Liege, Belgium
| | - Gilles Ponchel
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Jean Jacques Vachon
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Sarah Villebrun
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Florence Agnely
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Christine Vauthier
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| |
Collapse
|
15
|
Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydr Polym 2016; 146:435-44. [PMID: 27112894 DOI: 10.1016/j.carbpol.2016.03.079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/20/2022]
Abstract
To develop a potential nanocarrier for the topical ocular administration of curcumin (CUR), a novel thiolated chitosan was synthesized by the covalent binding between N-acetyl-l-cysteine (NAC) and chitosan (CS) to surface modify the nanostructured lipid carrier loaded CUR (CUR-NLC). And the superiorities of the CS-NAC co polymer coated CUR-NLC over chitosan oligosaccharides (COS) or carboxymethyl chitosan (CMCS) modification were also verified in detail. As expected, the increment in particle size and the reversal of zeta potential occurred after surface decorating, and the most prominent electropositivity was obtained for the CS-NAC-CUR-NLC group. Additionally, the utilization of the CS-NAC coating demonstrated an effectively controlled release over 72h and attained a 6.4 and 18.8 fold increase in apparent permeability coefficients (Papp) compared with the CUR-NLC and the self-made eye drops, respectively. Meanwhile, the clearance rate of the NLC labeled with Rhodamine B was significantly delayed in the presence of CS-NAC. By contrast, CS-NAC-CUR-NLC was superior to the COS and CMCS coated ones in view of in vitro release, drug permeability and corneal retention. Moreover, the results of the in-vivo and in-vitro characteristics demonstrated that the promoting effect of CMCS coating was relatively weaker than COS coated ones. Ocular irritation test was executed on the CS-NAC-CUR-NLC, neither a sign of toxicity nor irritation to the external ocular tissues was observed. In conclusion, CS-NAC-CUR-NLC possesses a greater potential as an ocular drug-delivery system comparing with the COS-CUR-NLC and CMCS-CUR-NLC.
Collapse
|
17
|
Ruvinov E, Freeman I, Fredo R, Cohen S. Spontaneous Coassembly of Biologically Active Nanoparticles via Affinity Binding of Heparin-Binding Proteins to Alginate-Sulfate. NANO LETTERS 2016; 16:883-888. [PMID: 26745552 DOI: 10.1021/acs.nanolett.5b03598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlled delivery of heparin-binding (HB) proteins represents a challenge in regenerative medicine strategies. Here, we describe the features of novel nanoparticles (NPs), spontaneously coassembled due to affinity interactions between HB proteins and the semisynthetic anionic polysaccharide, alginate-sulfate. The NPs efficiently encapsulated and protected the proteins from proteolysis. Injection of a combination of NPs encapsulating multiple therapeutic growth factors promoted effective and long-term tissue repair in animal models of severe ischemia (murine model of hindlimb ischemia and acute myocardial infarction in rats). This simple yet efficient NP fabrication method is amenable for clinical use.
Collapse
Affiliation(s)
- Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Regenerative Medicine and Stem Cell (RMSC) Research Center, and §The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Inbar Freeman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Regenerative Medicine and Stem Cell (RMSC) Research Center, and §The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Roei Fredo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Regenerative Medicine and Stem Cell (RMSC) Research Center, and §The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, ‡Regenerative Medicine and Stem Cell (RMSC) Research Center, and §The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| |
Collapse
|
18
|
Chaudhary R, Roy K, Kanwar RK, Veedu RN, Krishnakumar S, Cheung CHA, Verma AK, Kanwar JR. E-Cadherin Aptamer-Conjugated Delivery of Doxorubicin for Targeted Inhibition of Prostate Cancer Cells. Aust J Chem 2016. [DOI: 10.1071/ch16211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regardless of the tremendous effort to develop an effective therapeutic approach to combat prostate cancer, target-specific therapy without adverse side effects on healthy tissues and cells is yet to be achieved. Triggered by this craving, we herein report the synthesis of algal chitosan nanoparticles containing DNA aptamer-targeting E-cadherin (Ecad01) using an ionotropic gelation method for target-specific delivery of doxorubicin (Dox) to inhibit prostate cancer cell (DU145) proliferation. The designed chimeric Ecad01-Dox conjugate exhibited excellent targeted internalization, which was evident from a 1.71-fold-increased internalization in DU145 cells, and showed significantly lower uptake (1.92-fold lower) in non-cancerous cells (RWPE-1). Moreover, cell viability assay results showed that 1.0 µM Dox in the Ecad01-Dox conjugate was able to show similar cytotoxicity to 10 µM Dox in DU145 cells, which is indicative of targeted cancer-specific inhibition. Our study clearly demonstrated that encapsulation of Ecad01-Dox conjugate in algal chitosan increased its cellular uptake to 58 % in 30 min, with reduced non-specific cytotoxicity and enhanced chemotherapeutic potential. This could be a simple and an effective targeted drug-delivery strategy that does not require chemical modification of the doxorubicin or the Ecad01 aptamer with potential in developing a therapeutic agent for prostate cancer.
