1
|
Osmanagaoglu FH, Ekmekcioglu A, Ozcan B, Bayram Akcapinar G, Muftuoglu M. Preparation and Characterization of Hydrophobin 4-Coated Liposomes for Doxorubicin Delivery to Cancer Cells. Pharmaceuticals (Basel) 2024; 17:1422. [PMID: 39598333 PMCID: PMC11597365 DOI: 10.3390/ph17111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The properties of nanoparticle surfaces are crucial in influencing their interaction with biological environments, as well as their stability, biocompatibility, targeting abilities, and cellular uptake. Hydrophobin 4 (HFB4) is a class II HFB protein produced by filamentous fungi that has a natural ability to self-assemble at hydrophobic-hydrophilic interfaces. The biocompatible, non-toxic, biodegradable, and amphipathic properties of HFB4 render it valuable for improving the solubility and bioavailability of hydrophobic drugs. We have investigated the physicochemical properties, cellular uptake, and anticancer effects of empty and Doxorubicin (Dox)-loaded HFB4 liposomes (HFB4L) and compared them to those of PEGylated liposomes (PPL). Methods: The Pichia pastoris KM71H strain was used for HFB4 purification. Liposomes were prepared through the thin film hydration method and characterized. The cytotoxic effects of free Dox, Dox-HFB4, and Dox-PPL were assessed in MCF7 cells using the SRB Assay. Results: All formulations showed good size homogeneity and a spherical shape. The HFB4 coating enhanced the physicochemical stability of Dox-HFB4L over 60 days at 4 °C without significantly affecting Dox release from HFB4L. It increased Dox release at pH 5.4 compared to pH 7.4, indicating higher delivery of drugs into acidic tumor environments, similar to Dox-PPL. While both formulations showed increased cellular uptake compared to free Dox, they exhibited a lower anticancer effect due to the sustained release of Dox. Notably, Dox-HFB4L displayed greater cytotoxicity than Dox-PPL in MCF7 cells. Conclusions: HFB4L may offer superior benefits in terms of delivering drugs to an acidic tumor environment in a stable, non-toxic, and sustained manner.
Collapse
Affiliation(s)
- Fatma Hande Osmanagaoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Aysegul Ekmekcioglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Busel Ozcan
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Gunseli Bayram Akcapinar
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Meltem Muftuoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
2
|
Ye D, Ding D, Pan LY, Zhao Q, Chen L, Zheng M, Zhang T, Ma BL. Natural Coptidis Rhizoma Nanoparticles Improved the Oral Delivery of Docetaxel. Int J Nanomedicine 2024; 19:8417-8436. [PMID: 39176130 PMCID: PMC11339345 DOI: 10.2147/ijn.s470853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose Docetaxel (DTX) is a valuable anti-tumor chemotherapy drug with limited oral bioavailability. This study aims to develop an effective oral delivery system for DTX using natural nanoparticles (Nnps) derived from Coptidis Rhizoma extract. Methods DTX-loaded self-assembled nanoparticles (Nnps-DTX) were created using an optimized heat-induction strategy. Nnps-DTX's shape, size, Zeta potential, and in vitro stability were all carefully examined. Additionally, the study investigated the encapsulation efficiency, loading capacity, crystal form, and intermolecular interactions of DTX in Nnps-DTX. Subsequently, the solubility, release, cellular uptake, metabolic stability, and preclinical pharmacokinetics of DTX in Nnps-DTX were systematically evaluated. Finally, the cytotoxicity of Nnps-DTX was assessed in three tumor cell lines. Results Nnps-DTX was spherical in shape, 138.6 ± 8.2 nm in size, with a Zeta potential of -20.8 ± 0.6 mV, a DTX encapsulation efficiency of 77.6 ± 8.5%, and a DTX loading capacity of 6.8 ± 1.9%. Hydrogen bonds, hydrophobic interactions, and electrostatic interactions were involved in the formation of Nnps-DTX. DTX within Nnps-DTX was in an amorphous form, resulting in enhanced solubility (23.3 times) and release compared to free DTX. Following oral treatment, the mice in the Nnps-DTX group had DTX peak concentrations 8.8, 23.4, 44.6, and 5.7 times higher in their portal vein, systemic circulation, liver, and lungs than the mice in the DTX group. Experiments performed in Caco-2 cells demonstrated a significant increase in DTX uptake by Nnps-DTX compared to free DTX, which was significantly inhibited by indomethacin, an inhibitor of caveolae-mediated endocytosis. Furthermore, compared to DTX, DTX in Nnps-DTX demonstrated better metabolic stability in liver microsomes. Notably, Nnps-DTX significantly reduced the viability of MCF-7, HCT116, and HepG2 cells. Conclusion The novel self-assembled nanoparticles considerably enhanced the cellular absorption, solubility, release, metabolic stability, and pharmacokinetics of oral DTX and demonstrated strong cytotoxicity against tumor cell lines.
Collapse
Affiliation(s)
- Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ding Ding
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ling-Yun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Qing Zhao
- Department of Pharmacy, Jing’an District Zhabei Central Hospital, Shanghai, 200070, People’s Republic of China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tong Zhang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
3
|
Krom J, Meister K, Vilgis TA. Simple Method to Assess Foam Structure and Stability using Hydrophobin and BSA as Model Systems. Chemphyschem 2024; 25:e202400050. [PMID: 38683048 DOI: 10.1002/cphc.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The properties and arrangement of surface-active molecules at air-water interfaces influence foam stability and bubble shape. Such multiscale-relationships necessitate a well-conducted analysis of mesoscopic foam properties. We introduce a novel automated and precise method to characterize bubble growth, size distribution and shape based on image analysis and using the machine learning algorithm Cellpose. Studying the temporal evolution of bubble size and shape facilitates conclusions on foam stability. The addition of two sets of masks, for tiny bubbles and large bubbles, provides for a high precision of analysis. A python script for analysis of the evolution of bubble diameter, circularity and dispersity is provided in the Supporting Information. Using foams stabilized by bovine serum albumin (BSA), hydrophobin (HP), and blends thereof, we show how this technique can be used to precisely characterize foam structures. Foams stabilized by HP show a significantly increased foam stability and rounder bubble shape than BSA-stabilized foams. These differences are induced by the different molecular structure of the two proteins. Our study shows that the proposed method provides an efficient way to analyze relevant foam properties in detail and at low cost, with higher precision than conventional methods of image analysis.
