1
|
Gabizon AA. Cancer nanomedicine from a clinician-scientist perspective: Lessons and prospects. J Control Release 2025; 382:113731. [PMID: 40228664 DOI: 10.1016/j.jconrel.2025.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The nanomedicine field has progressed enormously in the last couple of decades. From a loose group of liposomologists, polymer scientists, chemical engineers, and experts in metal nanoparticles, mesoporous silica, and other nanomaterials, the field has gradually consolidated and has generated vast amounts of research and clinical data, but, until the development of lipid nanoparticle (LNP)-based vaccinations for Covid-19, has remained with low visibility in the clinic. Applications in the cancer field are the most frequently sought projects in nanomedicine. For the last 45 years, my clinical career has mingled with my research career focusing on ways to formulate drugs in liposomes to improve their safety and efficacy in cancer therapy. In this review, I will discuss my contribution to the development of pegylated liposomal doxorubicin and other cancer nanomedicines from my privileged position as a clinician and scientist.
Collapse
Affiliation(s)
- Alberto A Gabizon
- The Leah and Jakub Susskind Nano-Oncology Research Laboratory at the Helmsley Cancer Center, Shaare Zedek Medical Center and the Hebrew University-Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
2
|
Lian J, Tang X, Gui Y, Lu S, Song Y, Deng Y. Impact of formulation parameters and circulation time on PEGylated liposomal doxorubicin related hand-foot syndrome. Int J Pharm 2024; 665:124659. [PMID: 39260752 DOI: 10.1016/j.ijpharm.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
PEGylated liposomal doxorubicin (PLD) has effectively reduced the cardiac toxicity of free doxorubicin (DOX) due to its unique nanoscale properties. However, an unexpected accumulation of PLD in the skin has led to hand-foot syndrome (HFS), negatively impacting quality of life and psychological well-being. In this study, self-limiting HFS rat models were created to mimic human symptoms through varying dosing schedules and intensities of PLD. The effects of PLD formulation parameters on HFS were also investigated. The results demonstrated that replacing ammonium sulfate with citric buffer, increasing liposome size, or reducing DSPE-mPEG2000 modification density alleviated HFS. Additionally, liposomes without DSPE-mPEG2000 modification completely avoided HFS, suggesting that PEGylated phospholipid was the key formulation parameter contributing to PLD-induced HFS. Furthermore, the correlation between liposome pharmacokinetics and HFS indicated that PEGylation, rather than the extended circulation time of liposomes, may mediated PLD-related HFS. Better understanding of the formulation parameters that trigger HFS can guide reformulation strategies to mitigate or prevent this syndrome.
Collapse
Affiliation(s)
- Jiawei Lian
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xueying Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yangxu Gui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Shuang Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yanzhi Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Yihui Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Paolino D, d'Avanzo N, Canato E, Ciriolo L, Grigoletto A, Cristiano MC, Mancuso A, Celia C, Pasut G, Fresta M. Improved anti-breast cancer activity by doxorubicin-loaded super stealth liposomes. Biomater Sci 2024; 12:3933-3946. [PMID: 38940612 DOI: 10.1039/d4bm00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
PEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model. The results demonstrated that the super stealth liposomes had suitable physicochemical properties for in vivo administration and could significantly increase the efficacy of doxorubicin in breast cancer lung metastasis tumor-bearing mice compared to the free drug. The super stealth liposomes also increased doxorubicin accumulation inside the tumor tissue. The permanence of PEG on the surface of the super stealth liposomes favored the formation of a depot of therapeutic nanocarriers inside the tumor tissue by improving their permanence after stopping treatment. The doxorubicin-loaded super stealth liposomes increased the survival of the mouse tumor model. These promising results demonstrate that the doxorubicin-loaded super stealth liposomes could be an effective nanomedicine to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Luigi Ciriolo
- Department of Health Science, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, I-35131 Padua, Italy.
| | - Massimo Fresta
- Department of Health Science, University of Catanzaro "Magna Græcia", V.le "S. Venuta", Catanzaro, I-88100, Italy
| |
Collapse
|
4
|
Li R, Zhao X, Huang Y, Li C, Liu L, Wang M, Wang J, Song Z. The Survival Benefit of Pegylated Liposomal Doxorubicin-Based Neoadjuvant Chemotherapy in the Management of Breast Cancer. Cancer Biother Radiopharm 2024. [PMID: 38512710 DOI: 10.1089/cbr.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Purpose: This study aims to evaluate the short-term outcomes and prognosis and the cardiac safety of pegylated liposomal doxorubicin (PLD)-based neoadjuvant chemotherapy (NAC) compared with epirubicin-based therapy in breast cancer treatment. Methods: In total, 304 patients diagnosed with stages II and III breast cancer were enrolled that included 97 cases treated with PLD and 207 controls treated with epirubicin in NAC. The effectiveness of the antibreast cancer treatment was evaluated using overall survival (OS) and disease-free survival (DFS) metrics, whereas cardiac toxicity was measured through the left ventricular ejection fraction (LVEF) and electrocardiogram (ECG) assessments. Results: The 5-year DFS and OS rates in the PLD group were 84.5% and 88.7% (with 15 recurrences and 11 deaths), respectively, whereas in the control group, these rates were 72.9% and 79.2% (with 56 recurrences and 43 deaths). Regarding cardiac toxicity, there was no significant difference in ECG abnormalities or LVEF decline between the two groups. Conclusions: The study suggests that PLD-based NAC may provide substantial benefits in terms of DFS and OS, along with a safe cardiac toxicity profile, in patients with stage II-III breast cancer.
Collapse
Affiliation(s)
- Ruoyang Li
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuewei Zhao
- Department of Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunfei Huang
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunxiao Li
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Liu
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meiqi Wang
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaxing Wang
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenchuan Song
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Alemi A, Karamallah MH, Sabaghan M, Hosseini SA, Veisi A, Karamallah SH, Farokhifar M. Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. J Appl Biomater Funct Mater 2024; 22:22808000241235442. [PMID: 38497242 DOI: 10.1177/22808000241235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.
Collapse
Affiliation(s)
- Ashraf Alemi
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | |
Collapse
|
6
|
Xu G, Yang D, He C, Zhong L, Zhu J, Shu Q, Ding H, Xin W, Tong Y, Zhu X, Fang L. Population pharmacokinetics and toxicity correlation analysis of free and liposome-encapsulated doxorubicin in Chinese patients with advanced breast cancer. Cancer Chemother Pharmacol 2023; 92:181-192. [PMID: 37378676 DOI: 10.1007/s00280-023-04559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE The objective of this study was to investigate the pharmacokinetic characteristics of pegylated liposomal doxorubicin (PLD) in Chinese female patients with advanced breast cancer by constructing population pharmacokinetic (popPK) models of liposome-encapsulated and free doxorubicin. Additionally, the relationship between pharmacokinetic parameters and drug-related adverse events (AEs) was explored through toxicity correlation analysis. METHODS A total of 20 patients with advanced breast cancer were selected from a PLD bioequivalence study. All patients received a single intravenous dose of 50 mg/m2 PLD. Plasma concentrations were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A popPK model was simultaneously built to characterize the pharmacokinetic profiles of liposome-encapsulated and free doxorubicin by non-linear mixed effects model (NONMEM). PLD-related toxicities were graded according to the common terminology criteria for adverse events (CTCAE) v5.0. The Spearman correlation analysis was conducted to explore the relationship between pharmacokinetic parameters and drug-related AEs of both liposome-encapsulated doxorubicin and free doxorubicin. RESULTS The concentration-time profiles of both liposome-encapsulated doxorubicin and free doxorubicin were well described by a one-compartment model. The most common AEs to PLD were nausea, vomiting, neutropenia, leukopenia, and stomatitis, most of which were grade I-II. The toxicity correlation analysis results indicated that stomatitis was related to the Cmax of liposome-encapsulated doxorubicin (P < 0.05). No other AEs were found to be correlated with the pharmacokinetic parameters of either free or liposome-encapsulated doxorubicin. CONCLUSION A one-compartment model adequately described the popPK characteristics of both liposome-encapsulated and free doxorubicin in Chinese female patients with advanced breast cancer. Most AEs to PLD were mild. Additionally, the occurrence of mucositis may be positively correlated with the Cmax of liposome-encapsulated doxorubicin.