Collapse
|
19
|
Perera G, Zipser M, Bonengel S, Salvenmoser W, Bernkop-Schnürch A. Development of phosphorylated nanoparticles as zeta potential inverting systems. Eur J Pharm Biopharm 2015; 97:250-6. [DOI: 10.1016/j.ejpb.2015.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
20
|
He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng DY, Ou KL, Domb AJ. Polymeric nanoparticles for therapy and imaging. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenjie He
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Nanomedicine Research Center of Taiwan, Research Center for Biomedical devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Engineering; College of Oral Medicine, Taipei Medical University, and Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital; Taipei 110 Taiwan
| | - Reza Mohammadinejad
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
| | - Ziba Roveimiab
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
| | - Dueng-Yuan Hueng
- Department of Biochemistry; National Defense Medical Center, Department of Neurological Surgery, Tri-Service General Hospital; Taipei 114 Taiwan
| | - Keng-Liang Ou
- Nanomedicine Research Center of Taiwan, Research Center for Biomedical devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Engineering; College of Oral Medicine, Taipei Medical University, and Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital; Taipei 110 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
21
|
Arpornwichanop T, Polpanich D, Thiramanas R, Suteewong T, Tangboriboonrat P. PMMA-N,N,N-trimethyl chitosan nanoparticles for fabrication of antibacterial natural rubber latex gloves. Carbohydr Polym 2014; 109:1-6. [PMID: 24815393 DOI: 10.1016/j.carbpol.2014.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Thanida Arpornwichanop
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center (NANOTEC), Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Teeraporn Suteewong
- School of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Wang L, Li L, Sun Y, Tian Y, Li Y, Li C, Junyaprasert VB, Mao S. Exploration of hydrophobic modification degree of chitosan-based nanocomplexes on the oral delivery of enoxaparin. Eur J Pharm Sci 2013; 50:263-71. [DOI: 10.1016/j.ejps.2013.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/11/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
|
23
|
Vauthier C, Zandanel C, Ramon AL. Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Kanjanathaworn N, Polpanich D, Jangpatarapongsa K, Tangboriboonrat P. Reduction of cytotoxicity of natural rubber latex film by coating with PMMA-chitosan nanoparticles. Carbohydr Polym 2013; 97:52-8. [DOI: 10.1016/j.carbpol.2012.12.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 10/26/2022]
|
25
|
Saremi S, Dinarvand R, Kebriaeezadeh A, Ostad SN, Atyabi F. Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro and in vivo studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:150478. [PMID: 23971023 PMCID: PMC3736506 DOI: 10.1155/2013/150478] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 01/02/2023]
Abstract
The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P(app)) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.