Collapse
Affiliation(s)
- Judith Krom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Konrad Meister
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725, United States
| | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
4
|
Song B, Wang W, Jia C, Han Z, Yang J, Yang J, Wu Z, Xu H, Qiao M. Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 10:25. [PMID: 38248935 PMCID: PMC10820438 DOI: 10.3390/jof10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.
Collapse
Affiliation(s)
- Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Chunhui Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiuxia Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
- School of Life Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
5
|
Siddiquee R, Lo V, Johnston CL, Buffier AW, Ball SR, Ciofani JL, Zeng YC, Mahjoub M, Chrzanowski W, Rezvani-Baboli S, Brown L, Pham CLL, Sunde M, Kwan AH. Surface-Induced Hydrophobin Assemblies with Versatile Properties and Distinct Underlying Structures. Biomacromolecules 2023; 24:4783-4797. [PMID: 37747808 DOI: 10.1021/acs.biomac.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Hydrophobins are remarkable proteins due to their ability to self-assemble into amphipathic coatings that reverse surface wettability. Here, the versatility of the Class I hydrophobins EASΔ15 and DewY in diverse nanosuspension and coating applications is demonstrated. The hydrophobins are shown to coat or emulsify a range of substrates including oil, hydrophobic drugs, and nanodiamonds and alter their solution and surface behavior. Surprisingly, while the coatings confer new properties, only a subset is found to be resistant to hot detergent treatment, a feature previously thought to be characteristic of the functional amyloid form of Class I hydrophobins. These results demonstrate that substrate surface properties can influence the molecular structures and physiochemical properties of hydrophobin and possibly other functional amyloids. Functional amyloid assembly with different substrates and conditions may be analogous to the propagation of different polymorphs of disease-associated amyloid fibrils with distinct structures, stability, and clinical phenotypes. Given that amyloid formation is not required for Class I hydrophobins to serve diverse applications, our findings open up new opportunities for their use in applications requiring a range of chemical and physical properties. In hydrophobin nanotechnological applications where high stability of assemblies is required, simultaneous structural and functional characterization should be carried out. Finally, while results in this study pertain to synthetic substrates, they raise the possibility that at least some members of the pseudo-Class I and Class III hydrophobins, reported to form assemblies with noncanonical properties, may be Class I hydrophobins adopting alternative structures in response to environmental cues.
Collapse
Affiliation(s)
- Rezwan Siddiquee
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Victor Lo
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aston W Buffier
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah R Ball
- Formerly at School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan L Ciofani
- School of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yi Cheng Zeng
- Formerly at School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mahiar Mahjoub
- School of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Louise Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Chi L L Pham
- Formerly at School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Patil MB, Mathad SN, Patil AY, Khan A, Hussein MA, Alosaimi AM, Asiri AM, Manikandan A, Khan MMA. Functional Properties of Grapefruit Seed Extract Embedded Blend Membranes of Poly(vinyl alcohol)/Starch: Potential Application for Antiviral Activity in Food Safety to Fight Against COVID-19. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:2519-2533. [PMID: 36590138 PMCID: PMC9795453 DOI: 10.1007/s10924-022-02742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 05/12/2023]
Abstract
The poly(vinyl alcohol) (PVA) and starch-based polymeric films with a ratio of 2:8 were prepared using solution casting followed by a solvent evaporation method. Four types of membranes with varied concentrations of grapefruit seed extract (GSE) i.e., 2.5-10 wt% was incorporated in the films. The prepared membranes were assessed for transparency test, mechanical properties, surface morphology, permeability test for O2, and antimicrobial properties. The PVA/starch-10% GSE loaded film showed excellent mechanical properties showing highest 1344 ± 0.7% elongation at break but poor optical transparency with 53.8% to 68.61%. The Scanning Electron Microscopic study reveals the good compatibility between the PVA, Starch, and GSE. The gas permeability test reveals that the prepared films have shown good resistance to the O2 permeability 0.0326-0.316 Barrer at 20 kg/cm2 feed pressure for the prepared membranes showing excellent performance. By adding the little amount of GSE into the PVA/starch blend membranes showed promising antimicrobial efficacy against MNV-1. For 4 h. incubation, PVA/starch blend membranes containing 2.5%, 5%, and 10% GSE caused MNV-1 reductions of 0.92, 1.89, and 2.27 log PFU/ml, respectively. Similarly, after 24 h, the 5% and 10% GSE membranes reduced MNV-1 titers by 1.90 and 3.26 log PFU/ml, respectively. Antimicrobial tests have shown excellent performance to resist microorganisms. The water uptake capacity of the membrane is found 72% for the PVA/starch pristine membrane and is reduced to 32% for the 10% GSE embedded membrane. Since the current pandemic situation due to COVID-19 occurred by SARSCOV2, the prepared GSE incorporated polymeric blend films are the rays of hope in the packaging of food stuff.