Collapse
Affiliation(s)
- Gaoqi Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dihong Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chaoneng He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Like Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qi Shu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Haiying Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxiu Xin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yinghui Tong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
8
|
Neoadjuvant pegylated liposomal doxorubicin- and epirubicin-based combination therapy regimens for early breast cancer: a multicenter retrospective case-control study. Breast Cancer Res Treat 2023; 199:47-55. [PMID: 36869992 DOI: 10.1007/s10549-023-06867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/20/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE This study aimed to compare the effectiveness and safety of pegylated liposomal doxorubicin (PLD)-based and epirubicin-based combination therapy regimen as neoadjuvant therapy for early breast cancer. METHODS Patients with stage I-III breast cancer who underwent neoadjuvant therapy followed by surgery between January 2018 and December 2019 were retrospectively reviewed. The primary outcome was pathological complete response (pCR) rate. The secondary outcome was radiologic complete response (rCR) rate. Outcomes were compared between treatment groups PLD-cyclophosphamide followed by docetaxel (LC-T group) or epirubicin-cyclophosphamide followed by docetaxel (EC-T group), using both propensity-score matched (matched) and unmatched data. RESULTS Data were analyzed from patients who received neoadjuvant LC-T (n = 178) or EC-T (n = 181) treatment. The overall pCR rate and rCR rate were higher in the LC-T group compared with the EC-T group (unmatched pCR: 25.3% vs. 15.5%, p = 0.026; rCR: 14.7% vs. 6.7%, p = 0.016; matched pCR: 26.9% vs. 16.1%, p = 0.034; rCR: 15.5% vs. 7.4%, p = 0.044). Analysis by molecular subtype showed that compared with EC-T treatment, LC-T treatment achieved significantly greater pCR rate in triple-negative subtype and greater rCR rate in Her2 (+) subtype. CONCLUSIONS Neoadjuvant PLD-based therapy may be a potential option for patients with early-stage breast cancer. The current results warrant further investigation.
Collapse
|
9
|
Cai T, Jiang J, Yao W, Hu Y, Kong S, Fan Q, Yan X, Li F, Shi Z. Pirfenidone inhibits stromal collagen deposition and improves intra-tumoral delivery and antitumor efficacy of Pegylated liposomal doxorubicin. Biomed Pharmacother 2023; 157:114015. [PMID: 36395611 DOI: 10.1016/j.biopha.2022.114015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of cancer nanotherapeutics is greatly restricted by the dense collagen network in solid tumors. Pirfenidone (PFD) is a clinically approved oral antifibrotic agent widely used to treat idiopathic pulmonary fibrosis. To investigate whether PFD can enhance the penetration and tumor delivery efficiency of Pegylated liposomal doxorubicin (PLD), colorectal cancer xenograft mice were administered PFD, PLD, or combined regimens. As expected, high-dose PFD (H-PFD, 270 mg/kg/day) combined with PLD (H-PFD + PLD) exhibited a significantly higher tumor inhibition rate than PLD monotherapy (75.09% vs. 60.87%). Similarly, the intra-tumoral doxorubicin level was markedly elevated using H-PFD pretreatment, which induced over 34% elevation compared to PLD treatment alone (3.37 ± 0.41 vs. 2.51 ± 0.19 µg/mL). Additionally, Masson's trichrome staining and immunohistochemistry results of the H-PFD + PLD group revealed an attenuation of collagen deposition in vivo, and the in vitro TGF-β1, α-SMA, and collagen protein expression were inhibited using PFD treatment. In contrast, although low-dose PFD (60 mg/kg/day) did not present superior benefits in promoting PLD penetration into tumors, it did downregulate collagen expression in vivo. This study provides a new strategy for PFD combined with chemotherapeutic drugs to improve the antitumor efficacy of nanomedicines.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Jiali Jiang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Wendong Yao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yan Hu
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310005, China; Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou 310022, China
| | - Sisi Kong
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310005, China; Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiaomei Fan
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xingxing Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| |
Collapse
|
10
|
Gao H, Xu Y, Liu Y, Mi L, Wang X, Liu W, Zhu J, Song Y. A Comparison of Clinical Prognostic Indices in Elderly Patients with Diffuse Large B-Cell Lymphoma Treated with a Pegylated Liposomal Doxorubicin Combination Regimen in China. Cancer Manag Res 2022; 14:2711-2721. [PMID: 36133738 PMCID: PMC9482890 DOI: 10.2147/cmar.s359956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is no consensus regarding the risk stratification scores for elderly patients with diffuse large B-cell lymphoma (DLBCL). We aimed to compare the prognostic predictive ability of the current clinical scoring indices in DLBCL elderly patients treated with the R-CODP regimen (rituximab, cyclophosphamide, pegylated liposomal doxorubicin, vincristine, and prednisone). Methods We retrospectively collected the data of elderly DLBCL patients who received the R-CODP regimen as the first-line treatment. The efficacy of the regimen was evaluated. The Akaike information criteria (AIC), concordance index (C-index), and integrated discrimination improvement (IDI) were used to assess the fitness and prognostic performance of the current clinical prognostic indices. Results In the total of 158 patients enrolled, the median follow-up time was 6.7 years (95% CI: 6.3–7.9), and the 5-year OS was 52.8% (95% CI: 45.5%–61.2%). The International Prognostic Index (IPI), National Comprehensive Cancer Network-IPI (NCCN-IPI), and Elderly International Prognostic Index (E-IPI) were all significantly associated with OS (P < 0.001 for all). However, no significance was observed in 5-year OS in the low- vs low-intermediate-risk groups for IPI (P = 0.377), NCCN-IPI (P = 0.238), and E-IPI (P = 0.080). Compared with the IPI and NCCN-IPI, the E-IPI had the lowest AIC value of 747.5 and the highest C-index of 0.692. For predicting 5-year mortality, the E-IPI showed better performance (AUC: 0.715 for E-IPI vs 0.676 for IPI, P = 0.036), with the IDI of 6.29% (95% CI: 3.71%-8.88%, P < 0.001) and 4.80% (95% CI: 1.32%-8.28%, P = 0.007) compared to the IPI and NCCN-IPI, respectively. Conclusion The E-IPI might be a better prognostic prediction model in Chinese DLBCL generics treated with R-CODP for predicting 5-year mortality. However, the IPI, NCCN-IPI, and E-IPI did not seem to be able to distinguish patients with a favorable prognosis well.
Collapse
Affiliation(s)
- Hongye Gao
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yanfeng Xu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yanfei Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Lan Mi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xiaopei Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
11
|
pH-Responsive PEGylated Niosomal Nanoparticles as an Active-Targeting Cyclophosphamide Delivery System for Gastric Cancer Therapy. Molecules 2022; 27:molecules27175418. [PMID: 36080186 PMCID: PMC9457647 DOI: 10.3390/molecules27175418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
A PEGylated niosomal formulation of cyclophosphamide (Nio-Cyclo-PEG) was prepared using a central composite design and characterized in terms of drug loading, size distribution, and average size. The stability of formulations was also studied at different conditions. In vitro cytotoxicity of drug delivery formulations was assessed on gastric cancer cells using MTT assay. The mechanism of cytotoxicity was studied at the transcriptional level by real-time PCR on Caspase3, Caspase9, CyclinD, CyclinE, MMP-2, and MMP-9 genes, while apoptosis was investigated with flow cytometry. The anti-metastatic property was evaluated using the scratch method. Propidium iodide staining was used to study the cell cycle. The results indicated that the as-designed nanocarrier exhibited a controlled drug release pattern with improved nanoparticle stability. It was found that the living cancer cells treated with Nio-Cyclo-PEG showed a significant decrease in number when compared with the niosomal carrier without PEG (Nio-Cyclo) and free drug (Cyclo). Moreover, the drug-loaded nanocarrier induced planned death (apoptosis) in the cancer cells through the regulation of Caspase3, Caspase9, CyclinD, CyclinE, MMP-9, and MMP-2 gene expression, indicating that the Nio-Cyclo-PEG formulation could significantly inhibit the cell cycle at the sub G1 phase as well as prevent the migration of cancer cells. In conclusion, Nio-Cyclo-PEG as developed in this study could serve as an active-targeting drug delivery nanocarriers for gastric cancer therapy with high efficacy and minimal side effects on healthy tissues/cells.