Collapse
Affiliation(s)
- Shahrooz Saremi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- R&D Department, Osvah Pharmaceutical Co., Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Abbas Kebriaeezadeh
- R&D Department, Osvah Pharmaceutical Co., Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
26
|
Ramon AL, Bertrand JR, de Martimprey H, Bernard G, Ponchel G, Malvy C, Vauthier C. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibitionin vivoin Ewing's sarcoma. J Mol Recognit 2013; 26:318-29. [DOI: 10.1002/jmr.2276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - J. R. Bertrand
- CNRS UMR 8203 Vectorologie et thérapeutiques anticancéreuses; 114 rue Edouard Vaillant; 94805; Villejuif Cedex; France
| | | | | | | | - C. Malvy
- CNRS UMR 8203 Vectorologie et thérapeutiques anticancéreuses; 114 rue Edouard Vaillant; 94805; Villejuif Cedex; France
| | | |
Collapse
|
27
|
Zandanel C, Vauthier C. Characterization of fluorescent poly(isobutylcyanoacrylate) nanoparticles obtained by copolymerization of a fluorescent probe during Redox Radical Emulsion Polymerization (RREP). Eur J Pharm Biopharm 2012; 82:66-75. [PMID: 22634238 DOI: 10.1016/j.ejpb.2012.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 04/23/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The purpose of the work was to demonstrate that a polymerizable fluorescent labeled was incorporated in the core of chitosan/pluronic® F68-coated Poly(IsobutylCyanoAcrylate) (PIBCA) nanoparticles thanks to a covalent linkage. It was also aimed to show that the labeling did not modify the complement activation capacity of the nanoparticles which are designed as drug carriers for the in vivo delivery of siRNA. METHOD Fluorescent nanoparticles were prepared by adding a fluorescent monomer dye, methacryloxyethyl thiocarbamoyl rhodamine B during the preparation of nanoparticles by redox radical emulsion polymerization. The structure and composition of the fluorescent nanoparticles was investigated. The capacity of the fluorescent nanoparticles to activate the complement system was evaluated by 2D immunoelectrophoresis. RESULTS Results from the analysis of the composition and structure of polymers forming the nanoparticles showed that the fluorescent dye was incorporated in the core of the nanoparticles by formation of a stable covalent linkage with PIBCA. The labeled nanoparticles showed the same surface properties as the corresponding non-labeled nanoparticles based on analysis of the polymer structure, physicochemical properties and evaluation of their capacity to activate the complement system. CONCLUSION This work showed that the fluorescent PIBCA nanoparticles were labeled by incorporation of the fluorescent probe in the nanoparticle core and that the fluorescent probe did not modify the nanoparticle surface properties. These fluorescent nanoparticles can be proposed as relevant models to investigate how they deliver siRNA to their biological target in cell cultures and during in vivo experiments.
Collapse
Affiliation(s)
- Christelle Zandanel
- Pharmacotechnie, Biopharmacie, Université de Paris Sud, Chatenay Malabry, France
| | | |
Collapse
|
28
|
Kaewsaneha C, Opaprakasit P, Polpanich D, Smanmoo S, Tangboriboonrat P. Immobilization of fluorescein isothiocyanate on magnetic polymeric nanoparticle using chitosan as spacer. J Colloid Interface Sci 2012; 377:145-52. [PMID: 22487227 DOI: 10.1016/j.jcis.2012.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/18/2022]
Abstract
The nanoparticle with simultaneous combination of magnetic and fluorescent properties was prepared by immobilization of fluorescein isothiocyanate (FITC) onto magnetic polymeric nanoparticle (MPNP). The MPNP with 41% magnetic content was obtained from incorporating Fe(3)O(4) magnetic nanoparticles (MNPs) into poly(styrene/divinyl benzene/acrylic acid) via the miniemulsion polymerization. Before labeling with FITC, the carboxylated MPNP was coated with chitosan (CS) having low, medium, or high molecular weight (MW) in order to avoid quenching of the fluorescent by iron oxide. Data obtained from TEM, size and zeta potential measurements clearly indicated the presence of CS as a shell surrounding the superparamagnetic MPNP core. The zeta potential, FTIR, and fluorescent spectroscopies confirmed the attachment of FITC to the MPNP-CS via covalent bonding. The higher MW or longer chains of CS (300kDa) offered the larger spacer with multiple sites for the FITC binding and, thus, provided the higher fluorescent emission intensity. The MPNP-CS immobilized with FITC would be useful for cell-labeling application.