Collapse
Affiliation(s)
- Mallikarjunagouda B. Patil
- Bharat Ratna Prof. CNR Rao Research Centre, Basaveshwar Science College, Bagalkot, Karnataka 587101 India
| | - Shridhar N. Mathad
- Department of Engineering Physics, K.L.E Institute of Technology, Hubballi, Karnataka, 580027 India
| | - Arun Y. Patil
- School of Mechanical Engineering, KLE Technological University, Vidya Nagar, Hubballi, Karnataka 580031 India
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mahmoud Ali Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Abeer M. Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - A. Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu 600073 India
| | - Mohammad Mujahid Ali Khan
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Tang B, Yang X, Zhang A, Wang Q, Fan L, Fang G. Polypseudorotaxane hydrogel based on Tween 80 and α-cyclodextrin for sustained delivery of low molecular weight heparin. Carbohydr Polym 2022; 297:120002. [DOI: 10.1016/j.carbpol.2022.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
|
8
|
Stanzione I, Pitocchi R, Pennacchio A, Cicatiello P, Piscitelli A, Giardina P. Innovative surface bio-functionalization by fungal hydrophobins and their engineered variants. Front Mol Biosci 2022; 9:959166. [PMID: 36032682 PMCID: PMC9403755 DOI: 10.3389/fmolb.2022.959166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research on innovative surface functionalization strategies to develop materials with high added value is particularly challenging since this process is a crucial step in a wide range of fields (i.e., biomedical, biosensing, and food packaging). Up to now, the main applied derivatization methods require hazardous and poorly biocompatible reagents, harsh conditions of temperature and pressure, and are time consuming and cost effective. The discovery of biomolecules able to adhere by non-covalent bonds on several surfaces paves the way for their employment as a replacement of chemical processes. A simple, fast, and environment-friendly method of achieving modification of chemically inert surfaces is offered by hydrophobins, small amphiphilic proteins produced by filamentous fungi. Due to their structural characteristics, they form stable protein layers at interfaces, serving as anchoring points that can strongly bind molecules of interest. In addition, genetic engineering techniques allow the production of hydrophobins fused to a wide spectrum of relevant proteins, providing further benefits in term of time and ease of the process. In fact, it is possible to bio-functionalize materials by simply dip-casting, or by direct deposition, rendering them exploitable, for example, in the development of biomedical and biosensing platforms.
Collapse
|
9
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
10
|
Rizvi SSB, Akhtar N, Minhas MU, Mahmood A, Khan KU. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels 2022; 8:55. [PMID: 35049590 PMCID: PMC8775084 DOI: 10.3390/gels8010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to enhance the solubility and release characteristics of docetaxel by synthesizing highly porous and stimuli responsive nanosponges, a nano-version of hydrogels with the additional qualities of both hydrogels and nano-systems. Nanosponges were prepared by the free radical polymerization technique and characterized by their solubilization efficiency, swelling studies, sol-gel studies, percentage entrapment efficiency, drug loading, FTIR, PXRD, TGA, DSC, SEM, zeta sizer and in vitro dissolution studies. In vivo toxicity study was conducted to assess the safety of the oral administration of prepared nanosponges. FTIR, TGA and DSC studies confirmed the successful grafting of components into the stable nano-polymeric network. A porous and sponge-like structure was visualized through SEM images. The particle size of the optimized formulation was observed in the range of 195 ± 3 nm. The fabricated nanosponges noticeably enhanced the drug loading and solubilization efficiency of docetaxel in aqueous media. The drug release of fabricated nanosponges was significantly higher at pH 6.8 as compared to pH 1.2 and 4.5. An acute oral toxicity study endorsed the safety of the system. Due to an efficient preparation technique, as well as its enhanced solubility, excellent physicochemical properties, improved dissolution and non-toxic nature, nanosponges could be an efficient and a promising approach for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Syeda Sadia Batool Rizvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 112612, United Arab Emirates;
| | | |
Collapse
|
11
|
Berkkan A, Kondolot Solak E, Asman G. Starch‐Based Membranes for Controlled Release of 5‐Fluorouracil In Vitro. ChemistrySelect 2021. [DOI: 10.1002/slct.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aysel Berkkan
- Department of Analytical Chemisty Faculty of Pharmacy Gazi University TR 06330 Etiler- Ankara Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Engineering Technologies Technical Sciences Vocational School Gazi University TR 06374 Ostim- Ankara Turkey
| | - Gulsen Asman
- Department of Chemistry Faculty of Science Gazi University TR 06500 Emniyet- Ankara Turkey
| |
Collapse
|
12
|
Xu D, Zhou Q, Yan B, Ma A. Identification and physiological function of one microRNA ( Po-MilR-1) in oyster mushroom Pleurotus ostreatus. MYCOSCIENCE 2021; 62:182-188. [PMID: 37091326 PMCID: PMC9157778 DOI: 10.47371/mycosci.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs are essential regulators of gene expression and have been extensively studied in plants and animals; however, few reports have been published in mushrooms. Po-MilR-1 is a novel microRNA with a length of 22 bp in Pleurotus ostreatus. The secondary structures of five precursors and the target genes of Po-MilR-1 were predicted. Expression profile analysis showed Po-MilR-1 had specific expression in the primordium and fruiting body. To explore its physiological function, Po-MilR-1 was overexpressed in P. ostreatus. The transformants showed slow mycelium growth rate and abnormal pileus with irregular edge, which suggested Po-MilR-1 plays an important role in P. ostreatus development. Additionally, Po-MilR-1 and one of its target hydrophobin genes POH1 had opposite temporal expression profiles in the primordium and fruiting body, which revealed that Po-MilR-1 may perform its physiological function through the negative regulation of POH1. This study explored the development-related function of a mushroom microRNA and will provide a reference for other microRNAs.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University
| | - Qixia Zhou