Collapse
|
12
|
Rezaei T, Rezaei M, Karimifard S, Mahmoudi Beram F, Dakkali MS, Heydari M, Afshari-Behbahanizadeh S, Mostafavi E, Bokov DO, Ansari MJ, Farasati Far B, Akbarzadeh I, Chaiyasut C. Folic Acid-Decorated pH-Responsive Nanoniosomes With Enhanced Endocytosis for Breast Cancer Therapy: In Vitro Studies. Front Pharmacol 2022; 13:851242. [PMID: 35517801 PMCID: PMC9065559 DOI: 10.3389/fphar.2022.851242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women and the second leading cause of cancer death in women after lung cancer. The purpose of this study is a targeted delivery toward in vitro (on MCF7 and 4T1 breast cancer cell lines) through niosomes-based nanocarriers. To this end, different bioactive molecules, including hyaluronic acid (HA), folic acid (FA), and polyethylene glycol (PEG), were used and compared for surface modification of niosomes to enhance endocytosis. FA-functionalized niosomes (Nio/5-FU/FA) were able to increase cell cytotoxicity and reduce cell migration and invasion compared to PEG-functionalized niosomes (Nio/5-FU/PEG), and HA-functionalized niosomes (Nio/5-FU/HA) groups in MCF-7 and 4T1 cell lines. Although the Nio/5-FU/PEG and Nio/5-FU/HA demonstrated MCF7 cell uptake, the Nio/5-FU/FA exhibited the most preponderant endocytosis in pH 5.4. Remarkably, in this study 5-FU loaded niosomes (nonionic surfactant-based vesicles) were decorated with various bioactive molecules (FA, PEG, or HA) to compare their ability for breast cancer therapy. The fabricated nanoformulations were readily taken up by breast cancer cells (in vitro) and demonstrated sustained drug release characteristics, inducing cell apoptosis. Overall, the comprehensive comparison between different bioactive molecules-decorated nanoniosomes exhibited promising results in finding the best nano formulated candidates for targeted delivery of drugs for breast cancer therapy.
Collapse
Affiliation(s)
- Tahereh Rezaei
- General Physician, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaei
- Department of Cardiology, Fars-Iranian Heart Association, Fars Society of Internal Medicine, Shiraz, Iran
| | - Sara Karimifard
- Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Farzaneh Mahmoudi Beram
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Phillips MC, Mousa SA. Clinical application of nano-targeting for enhancing chemotherapeutic efficacy and safety in cancer management. Nanomedicine (Lond) 2022; 17:405-421. [PMID: 35118878 DOI: 10.2217/nnm-2021-0361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment, cancer remains a leading cause of death worldwide. While chemotherapy is effective, it also damages healthy tissue, leading to severe, dose-limiting side effects that can impair efficacy and even contribute to chemoresistance. Nano-based drug-delivery systems can potentially target the delivery of chemotherapy to improve efficacy and reduce adverse effects. A number of nanocarriers have been investigated for the delivery of chemotherapy, and many of the most promising agents have advanced to clinical trials. This review examines the safety and efficacy of nanoformulated chemotherapeutic agents in clinical trials, with particular emphasis on anthracyclines, taxanes and platinum compounds. It also briefly discusses the role nano-targeting might play in the prevention and treatment of chemoresistance.
Collapse
Affiliation(s)
- Matthew C Phillips
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
14
|
Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021; 12:787226. [PMID: 35002719 PMCID: PMC8740088 DOI: 10.3389/fphar.2021.787226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30-200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010-2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ester Adelia Mianing
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
15
|
Ilhami FB, Bayle EA, Cheng CC. Complementary Nucleobase Interactions Drive Co-Assembly of Drugs and Nanocarriers for Selective Cancer Chemotherapy. Pharmaceutics 2021; 13:1929. [PMID: 34834344 PMCID: PMC8625492 DOI: 10.3390/pharmaceutics13111929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A new concept in cooperative adenine-uracil (A-U) hydrogen bonding interactions between anticancer drugs and nanocarrier complexes was successfully demonstrated by invoking the co-assembly of water soluble, uracil end-capped polyethylene glycol polymer (BU-PEG) upon association with the hydrophobic drug adenine-modified rhodamine (A-R6G). This concept holds promise as a smart and versatile drug delivery system for the achievement of targeted, more efficient cancer chemotherapy. Due to A-U base pairing between BU-PEG and A-R6G, BU-PEG has high tendency to interact with A-R6G, which leads to the formation of self-assembled A-R6G/BU-PEG nanogels in aqueous solution. The resulting nanogels exhibit a number of unique physical properties, including extremely high A-R6G-loading capacity, well-controlled, pH-triggered A-R6G release behavior, and excellent structural stability in biological media. Importantly, a series of in vitro cellular experiments clearly demonstrated that A-R6G/BU-PEG nanogels improved the selective uptake of A-R6G by cancer cells via endocytosis and promoted the intracellular release of A-R6G to subsequently induce apoptotic cell death, while control rhodamine/BU-PEG nanogels did not exert selective toxicity in cancer or normal cell lines. Overall, these results indicate that cooperative A-U base pairing within nanogels is a critical factor that improves selective drug uptake and effectively promotes apoptotic programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (F.B.I.); (E.A.B.)
| | - Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (F.B.I.); (E.A.B.)
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (F.B.I.); (E.A.B.)
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
16
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
17
|
El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021; 173:238-251. [PMID: 33774117 DOI: 10.1016/j.addr.2021.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Oral anticancer drugs have earned a seat at the table, as the need for homecare treatment in oncology has increased. Interest in this field is growing as a result of their proven efficacy, lower costs and positive patient uptake. However, the gastrointestinal barrier is still the main obstacle to surmount in chemotherapeutic oral delivery. Anticancer nanomedicines have been proposed to solve this quandary. Among these, lipid nanoparticles are described to be efficiently absorbed while protecting drugs from early degradation in hostile environments. Their intestinal lymphatic tropism or mucoadhesive/penetrative properties give them unique characteristics for oral administration. Considering that chronic cancer cases are increasing over time, it is important to be able to provide treatments with low toxicity and low prices. The challenges, opportunities and therapeutic perspectives of lipid nanoparticles in this area will be discussed in this review, taking into consideration the pre-clinical and clinical progress made in the last decade.
Collapse
|
18
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Martin B, Seguin J, Annereau M, Fleury T, Lai-Kuen R, Neri G, Lam A, Bally M, Mignet N, Corvis Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci Rep 2020; 10:18059. [PMID: 33093456 PMCID: PMC7581827 DOI: 10.1038/s41598-020-74809-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle technology in cancer chemotherapy is a promising approach to enhance active ingredient pharmacology and pharmacodynamics. Indeed, drug nanoparticles display various assets such as extended blood lifespan, high drug loading and reduced cytotoxicity leading to better drug compliance. In this context, organic nanocrystal suspensions for pharmaceutical use have been developed in the past ten years. Nanocrystals offer new possibilities by combining the nanoformulation features with the properties of solid dispersed therapeutic ingredients including (i) high loading of the active ingredient, (ii) its bioavailability improvement, and (iii) reduced drug systemic cytotoxicity. However, surprisingly, no antitumoral drug has been marketed as a nanocrystal suspension until now. Etoposide, which is largely used as an anti-cancerous agent against testicular, ovarian, small cell lung, colon and breast cancer in its liquid dosage form, has been selected to develop injectable nanocrystal suspensions designed to be transferred to the clinic. The aim of the present work is to provide optimized formulations for nanostructured etoposide solutions and validate by means of in vitro and in vivo evaluations the efficiency of this multiphase system. Indeed, the etoposide formulated as a nanosuspension by a bottom-up approach showed higher blood life span, reduced tumor growth and higher tolerance in a murine carcinoma cancer model. The results obtained are promising for future clinical evaluation of these etoposide nanosuspensions.
Collapse
Affiliation(s)
- Brice Martin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.,Department of Neurological Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Johanne Seguin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Maxime Annereau
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - Thomas Fleury
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - René Lai-Kuen
- Université de Paris, CNRS, Inserm, Cellular and Molecular Imaging Technology Platform, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Giovanni Neri
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Anita Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Marcel Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
20
|
Rapid Target Binding and Cargo Release of Activatable Liposomes Bearing HER2 and FAP Single-Chain Antibody Fragments Reveal Potentials for Image-Guided Delivery to Tumors. Pharmaceutics 2020; 12:pharmaceutics12100972. [PMID: 33076292 PMCID: PMC7650594 DOI: 10.3390/pharmaceutics12100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Liposomes represent suitable tools for the diagnosis and treatment of a variety of diseases, including cancers. To study the role of the human epidermal growth factor receptor 2 (HER2) as target in cancer imaging and image-guided deliveries, liposomes were encapsulated with an intrinsically quenched concentration of a near-infrared fluorescent dye in their aqueous interior. This resulted in quenched liposomes (termed LipQ), that were fluorescent exclusively upon degradation, dye release, and activation. The liposomes carried an always-on green fluorescent phospholipid in the lipid layer to enable tracking of intact liposomes. Additionally, they were functionalized with single-chain antibody fragments directed to fibroblast activation protein (FAP), a marker of stromal fibroblasts of most epithelial cancers, and to HER2, whose overexpression in 20–30% of all breast cancers and many other cancer types is associated with a poor treatment outcome and relapse. We show that both monospecific (HER2-IL) and bispecific (Bi-FAP/HER2-IL) formulations are quenched and undergo HER2-dependent rapid uptake and cargo release in cultured target cells and tumor models in mice. Thereby, tumor fluorescence was retained in whole-body NIRF imaging for 32–48 h post-injection. Opposed to cell culture studies, Bi-FAP/HER2-IL-based live confocal microscopy of a high HER2-expressing tumor revealed nuclear delivery of the encapsulated dye. Thus, the liposomes have potentials for image-guided nuclear delivery of therapeutics, and also for intraoperative delineation of tumors, metastasis, and tumor margins.