Collapse
Affiliation(s)
- Chariya Kaewsaneha
- Faculty of Science, Department of Chemistry, Mahidol University, Phyathai, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
29
|
The Counterbalanced Effect of Size and Surface Properties of Chitosan-Coated poly(isobutylcyanoacrylate) Nanoparticles on Mucoadhesion Due to Pluronic F68 Addition. Pharm Res 2011; 29:943-52. [DOI: 10.1007/s11095-011-0634-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/21/2011] [Indexed: 12/22/2022]
|
30
|
Lira MCB, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, Vauthier C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 2011; 79:162-70. [PMID: 21349331 DOI: 10.1016/j.ejpb.2011.02.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The aim was to synthesize and characterize fucoidan-coated poly(isobutylcyanoacrylate) nanoparticles. The nanoparticles were prepared by anionic emulsion polymerization (AEP) and by redox radical emulsion polymerization (RREP) of isobutylcyanoacrylate using fucoidan as a new coating material. The nanoparticles were characterized, and their cytotoxicity was evaluated in vitro on J774 macrophage and NIH-3T3 fibroblast cell lines. Cellular uptake of labeled nanoparticles was investigated by confocal fluorescence microscopy. Results showed that both methods were suitable to prepare stable formulations of fucoidan-coated PIBCA nanoparticles. Stable dispersions of nanoparticles were obtained by AEP with up to 100% fucoidan as coating material. By the RREP method, stable suspensions of nanoparticles were obtained with only up to 25% fucoidan in a blend of polysaccharide composed of dextran and fucoidan. The zeta potential of fucoidan-coated nanoparticles was decreased depending on the percentage of fucoidan. It reached the value of -44 mV for nanoparticles prepared by AEP with 100% of fucoidan. Nanoparticles made by AEP appeared more than four times more cytotoxic (IC(50) below 2 μg/mL) on macrophages J774 than nanoparticles made by RREP (IC(50) above 9 μg/mL). In contrast, no significant difference in cytotoxicity was highlighted by incubation of the nanoparticles with a fibroblast cell line. On fibroblasts, both types of nanoparticles showed similar cytotoxicity. Confocal fluorescence microscopy observations revealed that all types of nanoparticles were taken up by both cell lines. The distribution of the fluorescence in the cells varied greatly with the type of nanoparticles.
Collapse
Affiliation(s)
- M C B Lira
- Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Bang S, Hwang I, Yu Y, Kwon H, Kim D, Park H. Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 2011; 28:595-604. [DOI: 10.3109/02652048.2011.557748] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S.H. Bang
- School of Life Sciences and Biotechnology, Korea University,
Seoul, South Korea
| | - I.C. Hwang
- Central Research Institute, Kyung Nong Co. Ltd.,
Kyungju, South Korea
| | - Y.M. Yu
- Department of Applied Biology, College of Agriculture True and Life Sciences, Chungnam National University,
Daejeon, South Korea
| | - H.R. Kwon
- Department of Applied Biology, College of Agriculture True and Life Sciences, Chungnam National University,
Daejeon, South Korea
| | - D.H. Kim
- Korea Packaging Center, Korea Institute of Industrial Technology,
Ansan, South Korea
| | - H.J. Park
- School of Life Sciences and Biotechnology, Korea University,
Seoul, South Korea
| |
Collapse
|
32
|
Simultaneous in situ monitoring of acrylic acid polymerization reaction on N-carboxymethyl chitosan using multidetectors: Formation of a new bioadhesive and gastroprotective hybrid particle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 2011; 12:10-20. [PMID: 21153572 DOI: 10.1208/s12249-010-9561-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/30/2010] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.
Collapse
|
34
|
Saremi S, Atyabi F, Akhlaghi SP, Ostad SN, Dinarvand R. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation. Int J Nanomedicine 2011; 6:119-28. [PMID: 21289989 PMCID: PMC3026577 DOI: 10.2147/ijn.s15500] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shahrooz Saremi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
35
|
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63:24-46. [PMID: 20685224 DOI: 10.1016/j.addr.2010.05.006] [Citation(s) in RCA: 999] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 12/12/2022]
Abstract
At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together with their possibilities and limitations from fabrication to application in drug delivery. In addition, the state-of-the-art synthetic routes and surface modification of desired SPIONs for drug delivery purposes are described.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of Iran, Tehran 1316943551, Iran.