- College of Food Science and Technology, Huazhong Agricultural University
| | - Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University
| |
Collapse
|
13
|
Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of Curcumin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
15
|
Cui L, Cheng C, Qiu Y, Jiang T, He B. Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli. Int J Biol Macromol 2020; 165:1296-1302. [DOI: 10.1016/j.ijbiomac.2020.09.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
|
16
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
17
|
Sun L, Xu H, Xu JH, Wang SN, Wang JW, Zhang HF, Jia WR, Li LS. Enhanced Antitumor Efficacy of Curcumin-Loaded PLGA Nanoparticles Coated with Unique Fungal Hydrophobin. AAPS PharmSciTech 2020; 21:171. [PMID: 32529560 DOI: 10.1208/s12249-020-01698-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Modifications to the surface chemistry, charge, and hydrophilicity/hydrophobicity of nanoparticles are applicable approaches to the alterations of the in vivo fate of intravenously administered nano-sized drug carriers. The objective of this study is to investigate the in vitro and in vivo antitumor efficacies of curcumin PLGA nanoparticles in relation to their surface structural modification via self-assembling coating with unique fungal hydrophobin. The hydophobin-coated curcumin PLGA nanoparticles (HPB PLGA NPs) were obtained by simply soaking curcumin-loaded PLGA nanoparticles (PLGA NPs) in aqueous fungal hydrophobin solution. The in vitro drug release behavior of the HPB PLGA NPS was also tested. The cytotoxicity and cellular uptake of these nanoparticles were determined in HepG2, A549, and Hela cell lines using MTT assay method and CLSM observation. The in vivo antitumor activity was evaluated in Hela tumor xenografted mice model. Compared with the PLGA NPs, the size and zeta potential of the nanoparticles were changed after hydrophobin coating, whereas similar in vitro release pattern was observed. The pharmacodynamics study showed prolonged blood retention of both nano-formulations than that of free curcumin, but no significant difference between the hydrophobin coated and uncoated nanoparticles. It was found that HPB PLGA NPs had increased cytotoxicities, higher cellular uptake, and improved antitumor efficacy. Surface modification of nanoparticles via self-assembling of hydrophobin is a convenient and promising method of changing particle surface physiochemical properties and antitumor performances. Further investigations, especially on tissue distribution, were needed to assess the potential application of the hydrophobin self-assembling coating in nano-drug delivery carriers.
Collapse
|
18
|
Niu B, Li M, Jia J, Zhang C, Fan YY, Li W. Hydrophobin-enhanced stability, dispersions and release of curcumin nanoparticles in water. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1793-1805. [PMID: 32510282 DOI: 10.1080/09205063.2020.1775761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Most chemotherapeutic drugs commonly suffer from low aqueous solubility that can potentially limit drugs absorption. Drug nanomerization is an advanced approach to overcoming their poor water-solubility. In this study, class I hydrophobin recombinant HGFI (rHGFI)-based curcumin (Cur) nanoparticles (rHGFI-Cur) were prepared by freeze-drying method. The rHGFI-Cur nanocomposites were characterized by contact angle, transmission electron microscopy, fluorescence microscopy and dynamic light scattering. The results showed that rHGFI could lead to the wettability conversion and stability improved of Cur in water. X-ray photoelectron spectroscopy and Fourier transform infrared suggested that rHGFI could non-covalently bind to Cur to render them hydrophilic through hydrophobic forces. Additionally, drug release and cytotoxicity assays illustrated that rHGFI-Cur nanoparticles could facilitate Cur release and exhibited higher cytotoxicity than free Cur for human esophageal cancer cells TE-1. Thus, it suggested that rHGFI has a great potential application for hydrophobic drug delivery without toxicity.[Formula: see text].
Collapse
Affiliation(s)
- Baolong Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, P. R. China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Meilin Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Jianhong Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Ce Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, P. R. China
| | - Yan-Ying Fan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, P. R. China
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, P. R. China
| |
Collapse
|
19
|
Godara S, Lather V, Kirthanashri SV, Awasthi R, Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110576. [PMID: 32228957 DOI: 10.1016/j.msec.2019.110576] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
Paclitaxel loaded lipid-polymer nanoparticles (NPs) were successfully synthesized using poly lactide-co-glycolide (PLGA) as polymer and stearyl amine, soya lecithin as lipids via single step nanoprecipitation method. The study was aimed to combine the advantage of structural integrity of hybrid NPs containing PLGA core and lipid in the shell. Surfactants such as polyvinyl alcohol (PVA), tocopheryl polyethylene glycol succinate (TPGS), pluronic 68 (F68) and human serum albumin (HSA) were used as stabilizers. NPs were characterized w.r.t. morphology, particle size, zeta potential, encapsulation efficiency, in vitro drug release, protein binding capability and blood compatibility. NPs were in size range of 150-400 nm and the particle size was greatly influenced by type and concentration of surfactants and lipids. TEM analysis confirmed the spherical shape and coating of the lipid on the NPs surface. Highest percentage entrapment efficiency was observed in NPs prepared with HSA as surfactant. The release rate of paclitaxel from modified NPs was much slower as compared to unmodified NPs. The percent protein binding of P-PVA, P-TPGS, P-F68 and P-HSA (unmodified NPs) was found to be 15.11%, 16.27%, 27.90% and 33.72%, respectively demonstrating effect of surface properties of NPs on protein binding. The hemolytic activity of the NPs was found to be dependent on type of surfactant and not on the lipid employed. PVA, TPGS, F68, HSA surfactants showed ~16%, ~10%, ~13%, ~7% hemolysis rate, respectively. The surface nature of NPs had a significant effect on the circulation profile of formulations. The HSA based NPs showed prolonged blood circulation time when compared to NPs without lipid coating. Thus, the synthesized dual lipid coated PLGA NPs with HSA could act as a potential nano-system for controlled delivery of paclitaxel.
