1
|
Jain KMH, Duggal I, Hou HH, Siegel RA. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole. Eur J Pharm Biopharm 2025; 210:114688. [PMID: 40089075 DOI: 10.1016/j.ejpb.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to develop a scheme to predict intestinal and plasma concentration-time profiles of the weakly basic BCS-II drug, dipyridamole (DPD), using an Artificial Gut Simulator (AGS) integrated with a compartment-based disposition model. In vivo data for this study was obtained from previously published literature. A 3-compartment disposition model was developed using the plasma concentration-time profile of DPD following an intravenous bolus dose. The AGS, consisting of a donor cell and a hollow fiber-based absorption module, was tuned to absorb DPD saturated solution at a physiological rate constant, 0.0402 min-1, based on the measured Caco-2 cell monolayer permeability coefficient. The dose dumping technique commonly used during dissolution testing can generate excessively high initial supersaturation and precipitation which is not physiologically relevant. In this study, fractions of DPD dose were added incrementally every 15 min to the AGS donor to simulate an overall first-order gastric emptying process. The concentration absorbed by the hollow fiber receiver media was input into the central compartment of the disposition model. The predicted plasma concentration-time profile matched the human in vivo profile of DPD obtained after oral administration of a 50 mg dose. For 30 and 90 mg oral doses, time profiles of concentration and fraction precipitated in the AGS donor agreed well with human duodenal measurements. This study demonstrates the significance of simulating physiological rate of absorption in vitro to accurately predict the bioavailability of a BCS-II compound.
Collapse
Affiliation(s)
| | - Ishaan Duggal
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Felicijan T, Bogataj M. Forecasting the effect of water gastric emptying patterns on model drug release in an in vitro glass-bead flow-through system. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:269-287. [PMID: 38815199 DOI: 10.2478/acph-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 06/01/2024]
Abstract
Oral solid dosage forms are most frequently administered with a glass of water which empties from the stomach relatively fast, but with a certain variability in its emptying kinetics. The purpose of this study was thus to simulate different individual water gastric emptying (GE) patterns in an in vitro glass-bead flow-through dissolution system. Further, the effect of GE on the dissolution of model drugs from immediate-release tablets was assessed by determining the amount of dissolved drug in the samples pumped out of the stomach compartment. Additionally, different HCl solutions were used as dissolution media to assess the effect of the variability of pH of the gastric fluid on the dissolution of three model drugs: paracetamol, diclofenac sodium, and dipyridamole. The difference in fast and slow GE kinetics resulted in different dissolution profiles of paracetamol in all studied media. For diclofenac sodium and dipyridamole tablets, the effect of GE kinetics was well observed only in media, where the solubility was not a limiting factor. Therefore, GE kinetics of co-ingested water influences the drug release from immediate-release tablets, however, in certain cases, other parameters influencing drug dissolution can partly or fully hinder the expression of this effect.
Collapse
Affiliation(s)
- Tjaša Felicijan
- 1University of Ljubljana, Faculty of Pharmacy Department of Biopharmaceutics and Pharmacokinetics 1000 Ljubljana, Slovenia
| | - Marija Bogataj
- 1University of Ljubljana, Faculty of Pharmacy Department of Biopharmaceutics and Pharmacokinetics 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Jain KMH, Hou HH, Siegel RA. An Artificial Gut/Absorption Simulator: Understanding the Impact of Absorption on In Vitro Dissolution, Speciation, and Precipitation of Amorphous Solid Dispersions. Mol Pharm 2024; 21:1884-1899. [PMID: 38512389 DOI: 10.1021/acs.molpharmaceut.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.
Collapse
Affiliation(s)
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California 94080, United States
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Takagi T, Masada T, Minami K, Kataoka M, Yamashita S. Development of an In Vitro Methodology to Assess the Bioequivalence of Orally Disintegrating Tablets Taken without Water. Pharmaceutics 2023; 15:2192. [PMID: 37765162 PMCID: PMC10535823 DOI: 10.3390/pharmaceutics15092192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
To assess the probability of bioequivalence (BE) between orally disintegrating tablets (ODTs) taken without water and conventional tablets (CTs) taken with water, an in vitro biorelevant methodology was developed using the BE Checker, which reproduces fluid shifts in the gastrointestinal tract and drug permeation. In addition to the fluid shift from the stomach to the small intestine, the process of ODT disintegration in a small amount of fluid in the oral cavity and the difference in gastric emptying caused by differences in water intake were incorporated into the evaluation protocol. Assuming a longer time to maximum plasma concentration after oral administration of ODTs taken without water than for CTs taken with water due to a delay in gastric emptying, the fluid shift in the donor chamber of the BE Checker without water was set longer than that taken with water. In the case of naftopidil ODTs and CTs, the values of the f2 function, representing the similarity of the permeation profiles, were 50 or higher when the fluid shift in ODTs taken without water was set at 1.5 or 2 times longer than that of the CTs taken with water. The values of the f2 function in permeation profiles of pitavastatin and memantine ODTs were both 62 when the optimized experimental settings for naftopidil formulations were applied. This methodology can be useful in formulation studies for estimating the BE probability between ODTs and CTs.