| | | | | | | | | |
Collapse
|
36
|
Mazzaferro S, Bouchemal K, Vauthier C, Gueutin C, Palmieri GF, Ponchel G. What are parameters affecting Leu-enkephalin loading and release from poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan? J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
|
38
|
de Martimprey H, Bertrand JR, Malvy C, Couvreur P, Vauthier C. New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 2010; 27:498-509. [PMID: 20087631 DOI: 10.1007/s11095-009-0043-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Development of efficient in vivo delivery nanodevices remains a major challenge to achieve clinical application of siRNA. The present study refers to the conception of core-shell nanoparticles aiming to make possible intravenous administration of chemically unmodified siRNA oriented towards the junction oncogene of the papillary thyroid carcinoma. METHODS Nanoparticles were prepared by redox radical emulsion polymerization of isobutylcyanoacrylate and isohexylcyanoacrylate with chitosan. The loading of the nanoparticles with siRNA was achieved by adsorption. The biological activity of the siRNA-loaded nanoparticles was assessed on mice bearing a papillary thyroid carcinoma after intratumoral and intravenous administration. RESULTS Chitosan-coated nanoparticles with a diameter of 60 nm were obtained by adding 3% pluronic in the preparation medium. siRNA were associated with the nanoparticles by surface adsorption. In vivo, the antisense siRNA associated with the nanoparticles lead to a strong antitumoral activity. The tumor growth was almost stopped after intravenous injection of the antisense siRNA-loaded nanoparticles, while in all control experiments, the tumor size was increased by at least 10 times. CONCLUSION This work showed that poly(alkylcyanoacrylate) nanoparticles coated with chitosan are suitable carriers to achieve in vivo delivery of active siRNA to tumor including after systemic administration.
Collapse
Affiliation(s)
- Henri de Martimprey
- Université de Paris-Sud-11, UMR CNRS 8612, 5 rue J.B. Clément, 92296, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
39
|
Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:208-15. [PMID: 19186220 DOI: 10.1016/j.nano.2008.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/19/2008] [Accepted: 09/29/2008] [Indexed: 11/26/2022]
Abstract
The aim of the present work was to evaluate the in vitro mucoadhesion and permeation enhancement properties of thiolated chitosan (chitosan-glutathione) coated poly(hydroxyl ethyl methacrylate) nanoparticles. Core-shell nanoparticles were prepared by radical emulsion polymerization method initiated by cerium(IV) ammonium nitrate. Different molecular weights of chitosan were utilized for nanoparticles preparation. The physicochemical properties of nanoparticles were characterized by size, zeta potential, and thiol content. Incorporation of fluorescein isothiocyanate dextran (FD4, MW 4400 Da), which was used as the model macromolecule, was achieved by incubation method. The intestinal mucoadhesion and penetration enhancement properties of nanoparticles were investigated using excised rat jejunum. All nanoparticle systems showed mucoadhesion and improved apparent permeation coefficient (P(app)) of FD4. Nanoparticles prepared by thiolated chitosan with medium molecular weight revealed the most mucoadhesion and penetration enhancement properties.
Collapse
Affiliation(s)
- Firooze Aghaei Moghaddam
- Novel Drug Delivery Systems Laboratory, Faculty of Pharmacy, Medical Sciences/University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
40
|
Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2008; 26:1025-58. [PMID: 19107579 DOI: 10.1007/s11095-008-9800-3] [Citation(s) in RCA: 490] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
This review summarizes the different methods of preparation of polymer nanoparticles including nanospheres and nanocapsules. The first part summarizes the basic principle of each method of nanoparticle preparation. It presents the most recent innovations and progresses obtained over the last decade and which were not included in previous reviews on the subject. Strategies for the obtaining of nanoparticles with controlled in vivo fate are described in the second part of the review. A paragraph summarizing scaling up of nanoparticle production and presenting corresponding pilot set-up is considered in the third part of the review. Treatments of nanoparticles, applied after the synthesis, are described in the next part including purification, sterilization, lyophilization and concentration. Finally, methods to obtain labelled nanoparticles for in vitro and in vivo investigations are described in the last part of this review.
Collapse
Affiliation(s)
- Christine Vauthier
- CNRS UMR 8612, Université Paris Sud-11, 92296, Chatenay-Malabry, France.
| | | |
Collapse
|
41
|
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60:1650-62. [PMID: 18848591 DOI: 10.1016/j.addr.2008.09.001] [Citation(s) in RCA: 1112] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/08/2008] [Indexed: 11/28/2022]
Abstract
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery systems. In particular, polysaccharides seem to be the most promising materials in the preparation of nanometeric carriers. This review relates to the newest developments in the preparation of polysaccharides-based nanoparticles. In this review, four mechanisms are introduced to prepare polysaccharides-based nanoparticles, that is, covalent crosslinking, ionic crosslinking, polyelectrolyte complex, and the self-assembly of hydrophobically modified polysaccharides.