Collapse
Affiliation(s)
- Sandeep Godara
- Department of Pharmaceutics, Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa 125055, Haryana, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - S V Kirthanashri
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Deepti Pandita
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
20
|
Mahmood MA, Madni A, Rehman M, Rahim MA, Jabar A. Ionically Cross-Linked Chitosan Nanoparticles for Sustained Delivery of Docetaxel: Fabrication, Post-Formulation and Acute Oral Toxicity Evaluation. Int J Nanomedicine 2019; 14:10035-10046. [PMID: 31908458 PMCID: PMC6929931 DOI: 10.2147/ijn.s232350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction Polymeric nanoparticles are potential carriers for the efficient delivery of hydrophilic and hydrophobic drugs due to their multifaceted applications. Docetaxel is relatively less hydrophobic and twice as potent as paclitaxel. Like other taxane chemotherapeutic agents, docetaxel is not well tolerated and shows toxicity in the patients. Nanoencapsulation of potent chemotherapeutic agents has been shown to improve tolerability and therapeutic outcome. Therefore, the present study was designed to fabricate chitosan and sodium tripolyphosphate (STPP) based on ionically cross-linked nanoparticles for sustained release of docetaxel. Methods Nanoparticles were prepared by the ionic-gelation method by dropwise addition of the STPP solution into the chitosan solution in different ratios. CNPs were characterized for post-formulation parameters like size, zeta potential, scanning electron microscope (SEM), FTIR, DSC/TGA, pXRD, and in-vitro drug release, as well as for acute oral toxicity studies in Wistar rats. Results and discussion The optimized docetaxel loaded polymeric nanoparticles were in the size range (172.6nm–479.65 nm), and zeta potential (30.45–35.95 mV) required to achieve enhanced permeation and retention effect. In addition, scanning electron microscopy revealed rough and porous surface, whereas, FTIR revealed the compatible polymeric nanoparticles. Likewise, the thermal stability was ensured through DSC and TG analysis, and powder X-ray diffraction analysis exhibited solid-state stability of the docetaxel loaded nanoparticles. The in-vitro drug release evaluation in phosphate buffer saline (pH 7.4) showed sustained release pattern, i.e. 51.57–69.93% within 24 hrs. The data were fitted to different release kinetic models which showed Fickian diffusion as a predominant release mechanism (R2= 0.9734–0.9786, n= 0.264–0.340). Acceptable tolerability was exhibited by acute oral toxicity in rabbits and no abnormality was noted in growth, behavior, blood biochemistry or histology and function of vital organs. Conclusion Ionically cross-linked chitosan nanoparticles are non-toxic and biocompatible drug delivery systems for sustained release of chemotherapeutic agents, such as docetaxel.
Collapse
Affiliation(s)
- Muhammad Ahmad Mahmood
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.,Drug Testing Laboratory, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mubashar Rehman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Jabar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Wang J, Ding Y, Zhou W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int J Pharm 2019; 574:118940. [PMID: 31830578 DOI: 10.1016/j.ijpharm.2019.118940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Activated hepatic stellate cells (HSCs) have a central role in the progression of liver fibrosis and express a large amount of secreted protein, acidic and rich in cysteine (SPARC), a specific protein-binding protein. In this study, we reported the preparation and evaluation of naringenin (Nar) -loaded albumin self-modified liposomes (NaAlLs), which delivered Nar, a specific Smad3 inhibitor that blocked the TGF-β/Smad3 signaling pathway and played an anti-fibrosis role. After a series of characterization, it was found that NaAlLs had favorable dispersion (PDI < 0.15) with an average particle size of about 120 nm and high entrapment efficiency (>85%), albumin coated the surface of liposomes or embedded in phospholipid bilayer by interaction with the encapsulated naringenin and phospholipid molecules during the preparation of liposomes. The amount of albumin modified to the surface of NaAlLs by this method is not only more than that of the physical adsorption method, but also the binding force between albumin and liposomes is stronger. The albumin modified to the surface of NaAlLs greatly reduced the aggregation of liposomes and drug leakage and increased the stability of liposomes. More importantly, the uptake of NaAlLs by activated HSCs was 1.5 times higher than that of Nar-loaded liposomes (NaLs), suggesting that NaAlLs specifically increased targeting of activated HSCs via albumin and SPARC-dependent pathways. As expected, NaAlLs was more effective in improving liver fibrosis than the NaLs or the inclusion complex solution of Nar and Hydroxypropyl-β-cyclodextrin (NaICS). The results suggested that NaAlLs was a promising drug delivery system, which could target drug delivery to activated HSC for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jianzhu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yu Ding
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
22
|
Chen Q, Luo L, Xue Y, Han J, Liu Y, Zhang Y, Yin T, Wang L, Cun D, Gou J, He H, Tang X. Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance. Acta Biomater 2019; 92:205-218. [PMID: 31071475 DOI: 10.1016/j.actbio.2019.