Collapse
|
21
|
Gabizon A, Szebeni J. Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines. ACS NANO 2020; 14:7682-7688. [PMID: 32643376 DOI: 10.1021/acsnano.0c03648] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this issue of ACS Nano, Chen et al. provide in vitro and in vivo evidence for monoclonal anti-poly(ethylene glycol) (anti-PEG) antibody-triggered, complement terminal complex-mediated damage to PEGylated liposomal doxorubicin, entailing the release of the encapsulated drug from the vesicles. These results reveal a new dimension of the potential damage of anti-PEG antibody-mediated complement activation on PEGylated nanomedicines in addition to previous observations on infusion hypersensitivity reactions and the accelerated blood clearance effect. The possibility of a destructive attack of the complement system on the liposome drug carrier may have safety implications in patients displaying high levels of preformed anti-PEG antibodies. In this Perspective, we summarize the experimental and clinical data highlighting the relationships among the above adverse immune phenomena and the options available for reducing the risk of immune damage caused by PEGylated nanomedicines.
Collapse
Affiliation(s)
- Alberto Gabizon
- Nano-oncology Research Center, Shaare Zedek Medical Center and The Hebrew University-Faculty of Medicine, Jerusalem 9103102, Israel
- Lipomedix Pharmaceuticals Ltd., Jerusalem 9139102, Israel
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc 3515, Hungary
- SeroScience Ltd., Budapest 1125, Hungary
| |
Collapse
|
22
|
Zhu Y, Wang F, Zhao Y, Zheng X. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia: a literature review of pharmaceutical and clinical aspects. Eur J Hosp Pharm 2020; 28:ejhpharm-2020-002311. [PMID: 32591480 PMCID: PMC8077615 DOI: 10.1136/ejhpharm-2020-002311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The rate of dermal toxicity has been shown to increase in patients receiving pegylated liposomal doxorubicin (PLD), particularly palmar-plantar erythrodysesthesia (PPE). However, it is difficult to diagnose and treat PLD-related PPE due to its delayed dermal performance, unclear pathogenetic mechanism, and the lack of specific preventive measures. The aim of this study was to provide potential management strategies for PPE associated with PLD. METHODS The current article reviews the available data regarding the pharmacological and clinical aspects of PLD, including the formulation and pharmacokinetics of PLD, dose and schedule contribution to PPE, concomitant drugs affecting skin toxicity of PLD, the pathogenesis of PPE, and preventive measures and treatment of PLD-related PPE. RESULTS The long circulation structure of polyethylene glycol liposomes may be one of the reasons for PPE. PLD has radically different pharmacokinetic characteristics, including prolonged blood circulation time, decreased body distribution volume, and slow clearance. Altering the schedules and doses of PLD or combining it with platinum compounds can optimise clinical efficacy and minimise the occurrence of PPE. Doses of 150-200 mg of pyridoxine daily have been widely used for the prevention and treatment of PPE. Regional cooling and plasma filtration have been used for PPE prophylaxis. CONCLUSIONS To date, the mechanism of PPE induced by PLD remains unclear, and no complete preventive medication has been established. Further research and prospective randomised studies are needed to understand the management options in PLD-related PPE.
Collapse
Affiliation(s)
- Yao Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenfen Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Chen M, Chen S, Zhu F, Wang F, Tian H, Fan Z, Ke S, Hou Z, Li Y. "Watson-Crick G[triple bond, length as m-dash]C"-inspired supramolecular nanodrug of methotrexate and 5-fluorouracil for tumor microenvironment-activatable self-recognizing synergistic chemotherapy. J Mater Chem B 2020; 8:3829-3841. [PMID: 32232285 DOI: 10.1039/d0tb00468e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carrier-free nanodrugs, generated via the straightforward small-molecule self-assembly of anticancer drugs, provide a promising route for cancer chemotherapy. However, their low structural stability, lack of targeting specificity, and poor stimulus responsiveness are still limiting their therapeutic effect. Inspired by Watson-Crick G[triple bond, length as m-dash]C base pairing, the FDA-approved chemo-drug methotrexate (MTX, which can bind with folate receptors) and 5-fluorouracil (5-FU, a DNA/RNA synthetase inhibitor) were adopted for direct assembly into self-recognizing MTX-5-FU nanoparticles via "Watson-Crick-like base pairing"-driven precise supramolecular assembly. Sequentially, our synthesized weak acidity-responsive polyethylene glycol (PEG) was inserted onto the nanoparticle surface to temporarily shield the self-targeting function of MTX and prolong the blood circulation time. Once PEG-MTX-5-FU nanoparticles reached the weakly acidic tumor microenvironment, the PEG corona could be cleaved from their surface and then MTX could be re-exposed to recover its self-recognition ability and significantly elevate tumor cell uptake; furthermore, the de-PEGylated MTX-5-FU nanoparticles could respond to the stronger acidity of lysosome, triggering core disassembly and thus the burst release of both MTX and 5-FU. Further in vitro and in vivo studies consistently confirmed that the nanodrugs exhibited preferable accumulation at the tumor sites with highly synergistic chemotherapeutic effects. The supramolecular recognition-inspired, cascade-triggered self-targeting and controlled release of nanodrugs could be a promising strategy to improve synergistic chemotherapy.
Collapse
Affiliation(s)
- Meijin Chen
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Shiduan Chen
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Fanfan Wang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China and Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China.
| |
Collapse
|
24
|
The Efficacy of Pegylated Liposomal Doxorubicin-Based Neoadjuvant Chemotherapy in Breast Cancer: A Retrospective Case-Control Study in Taiwan. Biochem Res Int 2020; 2020:5729389. [PMID: 32399300 PMCID: PMC7204388 DOI: 10.1155/2020/5729389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a global issue regarding women's health, and high incident rates remain in the Taiwanese female population. Chemotherapy, using anthracycline-based chemotherapeutic agents in neoadjuvant settings, has been introduced as a promising new therapeutic option for treatment of invasive breast cancer. Set apart from conventional anthracycline regimens such as epirubicin, pegylated liposomal doxorubicin (Lipo-Dox®, PLD) was introduced for providing a justifiable treatment effect, while offering a favorable toxicity profile for breast cancer patients in a metastatic setting. However, the efficacy of PLD in neoadjuvant settings for breast cancer patients has not yet been sufficiently reported. This study aims to investigate the efficacy of PLD-based neoadjuvant chemotherapy in breast cancer patients using a retrospective matched case-control study. A total of 183 PLD cases and 183 epirubicin-based controls were included after a 1 : 1 ratio case-control matching procedure was held, according to the matching criteria. These criteria included the patient's preoperative clinical stage, molecular subtype, chemotherapy regimen with taxanes prior to surgery, and histological grade. All data were collected according to an institutional review board approved protocol. The study results reported that the PLD and epirubicin groups both obtained similar outcomes in pathologic complete response (pCR), recurrence, and overall survival rate with no statistically significant differences. Overall, the study results demonstrate that PLD-based neoadjuvant chemotherapy offers a similar effect of treatment with a favorable toxicity profile within the study follow-up duration, when compared with conventional epirubicin-based neoadjuvant chemotherapy.
Collapse
|
25
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgräber UK, Fahr A, Hilger I. Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes. Pharmaceutics 2020; 12:pharmaceutics12040370. [PMID: 32316521 PMCID: PMC7238156 DOI: 10.3390/pharmaceutics12040370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.