Collapse
Affiliation(s)
- Zonghua Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
42
|
de la Fuente M, Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine (Lond) 2008; 3:845-57. [DOI: 10.2217/17435889.3.6.845] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the most exciting and challenging applications of nanotechnology in medicine is the development of nanocarriers for the intraepithelial delivery of biomacromolecules through mucosal surfaces. These biomacromolecules represent an increasingly important segment of the therapeutic arsenal; however, their potential is still limited by their instability and inability to cross biological barriers. Nanoparticle carriers have emerged as one of the most promising technologies to overcome this limitation, owing mainly to their demonstrated capacity to interact with biological barriers. In this review, we summarize the current advances made on nanoparticles designed for transmucosal delivery. Supported by the examples of a variety of therapeutic macromolecules – peptides and proteins, gene medicines and vaccines – we review the lessons learned from the past and we offer a future perspective for this field.
Collapse
Affiliation(s)
- Maria de la Fuente
- NANOBIOFAR Group, Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Noémi Csaba
- NANOBIOFAR Group, Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- NANOBIOFAR Group, Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Jose Alonso
- NANOBIOFAR Group, Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
43
|
Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)‐based colloidal nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2008; 1:111-127. [DOI: 10.1002/wnan.15] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julien Nicolas
- Laboratoire de Physico‐Chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Univ Paris‐Sud, 92296 Châtenay Malabry, France
| | - Patrick Couvreur
- Laboratoire de Physico‐Chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Univ Paris‐Sud, 92296 Châtenay Malabry, France
| |
Collapse
|
44
|
Nicolas J, Bensaid F, Desmaële D, Grogna M, Detrembleur C, Andrieux K, Couvreur P. Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click Chemistry. Macromolecules 2008. [DOI: 10.1021/ma8013349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Nicolas
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Fethi Bensaid
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Didier Desmaële
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Mathurin Grogna
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Karine Andrieux
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Patrick Couvreur
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| |
Collapse
|
45
|
Atyabi F, Moghaddam FA, Dinarvand R, Zohuriaan-Mehr MJ, Ponchel G. Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles: Synthesis and characterization. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Chen AL, Ni HC, Wang LF, Chen JS. Biodegradable Amphiphilic Copolymers Based on Poly(ϵ-caprolactone)-Graft Chondroitin Sulfate as Drug Carriers. Biomacromolecules 2008; 9:2447-57. [DOI: 10.1021/bm800485x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ai-Ling Chen
- Faculty of Medicinal and Applied Chemistry, School of Life Science, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, and Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 80811, Taiwan
| | - Hsiao-Chen Ni
- Faculty of Medicinal and Applied Chemistry, School of Life Science, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, and Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 80811, Taiwan
| | - Li-Fang Wang
- Faculty of Medicinal and Applied Chemistry, School of Life Science, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, and Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 80811, Taiwan
| | - Jenn-Shing Chen
- Faculty of Medicinal and Applied Chemistry, School of Life Science, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, and Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung City 80811, Taiwan
| |
Collapse
|
47
|
Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2008; 15:641-63. [PMID: 18041633 DOI: 10.1080/10611860701603372] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Poly(alkylcyanoacrylate) (PACA) nanoparticles were first developed 25 years ago taking advantage of the in vivo degradation potential of the polymer and of its good acceptance by living tissues. Since then, various PACA nanoparticles were designed including nanospheres, oil-containing and water-containing nanocapsules. This made possible the in vivo delivery of many types of drugs including those presenting serious challenging delivery problems. PACA nanoparticles were proven to improve treatments of severe diseases like cancer, infections and metabolic disease. For instance, they can transport drugs across barriers allowing delivery of therapeutic doses in difficult tissues to reach including in the brain or in multidrug resistant cells. This review gives an update on the more recent developments and achievements on design aspects of PACA nanoparticles as delivery systems for various drugs to be administered in vivo by different routes of administration.