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the performance of cisplatin-loaded polymeric micelles (CDDP-PMs) with different drug/copolymer ratios of 1:1, 1:3 and 1:6 (w/w) prepared by coordinated complexation and self-assembly method. The mass ratio influenced the self-assembly behaviors and the complex degree, where both single- and double- complexation existed in CDDP-PMs. With the increase of CDDP/copolymer ratio, the particle size and drug loading increased, while encapsulation efficiency decreased. The PEG density of CDDP-PM1-6, CDDP-PM1-3 and CDDP-PM1-1 were 0.20, 0.61 and 0.38 PEG/nm2, respectively. CDDP-PM1-3 and CDDP-PM1-6 had similar sustained release behavior, while CDDP-PM1-1 showed burst release. Pharmacokinetics showed the AUC of CDDP-PM1-6, CDDP-PM1-3 and CDDP-PM1-1 was 27.2, 76.6 and 13.0 fold higher than CDDP solution. Tissue distribution presented the platinum concentration of CDDP-PM1-6, CDDP-PM1-3 and CDDP-PM1-1 was 1.03, 0.80 and 0.48 times of CDDP solution in kidney at 10 min, and 17.61, 28.63 and 16.6 times in tumor at 48 h respectively, indicating CDDP-PMs significantly reduced nephrotoxicity and increased tumor-targeting accumulation. In vivo antitumor test showed that CDDP-PMs exhibited an improved antitumor efficacy and lower systemic toxicity compared with CDDP solution. From CDDP-PM1-1 to CDDP-PM1-6, the toxicity decreased with the increase of copolymer ratio, but the tumor inhibition rate also decreased. CDDP-PM1-3 had relative high therapeutic effect and low toxicity compared with other formulations. CDDP-PM1-3 could improve the antitumor efficacy by increasing the dose within systemic tolerability, but CDDP solution cannot. This work provides an effective strategy by modulating drug/copolymer ratio of CDDP-PMs to balance the antitumor efficacy and toxicity for better payoff. STATEMENT OF SIGNIFICANCE: Cancer chemotherapy always exists a contradiction between antitumor efficacy and toxicity. Higher efficacy against tumor often associated with larger toxicity for normal tissues. This work provides an important strategy by modulating the drug/copolymer ratios to balance the antitumor efficacy and toxicity to obtain better payoff. The cisplatin-loaded polymeric micelles (CDDP-PMs) based on the complexation between CDDP and copolymer with different mass ratios make differences in vitro and in vivo because of the single- or double-complexation degree. Most importantly, we found the balance at CDDP/copolymer ratio of 1:3, which has relative high therapeutic effect and low toxicity compared with other formulations. CDDP-PM1-3 could improve the antitumor efficacy by increasing the dose within systemic tolerability, but CDDP solution cannot.
Collapse
Affiliation(s)
- Qiuyue Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lifeng Luo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingyan Xue
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Han
- Department of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - LiHui Wang
- Department of Life Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Berger BW, Sallada ND. Hydrophobins: multifunctional biosurfactants for interface engineering. J Biol Eng 2019; 13:10. [PMID: 30679947 PMCID: PMC6343262 DOI: 10.1186/s13036-018-0136-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
Hydrophobins are highly surface-active proteins that have versatile potential as agents for interface engineering. Due to the large and growing number of unique hydrophobin sequences identified, there is growing potential to engineer variants for particular applications using protein engineering and other approaches. Recent applications and advancements in hydrophobin technologies and production strategies are reviewed. The application space of hydrophobins is large and growing, including hydrophobic drug solubilization and delivery, protein purification tags, tools for protein and cell immobilization, antimicrobial coatings, biosensors, biomineralization templates and emulsifying agents. While there is significant promise for their use in a wide range of applications, developing new production strategies is a key need to improve on low recombinant yields to enable their use in broader applications; further optimization of expression systems and yields remains a challenge in order to use designed hydrophobin in commercial applications.
Collapse
Affiliation(s)
- Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
- Department of Chemical Engineering, University of Virginia, 214 Chem. Eng., 102 Engineers’ Way, Charlottesville, VA 22904 USA
| | - Nathanael D. Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
| |
Collapse
|
24
|
Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:161-185. [DOI: 10.1007/978-981-13-9791-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Singh BN, Singh BR, Gupta VK, Kharwar RN, Pecoraro L. Coating with Microbial Hydrophobins: A Novel Approach to Develop Smart Drug Nanoparticles. Trends Biotechnol 2018; 36:1103-1106. [DOI: 10.1016/j.tibtech.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
26
|
Tang B, Qian Y, Gou Y, Cheng G, Fang G. VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer. Molecules 2018; 23:E2760. [PMID: 30366367 PMCID: PMC6278303 DOI: 10.3390/molecules23112760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022] Open
Abstract
Multi-drug resistance (MDR) presents a serious problem in cancer chemotherapy. In this study, Vitamin E (VE)-Albumin core-shell nanoparticles were developed for paclitaxel (PTX) delivery to improve the chemotherapy efficacy in an MDR breast cancer model. The PTX-loaded VE-Albumin core-shell nanoparticles (PTX-VE NPs) had small particle sizes (about 100 nm), high drug entrapment efficiency (95.7%) and loading capacity (12.5%), and showed sustained release profiles, in vitro. Docking studies indicated that the hydrophobic interaction and hydrogen bonds play a significant role in the formation of the PTX-VE NPs. The results of confocal laser scanning microscopy analysis demonstrated that the cell uptake of PTX was significantly increased by the PTX-VE NPs, compared with the NPs without VE (PTX NPs). The PTX-VE NPs also exhibited stronger cytotoxicity, compared with PTX NPs with an increased accumulation of PTX in the MCF-7/ADR cells. Importantly, the PTX-VE NPs showed a higher anti-cancer efficacy in MCF-7/ADR tumor xenograft model than the PTX NPs and the PTX solutions. Overall, the VE-Albumin core-shell nanoparticles could be a promising nanocarrier for PTX delivery to improve the chemotherapeutic efficacy of MDR cancer.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Yu Qian
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Yi Gou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Gang Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, Liaoning, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
27
|
Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology. Microorganisms 2018; 6:microorganisms6010003. [PMID: 29303996 PMCID: PMC5874617 DOI: 10.3390/microorganisms6010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties.