Collapse
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ansgar M. Kollmeier
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital-Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany;
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany;
| | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| |
Collapse
|
26
|
Zhang M, Chen X, Li C, Shen X. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. J Control Release 2020; 319:46-62. [DOI: 10.1016/j.jconrel.2019.12.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
|
27
|
Pothuri B, Brodsky AL, Sparano JA, Blank SV, Kim M, Hershman DL, Tiersten A, Kiesel BF, Beumer JH, Liebes L, Muggia F. Phase I and pharmacokinetic study of veliparib, a PARP inhibitor, and pegylated liposomal doxorubicin (PLD) in recurrent gynecologic cancer and triple negative breast cancer with long-term follow-up. Cancer Chemother Pharmacol 2020; 85:741-751. [PMID: 32055930 DOI: 10.1007/s00280-020-04030-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Poly(ADP-ribosyl) polymerases (PARPs) are nuclear enzymes with roles in DNA damage recognition and repair. PARP1 inhibition enhances the effects of DNA-damaging agents like doxorubicin. We sought to determine the recommended phase two dose (RP2D) of veliparib with pegylated liposomal doxorubicin (PLD) in breast and recurrent gynecologic cancer patients. METHODS Veliparib and PLD were administered in a standard phase 1, 3 + 3 dose-escalation design starting at 50 mg veliparib BID on days 1-14 with PLD 40 mg/mg2 on day 1 of a 28-day cycle. Dose escalation proceeded in two strata: A (prior PLD exposure) and B (no prior PLD exposure). Patients underwent limited pharmacokinetic (PK) sampling; an expansion PK cohort was added. RESULTS 44 patients with recurrent ovarian or triple negative breast cancer were enrolled. Median age 56 years; 23 patients BRCA mutation carriers; median prior regimens four. Patients received a median of four cycles of veliparib/PLD. Grade 3/4 toxicities were observed in 10% of patients. Antitumor activity was observed in both sporadic and BRCA-deficient cancers. Two BRCA mutation carriers had complete responses. Two BRCA patients developed oral squamous cell cancers after completing this regimen. PLD exposure was observed to be higher when veliparib doses were > 200 mg BID. CONCLUSIONS The RP2D is 200 mg veliparib BID on days 1-14 with 40 mg/m2 PLD on day 1 of a 28-day cycle. Anti-tumor activity was seen in both strata. However, given development of long-term squamous cell cancers and the PK interaction observed, efforts should focus on other targeted combinations to improve efficacy.
Collapse
Affiliation(s)
- Bhavana Pothuri
- NYU Langone Health, Division of Gynecologic Oncology, New York University School of Medicine, 240 East 38th street, 19th floor, New York, NY, USA.
| | - Allison L Brodsky
- NYU Langone Health, Division of Gynecologic Oncology, New York University School of Medicine, 240 East 38th street, 19th floor, New York, NY, USA
| | - Joseph A Sparano
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | - Mimi Kim
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | | | - Brian F Kiesel
- University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jan H Beumer
- University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | | | - Franco Muggia
- NYU Langone Health, Division of Gynecologic Oncology, New York University School of Medicine, 240 East 38th street, 19th floor, New York, NY, USA
| |
Collapse
|
28
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
29
|
Boratto FA, Franco MS, Barros ALB, Cassali GD, Malachias A, Ferreira LAM, Leite EA. Alpha-tocopheryl succinate improves encapsulation, pH-sensitivity, antitumor activity and reduces toxicity of doxorubicin-loaded liposomes. Eur J Pharm Sci 2019; 144:105205. [PMID: 31874285 DOI: 10.1016/j.ejps.2019.105205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) plays an important role in cancer treatment; however, high cardiotoxicity and low penetration in solid tumors are the main limitations of its use. Liposomal formulations have been developed to attenuate the DOX toxicity, but the technological enhancement of the liposomal formulation as well as the addition of another agent with antitumor properties, like alpha-tocopheryl succinate (TS), a semi-synthetic analog of vitamin E, could certainly bring benefits. Thus, in this study, it was proposed the development of liposomes composed of DOX and TS (pHSL-TS-DOX). A new DOX encapsulation method, without using the classic ammonium sulfate gradient with high encapsulation percentage was developed. Analysis of Small Angle X-ray Scattering (SAXS) and release study proved the pH-sensitivity of the developed formulation. It was observed stabilization of tumor growth using pHSL-TS-DOX when compared to free DOX. The toxicity tests showed the safety of this formulation since it allowed body weight initial recovery after the treatment and harmless to heart and liver, main target organs of DOX toxicity. The developed formulation also avoided the occurrence of myelosuppression, a typical adverse effect of DOX. Therefore, pHSL-TS-DOX is a promising alternative for the treatment of breast cancer since it has adequate antitumor activity and a safe toxicity profile.
Collapse
Affiliation(s)
- F A Boratto
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - M S Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - A L B Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - G D Cassali
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A Malachias
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - L A M Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - E A Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
30
|
Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics 2019; 11:pharmaceutics11060255. [PMID: 31159417 PMCID: PMC6631149 DOI: 10.3390/pharmaceutics11060255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023] Open
Abstract
Predictions made soon after the introduction of human immunodeficiency virus type-1 (HIV-1) protease inhibitors about potentially eradicating the cellular reservoirs of HIV-1 in infected individuals were too optimistic. The ability of the HIV-1 genome to remain in the chromosomes of resting CD4+ T cells and macrophages without being expressed (HIV-1 latency) has prompted studies to activate the cells in the hopes that the immune system can recognize and clear these cells. The absence of natural clearance of latently infected cells has led to the recognition that additional interventions are necessary. Here, we review the potential of utilizing suicide gene therapy to kill infected cells, excising the chromosome-integrated HIV-1 DNA, and targeting cytotoxic liposomes to latency-reversed HIV-1-infected cells.
Collapse
|
31
|
Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019; 11:polym11040630. [PMID: 30959799 PMCID: PMC6523645 DOI: 10.3390/polym11040630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022] Open
Abstract
The side-effects associated with chemotherapy necessitates better delivery of chemotherapeutics to the tumor. Nanoparticles can load higher amounts of drug and improve delivery to tumors, increasing the efficacy of treatment. Polymeric nanoparticles, in particular, have been used extensively for chemotherapeutic delivery. This review describes the efforts made to deliver combination chemotherapies and inhibit oncogenic pathways using polymeric drug delivery systems. Combinations of chemotherapeutics with other drugs or small interfering RNA (siRNA) combinations have been summarized. Special attention is given to the delivery of drug combinations that involve either paclitaxel or doxorubicin, two popular chemotherapeutics in clinic. Attempts to inhibit specific pathways for oncotherapy have also been described. These include inhibition of oncogenic pathways (including those involving HER2, EGFR, MAPK, PI3K/Akt, STAT3, and HIF-1α), augmentation of apoptosis by inhibiting anti-apoptosis proteins (Bcl-2, Bcl-xL, and survivin), and targeting dysregulated pathways such as Wnt/β-catenin and Hedgehog.
Collapse
|
32
|
Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin 2019; 40:539-545. [PMID: 29921887 DOI: 10.1038/s41401-018-0038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Tumor-targeted drug delivery systems (Tt-DDSs) are proposed as a promising strategy for cancer care. However, the dense collagen network in tumors stroma significantly reduces the penetration and efficacy of Tt-DDS. In order to investigate the effect of asiatic acid (AA) on antitumor effect of pegylated liposomal doxorubicin (PLD) by attenuating stroma-collagen, colon cancer xenograft mice (SW620 cell line) were treated by PLD, AA, or combined regimes, respectively; the collagen levels were estimated by Sirius red/fast green dual staining and immunohistochemistry (IHC) staining; the intratumor exposure of doxorubicin was visualized by ex vivo fluorescence imaging and quantified by HPLC/MS analysis. In addition, the impact of AA on collagen synthesis of fibroblast cell (HFL-1) and cytotoxic effect of PLD and doxorubicin to cancer cell (SW620) were studied in vitro. In the presence of AA (4 mg/kg), the intratumor collagen level was restricted in vivo (reduced by 22%, from 4.14% ± 0.30% to 3.24% ± 0.25%, P = 0.051) and in vitro. Subsequently, doxorubicin level was increased by ~30%. The antitumor activity of PLD was significantly improved (57.3% inhibition of tumor growth and 44% reduction in tumor weight) by AA combination. Additionally, no significant improvement in cytotoxic effect of PLD or doxorubicin induced by AA was observed. In conclusion, AA is a promising sensitizer for tumor treatment by enhancing intratumor drug exposure via stromal remodeling.