Collapse
|
48
|
Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm 2008; 69:417-25. [PMID: 18294825 DOI: 10.1016/j.ejpb.2008.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/20/2007] [Accepted: 01/07/2008] [Indexed: 11/20/2022]
Abstract
Polyelectrolyte complexes (PEC) formed from chitosan derivatives and enoxaparin were prepared and parameters influencing complex formation were characterized. Dynamic light scattering (DLS) and laser doppler anemometry (LDA) were used to study the complexation process. Surface morphology of the PECs was observed with atomic force microscopy (AFM). The PEC formation process was influenced by a variety of parameters, including the system pH, polymer/enoxaparin mass ratio, polymer molecular weight, concentration and structure. Soluble complexes in the size range of 200-500 nm with spherical morphology could be obtained at optimized polymer/enoxaparin ratios in the pH range of 3.0-6.5, with positive charge and drug encapsulation efficiency of approximately 90%. An increase in ionic strength of the medium accelerated the dissociation of chitosan/enoxaparin complexes. In contrast, chitosan thiolation, methylation and PEGylation significantly improved the stability of the complexes. Physicochemical properties of the PECs, including particle size, charge density and morphology, could be modified by using different chitosan derivatives. On the basis of our results, we suggest that interactions involved in PEC formation were partly electrostatic in nature, involving the positively charged chitosan derivatives and the negatively charged enoxaparin at pH values in the vicinity of the pKa interval of the two polymers. Oral absorption of the polyelectrolyte nanocomplexes will be studied in vivo.
Collapse
|
49
|
Bravo-Osuna I, Vauthier C, Chacun H, Ponchel G. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm 2007; 69:436-44. [PMID: 18395430 DOI: 10.1016/j.ejpb.2007.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/05/2007] [Accepted: 12/17/2007] [Indexed: 11/28/2022]
Abstract
This work is focused on the evaluation of the in vitro permeation modulation of chitosan and thiolated chitosan (chitosan-TBA) coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles as drug carriers for mucosal administration. Core-corona nanoparticles were obtained by radical emulsion polymerisation of isobutylcyanoacrylate (IBCA) with chitosan of different molecular weights and different proportions of chitosan/chitosan-TBA. In this work, the effect of these nanoparticles on the paracellular permeability of intestinal epithelium was investigated using the Ussing chamber technique, by adding nanoparticle suspensions in the mucosal side of rat intestinal mucosa. Results showed that permeation of the tracer [14C]mannitol and the reduction of transepithelial electrical resistance (TEER) in presence of nanoparticles were more pronounced in those formulations prepared with intermediate amounts of thiolated polymer. This effect was explained thanks to the high diffusion capacity of those nanoparticles through the mucus layer that allowed them to reach the tight junctions in higher extent. It was concluded that, although a first contact between nanoparticles and mucus was a mandatory condition for the development of a permeation enhancement effect, the optimal effect depended on the chitosan/chitosan-TBA balance and the conformational structure of the particles shell.
Collapse
Affiliation(s)
- I Bravo-Osuna
- Laboratoire de Physicochimie, Université Paris Sud, Chatenay-Malabry, France
| | | | | | | |
Collapse
|
50
|
Chen S, Liu M, Jin S, Wang B. Preparation of ionic-crosslinked chitosan-based gel beads and effect of reaction conditions on drug release behaviors. Int J Pharm 2007; 349:180-7. [PMID: 17900834 DOI: 10.1016/j.ijpharm.2007.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/04/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
Drug-loaded chitosan (CS) beads were prepared under simple and mild condition using trisodium citrate as ionic crosslinker. The beads were further coated with poly(methacrylic acid) (PMAA) by dipping the beads in PMAA aqueous solution. The surface and cross-section morphology of these beads were observed by scanning electron microscopy and the observation showed that the coating beads had core-shell structure. In vitro release of model drug from these beads obtained under different reaction conditions was investigated in buffer medium (pH 1.8). The results showed that the rapid drug release was restrained by PMAA coating and the optimum conditions for preparing CS-based drug-loaded beads were decided through the effect of reaction conditions on the drug release behaviors. In addition, the drug release mechanism of CS-based drug-loaded beads was analyzed by Peppa's potential equation. According to this study, the ionic-crosslinked CS beads coated by PMAA could serve as suitable candidate for drug site-specific carrier in stomach.
Collapse
Affiliation(s)
- Shilan Chen
- Department of Chemistry and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | |
Collapse
|