Collapse
|
28
|
Hirpara MR, Manikkath J, Sivakumar K, Managuli RS, Gourishetti K, Krishnadas N, Shenoy RR, Jayaprakash B, Rao CM, Mutalik S. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: Development and in vitro and in vivo evaluations. Int J Biol Macromol 2017; 107:2190-2200. [PMID: 29042279 DOI: 10.1016/j.ijbiomac.2017.10.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/08/2017] [Accepted: 10/14/2017] [Indexed: 12/29/2022]
Abstract
The aim of this study was to improve the pharmacokinetics and pharmacodynamics profile of rosuvastatin calcium by formulating long-circulating PEGylated chitosan nanoparticles (NPs). Chitosan was PEGylated by a carbodiimide mediated reaction, using a carboxylic acid derivative of PEG (polyethylene glycol). The NPs were optimised for particle size, polydispersity index, zeta potential and drug entrapment efficiency. In vitro drug release, pharmacokinetic and pharmacodynamics studies of the optimized nanoparticles were performed. PEGylation of chitosan was confirmed by FTIR analysis. Drug-excipient compatibility was studied by differential scanning calorimetry and FTIR analyses. Two batches of nanoparticles were optimized with particle size of <200nm and entrapment efficiency of ≈14%. In vitro drug release studies revealed cumulative release of 14.07±0.57% and 22.02±0.81% of rosuvastatin over the period of 120h, indicating appreciable sustained release of drug. TEM analysis showed the spherical structure of nanoparticles. Pharmacokinetic studies indicated that optimized NPs showed prolonged drug release over a period of 72h. Pharmacodynamics studies in hyperlipidemic rat model demonstrated greater lipid-lowering capability of rosuvastatin nanoparticles in comparison with plain rosuvastatin. The nanoparticles demonstrated substantial prolonged delivery of the drug in vivo along with better therapeutic action, which could be potential drug delivery modality for 'statins'.
Collapse
Affiliation(s)
- Mukundkumar Rameshbhai Hirpara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - K Sivakumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Renuka S Managuli
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Belle Jayaprakash
- Department of Medicine, Kasturba Medical College, Manipal University, Manipal 576104, Karnataka State, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India.
| |
Collapse
|
29
|
Zhang T, Zhou S, Liu Y, Luo X, Di D, Song Y, Liu X, Deng Y. Polysialic acid and pluronic F127 mixed polymeric micelles of docetaxel as new approach for enhanced antitumor efficacy. Drug Dev Ind Pharm 2017; 43:1827-1835. [DOI: 10.1080/03639045.2017.1349784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Songlei Zhou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Xiang Luo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Donghua Di
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
30
|
Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer. Pharm Res 2017; 34:1193-1203. [DOI: 10.1007/s11095-017-2135-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
|
31
|
Przylucka A, Akcapinar GB, Chenthamara K, Cai F, Grujic M, Karpenko J, Livoi M, Shen Q, Kubicek CP, Druzhinina IS. HFB7 - A novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses. Fungal Genet Biol 2017; 102:63-76. [PMID: 28089933 DOI: 10.1016/j.fgb.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 11/15/2022]
Abstract
Hydrophobins are small secreted cysteine-rich proteins exclusively found in fungi. They are able to self-assemble in single molecular layers at hydrophobic-hydrophilic interfaces and can therefore be directly involved in establishment of fungi in their habitat. The genomes of filamentous mycotrophic fungi Trichoderma encode a rich diversity of hydrophobins, which are divided in several groups based on their structure and evolution. Here we describe a new member of class II hydrophobins, HFB7, that has a taxonomically restricted occurrence in Harzianum and Virens clades of Trichoderma. Evolutionary analysis reveals that HFB7 proteins form a separate clade distinct from other Trichoderma class II hydrophobins and that genes encoding them evolve under positive selection pressure. Homology modelling of HFB7 structure in comparison to T. reesei HFB2 reveals that the two large hydrophobic patches on the surface of the protein are remarkably conserved between the two hydrophobins despite significant difference in their primary structures. Expression of hfb7 gene in T. virens increases at interactions with other fungi and a plant and in response to a diversity of abiotic stress conditions, and is also upregulated during formation of aerial mycelium in a standing liquid culture. This upregulation significantly exceeds that of expression of hfb7 under a strong constitutive promoter, and T. virens strains overexpressing hfb7 thus display only changes in traits characterized by low hfb7 expression, i.e. faster growth in submerged liquid culture. The hfb7 gene is not expressed in conidia. Our data allow to conclude that this protein is involved in defence of Trichoderma against a diversity of stress factors related to the oxidative stress. Moreover, HFB7 likely helps in the establishment of the fungus in wetlands or other conditions related to high humidity.
Collapse
Affiliation(s)
- Agnes Przylucka
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Gunseli Bayram Akcapinar
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Komal Chenthamara
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Feng Cai
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Marica Grujic
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Juriy Karpenko
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Miriam Livoi
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Irina S Druzhinina
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria.
| |
Collapse
|
32
|
Song D, Gao Z, Zhao L, Wang X, Xu H, Bai Y, Zhang X, Linder MB, Feng H, Qiao M. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris. Protein Expr Purif 2016; 128:22-8. [DOI: 10.1016/j.pep.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022]
|
33
|
Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci Rep 2016; 6:26461. [PMID: 27212208 PMCID: PMC4876437 DOI: 10.1038/srep26461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor serum stability of GLP-1 has significantly limited its clinical utility, although many studies are focused on extending the serum stability of this molecule. Hydrophobin, a self-assembling protein, was first applied as drug carrier to stabilize GLP-1 against protease degradation by forming a cavity. The glucose tolerance test clarified that the complex retained blood glucose clearance activity for 72 hours suggesting that this complex might be utilized as a drug candidate administered every 2–3 days. Additionally, it was found that the mutagenesis of hydrophobin preferred a unique pH condition for self-assembly. These findings suggested that hydrophobin might be a powerful tool as a drug carrier or a pH sensitive drug-release compound. The novel pharmaceutical applications of hydrophobin might result in future widespread interest in hydrophobin.