Collapse
|
33
|
Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech 2019; 20:99. [PMID: 30719596 DOI: 10.1208/s12249-019-1316-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
This study reports co-delivery of doxorubicin (DOX) and ceramide in a liposomal system in B16BL6 melanoma cell lines for enhanced cytotoxic effects. Different types of ceramides (C6-ceramide, C8-ceramide, and C8-glucosylceramide) and lipids (1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)) were considered in the preparation of liposomes. DOX was encapsulated within liposome, and ceramide was used as the component of the lipid bilayer. The formulations were optimized for size and size distribution, zeta potential, and DOX encapsulation efficiency (EE). Cytotoxic effect on B16BL6 melanoma cell lines was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ceramide based liposome formulations generally provided a mean diameter < 181 nm, a zeta potential, + 35 mV, and EE > 90% DOX EE. Co-delivery of DOX and C8-ceramide with DOTAP liposomes demonstrated significantly higher cytotoxicity as compared to DOX liposomes without ceramide (P < 0.001), and also showed enhanced cellular uptake by B16BL6 cell lines. This study provides basis for developing a co-delivery system of DOX and ceramide for lowering the dose and dose-related side effects of DOX for the treatment of melanoma.
Collapse
|
34
|
Ngoune R, Contini C, Hoffmann MM, von Elverfeldt D, Winkler K, Putz G. Optimizing Antitumor Efficacy and Adverse Effects of Pegylated Liposomal Doxorubicin by Scheduled Plasmapheresis: Impact of Timing and Dosing. Curr Drug Deliv 2018; 15:1261-1270. [PMID: 29779479 PMCID: PMC6327121 DOI: 10.2174/1567201815666180518125839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022]
Abstract
Background: Nanoscale drug delivery systems accumulate in solid tumors preferentially by the enhanced permeation and retention effect (EPR-effect). Nevertheless, only a miniscule fraction of a given dosage reaches the tumor, while >90% of the given drug ends up in otherwise healthy tissues, lead-ing to the severe toxic reactions observed during chemotherapy. Once accumulation in the tumor has reached its maximum, extracorporeal elimination of circulating nanoparticles by plasmapheresis can dimin-ish toxicities. Objective: In this study, we investigated the effect of dosing and plasmapheresis timing on adverse events and antitumor efficacy in a syngeneic rat tumor model. Methods: MAT-B-III cells transfected with a luciferase reporter plasmid were inoculated into female Fisher rats, and pegylated liposomal doxorubicin (PLD) was used for treatment. Plasmapheresis was performed in a discontinuous manner via centrifugation and subsequent filtration of isolated plasma. Results: Bioluminescence measurements of tumor growth could not substitute caliper measurements of tumor size. In the control group, raising the dosage above 9 mg PLD/kg body weight did not increase therapeutic efficacy in our fully immunocompetent animal model. Plasmapheresis was best done 36 h after injecting PLD, leading to similar antitumor efficacy with significantly less toxicity. Plasmapheresis 24 h after injection interfered with therapeutic efficacy, while plasmapheresis after 48 h led to fewer side effects but also to increased weight loss. Conclusion: Long-circulating nanoparticles offer the unique possibility to eliminate the excess of circulat-ing particles after successful accumulation in tumors by EPR, thereby reducing toxicities and likely toxici-ty-related therapeutic limitations
Collapse
Affiliation(s)
- Romeo Ngoune
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Christine Contini
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Michael M Hoffmann
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Center - University of Freiburg, Faculty of Medicine, Department of Diagnostic Radiology Medical Physics, Freiburg, Germany
| | - Karl Winkler
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Gerhard Putz
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| |
Collapse
|
35
|
Wang F, Ye X, Wu Y, Wang H, Sheng C, Peng D, Chen W. Time Interval of Two Injections and First-Dose Dependent of Accelerated Blood Clearance Phenomenon Induced by PEGylated Liposomal Gambogenic Acid: The Contribution of PEG-Specific IgM. J Pharm Sci 2018; 108:641-651. [PMID: 30595169 DOI: 10.1016/j.xphs.2018.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023]
Abstract
Repeated injection of PEGylated liposomes can cause the disappearance of long circulating property because of the induction of anti-PEG IgM antibody referred to as "accelerated blood clearance (ABC) phenomenon." Although ABC phenomenon typically occurs when entrapped drugs are chemotherapeutic agent with low cytotoxic, there is little evidence of accelerated blood clearance of PEGylated herbal-derived compound on repeated injection. Herein, we investigated the blood concentration of PEGylated liposomal gambogenic acid (PEG-GEA-L), a model PEGylated liposomal herbal extract, on its repeated injection to rats. We found time interval between injections had considerable impact on the magnitude of ABC phenomenon induced by PEG-GEA-L. When time interval was prolonged from 3 days to 7 days, ABC phenomenon could be attenuated. Furthermore, its magnitude was enhanced accompanied by a marked rise in the accumulation of PEG-GEA-L in the liver and spleen in a first-dose-dependent manner. Consistently, the level of anti-PEG IgM significantly increased with the first dose of PEG-GEA-L and decreased with the extended time interval between injections, which implies anti-PEG IgM is a major contributor to the ABC phenomenon. Notably, the increased expression of liver anti-PEG IgM was accompanied by an increased expression of efflux transporters in the induction process of the ABC phenomenon.
Collapse
Affiliation(s)
- Fengling Wang
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Xi Ye
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yifan Wu
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Huihui Wang
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chengming Sheng
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Daiyin Peng
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| |
Collapse
|
36
|
Knights-Mitchell SS, Romanowski M. Near-Infrared Activated Release of Doxorubicin from Plasmon Resonant Liposomes. Nanotheranostics 2018; 2:295-305. [PMID: 29977741 PMCID: PMC6030767 DOI: 10.7150/ntno.22544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/25/2018] [Indexed: 01/29/2023] Open
Abstract
Precise control of drug release from nanoparticles can improve efficacy and reduce systemic toxicity associated with administration of certain medications. Here, we combined two phenomena, photothermal conversion in plasmon resonant gold coating and thermal sensitivity of liposome compositions, to achieve a drug delivery system that rapidly releases doxorubicin in response to external stimulus. Methods: Thermosensitive liposomes were loaded with doxorubicin and gold-coated to produce plasmon resonant drug delivery system. Plasmon resonance facilitates release of contents upon near-infrared laser illumination, thus providing spatial and temporal control of the process. This controlled delivery system was compared to thermosensitive liposomes without gold coating and to the FDA-approved Doxil that was gold-coated to create a plasmon resonant coating. Release of doxorubicin from the gold-coated thermosensitive liposomes was further confirmed by tests of cell viability. Results: Upon laser illumination at 760 nm and 88 mW/cm2 power density, permeability of plasmon resonant liposomes increased by three orders of magnitude, from 70×10-12 to 60,000x10-12 cm/s. In control experiments, mild hyperthermia (42°C) increased permeability of these thermosensitive liposomes to just 3,700×10-12 cm/s. Neither hyperthermia nor laser illumination elicit content release from Doxil or plasmon resonant Doxil obtained by gold coating. Laser-induced release of doxorubicin from plasmon resonant thermosensitive liposomes resulted in the loss of cell viability significantly greater than in any of the control groups. Conclusion: Combination of thermosensitive liposomes with plasmon resonant coating enables rapid, controlled release, not currently available in pharmaceutical formulations of anticancer drugs.
Collapse
Affiliation(s)
| | - Marek Romanowski
- Department of Biomedical Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85721, USA
| |
Collapse
|
37
|
Alemi A, Zavar Reza J, Haghiralsadat F, Zarei Jaliani H, Haghi Karamallah M, Hosseini SA, Haghi Karamallah S. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J Nanobiotechnology 2018; 16:28. [PMID: 29571289 PMCID: PMC5865280 DOI: 10.1186/s12951-018-0351-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/03/2022] Open
Abstract
Background The systemic administration of cytotoxic chemotherapeutic agents for cancer treatment often has toxic side effects, limiting the usage dose. To increase chemotherapeutic efficacy while reducing toxic effects, a rational design for synergy-based drug regimens is essential. This study investigated the augmentation of therapeutic effectiveness with the co-administration of paclitaxel (PTX; an effective chemotherapeutic drug for breast cancer) and curcumin (CUR; a chemosensitizer) in an MCF-7 cell line. Results We optimized niosome formulations in terms of surfactant and cholesterol content. Afterward, the novel cationic PEGylated niosomal formulations containing Tween-60: cholesterol:DOTAP:DSPE-mPEG (at 59.5:25.5:10:5) were designed and developed to serve as a model for better transfection efficiency and improved stability. The optimum formulations represented potential advantages, including extremely high entrapment efficiency (~ 100% for both therapeutic drug), spherical shape, smooth-surface morphology, suitable positive charge (zeta potential ~ + 15 mV for both CUR and PTX), sustained release, small diameter (~ 90 nm for both agents), desired stability, and augmented cellular uptake. Furthermore, the CUR and PTX kinetic release could be adequately fitted to the Higuchi model. A threefold and 3.6-fold reduction in CUR and PTX concentration was measured, respectively, when the CUR and PTX was administered in nano-niosome compared to free CUR and free PTX solutions in MCF-7 cells. When administered in nano-niosome formulations, the combination treatment of CUR and PTX was particularly effective in enhancing the cytotoxicity activity against MCF-7 cells. Conclusions Most importantly, CUR and PTX, in both free form and niosomal forms, were determined to be less toxic on MCF-10A human normal cells in comparison to MCF-7 cells. The findings indicate that the combination therapy of PTX with CUR using the novel cationic PEGylated niosome delivery is a promising strategy for more effective breast cancer treatment.
Collapse
Affiliation(s)
- Ashraf Alemi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Fateme Haghiralsadat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Haghi Karamallah
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
38
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim Biophys Acta Gen Subj 2018; 1862:1389-1400. [PMID: 29545133 DOI: 10.1016/j.bbagen.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endoglin (CD105) is overexpressed on tumor cells and tumor vasculatures, making it a potential target for diagnostic imaging and therapy of different neoplasms. Therefore, studies on nanocarrier systems designed for endoglin-directed diagnostic and drug delivery purposes would expose the feasibility of targeting endoglin with therapeutics. METHODS Liposomes carrying high concentrations of a near-infrared fluorescent dye in the aqueous interior were prepared by the lipid film hydration and extrusion procedure, then conjugated to single chain antibody fragments either selective for murine endoglin (termed mEnd-IL) or directed towards human endoglin (termed hEnd-IL). A combination of Dynamic Light Scattering, electron microscopy, cell binding and uptake assays, confocal microscopy and in vivo fluorescence imaging of mice bearing xenografted human breast cancer and human fibrosarcoma models were implemented to elucidate the potentials of the liposomes. RESULTS The mEnd-IL and hEnd-IL were highly selective for the respective murine- and human endoglin expressing cells in vitro and in vivo. Hence, the hEnd-IL bound distinctly to the tumor cells and enabled suitable fluorescence imaging of the tumors, whereas the mEnd-IL bound the tumor vasculature, but also to the liver, kidney and lung vasculature of mice. CONCLUSIONS The work highlights key differences between targeting vascular (murine) and neoplastic (human) endoglin in animal studies, and suggests that the hEnd-IL can serve as a delivery system that targets human endoglin overexpressed in pathological conditions. GENERAL SIGNIFICANCE The endoglin-targeting liposomes presented herewith represent strategic tools for the future implementation of endoglin-directed neoplastic and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
39
|
Chen Y, Li X, Xiao H, Xiao J, Li B, Chen X, Wang Y, Cheng D, Shuai X. Reduction and pH dual-sensitive nanovesicles co-delivering doxorubicin and gefitinib for effective tumor therapy. RSC Adv 2018; 8:2082-2091. [PMID: 35542607 PMCID: PMC9077202 DOI: 10.1039/c7ra12620d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 12/28/2022] Open
Abstract
pH and reduction dual-sensitive polymeric nanovesicles were developed to simultaneously deliver hydrophobic gefitinib and hydrophilic doxorubicin for cancer therapy.
Collapse
Affiliation(s)
- Yangui Chen
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Xiaoxia Li
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hong Xiao
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | | | - Bo Li
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Xiaoyan Chen
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yong Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
40
|
Blank N, Laskov I, Kessous R, Kogan L, Lau S, Sebag IA, Gotlieb WH, Rudski L. Absence of cardiotoxicity with prolonged treatment and large accumulating doses of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 2017; 80:737-743. [DOI: 10.1007/s00280-017-3412-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
|
41
|
Di Francesco M, Celia C, Primavera R, D’Avanzo N, Locatelli M, Fresta M, Cilurzo F, Ventura CA, Paolino D, Di Marzio L. Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. Int J Pharm 2017; 528:18-32. [DOI: 10.1016/j.ijpharm.2017.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
|
42
|
Keasberry NA, Yapp CW, Idris A. Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids. BIOCHEMISTRY (MOSCOW) 2017; 82:655-662. [DOI: 10.1134/s0006297917060025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Houdaihed L, Evans JC, Allen C. Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic. Mol Pharm 2017; 14:2503-2517. [DOI: 10.1021/acs.molpharmaceut.7b00188] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Loujin Houdaihed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - James C. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Christine Allen
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
44
|
Activatable bispecific liposomes bearing fibroblast activation protein directed single chain fragment/Trastuzumab deliver encapsulated cargo into the nuclei of tumor cells and the tumor microenvironment simultaneously. Acta Biomater 2017; 54:281-293. [PMID: 28347861 DOI: 10.1016/j.actbio.2017.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Molecular targeting plays a significant role in cancer diagnosis and therapy. However, the heterogeneity of tumors is a limiting obstacle for molecular targeting. Consequently, clinically approved drug delivery systems such as liposomes still rely on passive targeting to tumors, which does not address tumor heterogeneity. In this work, we therefore designed and elucidated the potentials of activatable bispecific targeted liposomes for simultaneous detection of fibroblast activation protein (FAP) and the human epidermal growth factor receptor 2 (HER2). The bispecific liposomes were encapsulated with fluorescence-quenched concentrations of the near-infrared fluorescent dye, DY-676-COOH, making them detectable solely post processing within target cells. The liposomes were endowed with a combination of single chain antibody fragments specific for FAP and HER2 respectively, or with the FAP single chain antibody fragment in combination with Trastuzumab, which is specific for HER2. The Trastuzumab based bispecific formulation, termed Bi-FAP/Tras-IL revealed delivery of the encapsulated dye into the nuclei of HER2 expressing cancer cells and caused cell death at significantly higher rates than the free Trastuzumab. Furthermore, fluorescence imaging and live microscopy of tumor models in mice substantiated the delivery of the encapsulated cargo into the nuclei of target tumor cells and tumor stromal fibroblasts. Hence, they convey potentials to address tumor plasticity, to improve targeted cancer therapy and reduce Trastuzumab resistance in the future. STATEMENT OF SIGNIFICANCE This work demonstrates the design of activatable bispecific liposomes aimed to target HER2, a poor prognosis tumor marker in many tumor types, and fibroblast activation protein (FAP), a universal tumor marker overexpressed on tumor fibroblasts and pericytes of almost all solid tumors. Encapsulating liposomes with a quenched concentration of a NIRF dye which only fluoresced after cellular degradation and activation enabled reliable visualization of the destination of the cargo in cells and animal studies. Conjugating single chain antibody fragments directed to FAP, together with Trastuzumab, a humanized monoclonal antibody for HER2 resulted in the activatable bispecific liposomes. In animal models of xenografted human breast tumors, the remarkable ability of the bispecific probes to simultaneously deliver the encapsulated dye into the nuclei of target tumor cells and tumor fibroblasts could be demonstrated. Hence, the bispecific probes represent model tools with high significance to address tumor heterogeneity and manage Trastuzumab resistance in the future.
Collapse
|
45
|
Haghiralsadat F, Amoabediny G, Sheikhha MH, Zandieh-Doulabi B, Naderinezhad S, Helder MN, Forouzanfar T. New liposomal doxorubicin nanoformulation for osteosarcoma: Drug release kinetic study based on thermo and pH sensitivity. Chem Biol Drug Des 2017; 90:368-379. [PMID: 28120466 DOI: 10.1111/cbdd.12953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 11/27/2022]
Abstract
A novel approach was developed for the preparation of stealth controlled-release liposomal doxorubicin. Various liposomal formulations were prepared by employing both thin film and pH gradient hydration techniques. The optimum formulation contained phospholipid and cholesterol in 1:0.43 molar ratios in the presence of 3% DSPE-mPEG (2000). The liposomal formulation was evaluated by determining mean size of vesicle, encapsulation efficiency, polydispersity index, zeta potentials, carrier's functionalization, and surface morphology. The vesicle size, encapsulation efficiency, polydispersity index, and zeta potentials of purposed formula were 93.61 nm, 82.8%, 0.14, and -23, respectively. Vesicles were round-shaped and smooth-surfaced entities with sharp boundaries. In addition, two colorimetric methods for cytotoxicity assay were compared and the IC50 (the half maximal inhibitory concentration) of both methods for encapsulated doxorubicin was determined to be 0.1 μg/ml. The results of kinetic drug release were investigated at several different temperatures and pH levels, which showed that purposed formulation was thermo and pH sensitive.