Collapse
|
34
|
Pigliacelli C, D’Elicio A, Milani R, Terraneo G, Resnati G, Baldelli Bombelli F, Metrangolo P. Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Yadav DK, Pawar H, Wankhade S, Suresh S. Development of novel docetaxel phospholipid nanoparticles for intravenous administration: quality by design approach. AAPS PharmSciTech 2015; 16:855-64. [PMID: 25583303 DOI: 10.1208/s12249-014-0274-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/16/2014] [Indexed: 01/27/2023] Open
Abstract
The objective of this study was to develop novel docetaxel phospholipid nanoparticles (NDPNs) for intravenous administration. Modified solvent diffusion-evaporation method was adopted in the NDPN preparation. Central composite design (CCD) was employed in the optimization of the critical formulation factor (drug content) and process variable (stirring rate) to obtain NDPNs with 215.53 ± 1.9-nm particle size, 0.329 ± 0.02 polydispersity index (PDI), and 75.41 ± 4.81% entrapment efficiency. The morphological examination by transmission electron microscopy revealed spherical structure composed of a drug core stabilized within the phospholipid shell. Enhanced cell uptake of coumarin-6-loaded phospholipid nanoparticles by MCF-7 cell line indicated NDPN-efficient cell uptake. In vitro hemolysis test confirmed the safety of the phospholipid nanoparticles. NDPNs exhibited increased area under the curve (AUC) and mean residence time (MRT) by 3.0- and 3.3-fold, respectively, in comparison with the existing docetaxel parenteral formulation (Taxotere®), indicating a potential for sustained action. Thus, the novel NDPNs exhibit an ability to be an intravenous docetaxel formulation with enhanced uptake, decreased toxicity, and prolonged activity.
Collapse
|
36
|
Fang G, Tang B, Chao Y, Xu H, Gou J, Zhang Y, Xu H, Tang X. Cysteine-Functionalized Nanostructured Lipid Carriers for Oral Delivery of Docetaxel: A Permeability and Pharmacokinetic Study. Mol Pharm 2015; 12:2384-95. [DOI: 10.1021/acs.molpharmaceut.5b00081] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Bo Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yanhui Chao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Helin Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
37
|
Li Y, Wu Z, He W, Qin C, Yao J, Zhou J, Yin L. Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Mol Pharm 2015; 12:1485-500. [DOI: 10.1021/mp5008037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongji Li
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhannan Wu
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
38
|
Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:1587-97. [PMID: 25564034 DOI: 10.1007/s00253-014-6319-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023]
Abstract
Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize foam in food products; and to immobilize enzymes, peptides, antibodies, cells, and anorganic molecules on surfaces. At the same time, they may be used to prevent binding of molecules. Furthermore, hydrophobins have therapeutic value as immunomodulators and can been used to produce recombinant proteins.
Collapse
|
39
|
Fang G, Tang B, Chao Y, Zhang Y, Xu H, Tang X. Improved oral bioavailability of docetaxel by nanostructured lipid carriers: in vitro characteristics, in vivo evaluation and intestinal transport studies. RSC Adv 2015. [DOI: 10.1039/c5ra14588k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the current study was to explore the potential of nanostructured lipid carriers (NLC) for oral delivery of docetaxel (DTX) and investigate the absorption mechanismin vivo.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Bo Tang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yanhui Chao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yu Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hui Xu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xing Tang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
40
|
Tang B, Fang G, Gao Y, Liu Y, Liu J, Zou M, Cheng G. Liprosomes loading paclitaxel for brain-targeting delivery by intravenous administration: in vitro characterization and in vivo evaluation. Int J Pharm 2014; 475:416-27. [PMID: 25218393 DOI: 10.1016/j.ijpharm.2014.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/23/2022]
Abstract
In this study, a lipid-protein nanocomplex (liprosome) was evaluated for its potential use for brain-targeting drug delivery. Liprosome was fabricated with the desolvation-ultrasonication method and characterized in terms of particle size, size distribution, zeta potential, morphology, crystal state of the drug, and in vitro release. The in vivo distribution of paclitaxel loading lipid-protein nanocomplex (PTX-liprosome) and Taxol were compared after i.v. administration in mice. The prepared PTX-liprosome has a high entrapment efficiency (>90%), small particle size (approximately 110 nm), and narrow distribution (P.I.<0.2). Transmission electron microscopy (TEM) indicated that liprosome had a spherical multilayer structure. X-ray photoelectron spectroscopy (XPS) showed that the conjugate of PTX and BSA was in the interior of the PTX-liprosome. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) demonstrated that the drug existed in a molecular or amorphous state. Fourier transform infrared spectroscopy (FTIR) suggested that the hydrophobic interactions, electrostatic interactions and hydrogen bonds among of the PTX, lipid and protein play an important role during the formation of the PTX-liprosome. The hemolysis test showed a good safety profile for the intravenous administration of liprosome. The result of the in vivo distribution suggested that liprosome increased the drug uptake by the brain tissue and decreased drug accumulation in non-target organs. Therefore, liprosome is a potential drug delivery system for transporting PTX to the brain.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Guihua Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Ying Gao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Yi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Jinwen Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Meijuan Zou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | - Gang Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|