Collapse
Affiliation(s)
- Fateme Haghiralsadat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.,Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghasem Amoabediny
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Engineering, University of Tehran, Tehran, Iran.,Department of Oral & Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Behrouz Zandieh-Doulabi
- Department of Orthopedic Surgery, VU University Medical Center, MOVE Research Institute, Amsterdam, Netherlands.,Oral Cell Biology and Functional Anatomy, VU University, Amsterdam, North Holland, Netherlands
| | - Samira Naderinezhad
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Engineering, University of Tehran, Tehran, Iran
| | - Marco N Helder
- Department of Oral & Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Department of Orthopedic Surgery, VU University Medical Center, MOVE Research Institute, Amsterdam, Netherlands
| | - Tymour Forouzanfar
- Department of Oral & Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Janicka M, Gubernator J. Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opin Drug Deliv 2016; 14:1059-1075. [DOI: 10.1080/17425247.2017.1266333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Martyna Janicka
- Faculty of Biotechnology, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Faculty of Biotechnology, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
47
|
Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29:90-106. [DOI: 10.1016/j.drup.2016.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
|
48
|
Jakoby J, Beuschlein F, Mentz S, Hantel C, Süss R. Liposomal doxorubicin for active targeting: surface modification of the nanocarrier evaluated in vitro and in vivo: challenges and prospects. Oncotarget 2016; 6:43698-711. [PMID: 26497207 PMCID: PMC4791260 DOI: 10.18632/oncotarget.6191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022] Open
Abstract
Due to the inability of classical chemotherapeutic agents to exclusively target tumor cells, these treatments are associated with severe toxicity profiles. Thus, long-circulating liposomes have been developed in the past to enhance accumulation in tumor tissue by passive targeting. Accordingly, commercially available liposomal formulations of sterically stabilized liposomal doxorubicin (Caelyx®, Doxil®, Lipodox®) are associated with improved off-target profiles. However, these preparations are still not capable to selectively bind to target cells. Thus, in an attempt to further optimize existing treatment schemes immunoliposomes have been established to enable active targeting of tumor tissues. Recently, we have provided evidence for therapeutic efficacy of anti-IGF1R-targeted, surface modified doxorubicin loaded liposomes. Our approach involved a technique, which allows specific post-modifications of the liposomal surface by primed antibody-anchor conjugates thereby facilitating personalized approaches of commercially available liposomal drugs. In the current study, post-modification of sterically stabilized liposomal Dox was thoroughly investigated including the influence of different modification techniques (PIT, SPIT, SPIT60), lipid composition (SPC/Chol, HSPC/Chol), and buffers (HBS, SH). As earlier in vivo experiments did not take into account the presence of non-integrated ab-anchor conjugates this was included in the present study. Our experiments provide evidence that post-modification of commercially available liposomal preparations for active targeting is possible. Moreover, lyophilisation represents an applicable method to obtain a storable precursor of surface modifying antibody-anchor conjugates. Thus, these findings open up new approaches in patient individualized targeting of chemotherapeutic therapies.
Collapse
Affiliation(s)
- Judith Jakoby
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Susanne Mentz
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Constanze Hantel
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Jung S, Nagy Z, Fassnacht M, Zambetti G, Weiss M, Reincke M, Igaz P, Beuschlein F, Hantel C. Preclinical progress and first translational steps for a liposomal chemotherapy protocol against adrenocortical carcinoma. Endocr Relat Cancer 2016; 23:825-37. [PMID: 27550961 DOI: 10.1530/erc-16-0249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023]
Abstract
Systemic therapy of adrenocortical carcinoma (ACC) is limited by heterogeneous tumor response and adverse effects. Recently, we demonstrated anti-tumor activity of LEDP-M (etoposide, liposomal doxorubicin, liposomal cisplatin, mitotane), a liposomal variant of EDP-M (etoposide, doxorubicin, cisplatin, mitotane). To improve the therapeutic efficacy and off-target profiles of the clinical gold standard EDP-M, we investigated liposomal EDP-M regimens in different preclinical settings and in a small number of ACC patients with very advanced disease. Short- and long-term experiments were performed on two ACC models (SW-13 and SJ-ACC3) in vivo We evaluated the anti-tumoral effects and off-target profiles of EDP-M, LEDP-M and a novel regimen L(l)EDP-M including liposomal etoposide. Furthermore, the role of plasma microRNA-210 as a therapeutic biomarker and first clinical data were assessed. Classical and liposomal protocols revealed anti-proliferative efficacy against SW-13 (EDP-M P < 0.01; LEDP-M: P < 0.001; L(l)EDP-M: P < 0.001 vs controls), whereas in SJ-ACC3, only EDP-M (P < 0.05 vs controls) was slightly effective. Long-term experiments in SW-13 demonstrated anti-tumor efficacy for all treatment schemes (EDP-M: P < 0.01, LEDP-M: P < 0.05, L(l)EDP-M P < 0.001 vs controls). The analysis of pre-defined criteria leading to study termination revealed significant differences for control (P < 0.0001) and EDP-M (P = 0.003) compared to L(l)EDP-M treatment. Raising its potential for therapy monitoring, we detected elevated levels of circulating microRNA-210 in SW-13 after LEDP-M treatment (P < 0.05). In contrast, no comparable effects were detectable for SJ-ACC3. However, overall histological evaluation demonstrated improved off-target profiles following liposomal regimens. The first clinical data indicate improved tolerability of liposomal EDP-M, thus confirming our results. In summary, liposomal EDP-M regimens represent promising treatment options to improve clinical treatment of ACC.
Collapse
Affiliation(s)
- Sara Jung
- Endocrine Research UnitMedizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Zoltan Nagy
- 2nd Department of MedicineSemmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Martin Fassnacht
- Department of Internal Medicine IDivision of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center MainfrankenUniversity of Würzburg, Würzburg, Germany
| | - Gerard Zambetti
- Department of PathologySt Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Max Weiss
- Institute of PathologyLudwig-Maximilians-University, Munich, Germany
| | - Martin Reincke
- Endocrine Research UnitMedizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Igaz
- 2nd Department of MedicineSemmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Felix Beuschlein
- Endocrine Research UnitMedizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Constanze Hantel
- Endocrine Research UnitMedizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
50
|
Sarisozen C, Dhokai S, Tsikudo EG, Luther E, Rachman IM, Torchilin VP. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm 2016; 108:54-67. [PMID: 27569031 DOI: 10.1016/j.ejpb.2016.08.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 11/29/2022]
Abstract
NF-κB is strongly associated with poor prognosis of different cancer types and an important factor responsible for the malignant phenotype of glioblastoma. Overcoming chemotherapy-induced resistance caused by activation of PI3K/Akt and NF-κB pathways is crucial for successful glioblastoma therapy. We developed an all-in-one nanomedicine formulation for co-delivery of a chemotherapeutic agent (topoisomerase II inhibitor, doxorubicin) and a multidrug resistance modulator (NF-κB inhibitor, curcumin) for treatment of glioblastoma due to their synergism. Both agents were incorporated into PEG-PE-based polymeric micelles. The glucose transporter-1 (GLUT1) is overexpressed in many tumors including glioblastoma. The micellar system was decorated with GLUT1 antibody single chain fragment variable (scFv) as the ligand to promote blood brain barrier transport and glioblastoma targeting. The combination treatment was synergistic (combination index, CI of 0.73) against U87MG glioblastoma cells. This synergism was improved by micellar encapsulation (CI: 0.63) and further so with GLUT1 targeting (CI: 0.46). Compared to non-targeted micelles, GLUT1 scFv surface modification increased the association of micelles (>20%, P<0.01) and the nuclear localization of doxorubicin (∼3-fold) in U87MGcells, which also translated into enhanced cytotoxicity. The increased caspase 3/7 activation by targeted micelles indicates successful apoptosis enhancement by combinatory treatment. Moreover, GLUT1 targeted micelles resulted in deeper penetration into the 3D spheroid model. The increased efficacy of combination nanoformulations on the spheroids compared to a single agent loaded, or to non-targeted formulations, reinforces the rationale for selection of this combination and successful utilization of GLUT1 scFv as a targeting agent for glioblastoma treatment.
Collapse
Affiliation(s)
- Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Shekhar Dhokai
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Edcar G Tsikudo
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|