Collapse
Affiliation(s)
- Toshihide Takagi
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
5
|
Kesharwani SS, Ibrahim F. A Combined In-Vitro and GastroPlus® Modeling to Study the Effect of Intestinal Precipitation on Cinnarizine Plasma Profile in a Fasted State. AAPS PharmSciTech 2023; 24:121. [PMID: 37173520 DOI: 10.1208/s12249-023-02577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Poorly water-soluble weak base molecules such as cinnarizine often exhibit pH-dependent solubility within the gastrointestinal tract. This means that their solubility can be influenced by the pH of the surrounding environment, and this can affect their oral absorption. The differential pH solubility between the fasted-state stomach and intestine is an important consideration when studying the oral absorption of cinnarizine. Cinnarizine has moderate permeability and is known to exhibit supersaturation and precipitation in fasted-state simulated intestinal fluid (FaSSIF), which can significantly impact its oral absorption. The present work is aimed at studying the precipitation behavior of cinnarizine in FaSSIF using biorelevant in vitro tools and GastroPlus® modeling, to identify the factors contributing to the observed variability in clinical plasma profiles. The study found that cinnarizine demonstrated variable precipitation rates under different bile salt concentrations, which could impact the concentration of the drug available for absorption. The results also showed that a precipitation-integrated modeling approach accurately predicted the mean plasma profiles from the clinical studies. The study concluded that intestinal precipitation may be one of the factors contributing to the observed variability in Cmax but not the AUC of cinnarizine. The study further suggests that the integration of experimental precipitation results representing a wider range of FaSSIF conditions would increase the probability of predicting some of the observed variability in clinical results. This is important for biopharmaceutics scientists, as it can help them evaluate the risk of in vivo precipitation impacting drug and/or drug product performance.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water Street, MA, 02141, Cambridge, USA
| | - Fady Ibrahim
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water Street, MA, 02141, Cambridge, USA.
| |
Collapse
|
6
|
Vinarov Z, Butler J, Kesisoglou F, Koziolek M, Augustijns P. Assessment of food effects during clinical development. Int J Pharm 2023; 635:122758. [PMID: 36801481 DOI: 10.1016/j.ijpharm.2023.122758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Food-drug interactions frequently hamper oral drug development due to various physicochemical, physiological and formulation-dependent mechanisms. This has stimulated the development of a range of promising biopharmaceutical assessment tools which, however, lack standardized settings and protocols. Hence, this manuscript aims to provide an overview of the general approach and the methodology used in food effect assessment and prediction. For in vitro dissolution-based predictions, the expected food effect mechanism should be carefully considered when selecting the level of complexity of the model, together with its drawbacks and advantages. Typically, in vitro dissolution profiles are then incorporated into physiologically based pharmacokinetic models, which can estimate the impact of food-drug interactions on bioavailability within 2-fold prediction error, at least. Positive food effects related to drug solubilization in the GI tract are easier to predict than negative food effects. Preclinical animal models also provide a good level of food effect prediction, with beagle dogs remaining the gold standard. When solubility-related food-drug interactions have large clinical impact, advanced formulation approaches can be used to improve fasted state pharmacokinetics, hence decreasing the fasted/fed difference in oral bioavailability. Finally, the knowledge from all studies should be combined to secure regulatory approval of the labelling instructions.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - James Butler
- Medicine Development and Supply, GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Mirko Koziolek
- AbbVie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Ludwigshafen, Germany
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Pepin XJH, Hammarberg M, Mattinson A, Moir A. Physiologically Based Biopharmaceutics Model for Selumetinib Food Effect Investigation and Capsule Dissolution Safe Space - Part I: Adults. Pharm Res 2023; 40:387-403. [PMID: 36002614 DOI: 10.1007/s11095-022-03339-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE A physiologically based biopharmaceutics model (PBBM) was developed to mechanistically investigate the effect of formulation and food on selumetinib pharmacokinetics. METHODS Selumetinib is presented as a hydrogen sulfate salt, and in vitro and in vivo data were used to verify the precipitation rate to apply to simulations. Dissolution profiles observed for capsules and granules were used to derive product-particle size distributions for model input. The PBBM incorporated gut efflux and first-pass gut metabolism, based on intravenous and oral pharmacokinetic data, alongside in vitro data for the main enzyme isoform and P-glycoprotein efflux. The PBBM was validated across eight clinical scenarios. RESULTS The quality-control dissolution method for selumetinib capsules was found to be clinically relevant through PBBM validation. A safe space for capsule dissolution was established using a virtual batch. The effect of food (low fat vs high fat) on capsules and granules was elucidated by the PBBM. For capsules, a lower amount was dissolved in the fed state due to a pH increase in the stomach followed by higher precipitation in the small intestine. First-pass gut extraction is higher for capsules in the fed state due to drug dilution in the stomach chyme and reduced concentration in the lumen. The enteric-coated granules dissolve more slowly than capsules after stomach emptying, attenuating the difference in first-pass gut extraction between prandial states. CONCLUSIONS The PBBM was instrumental in understanding and explaining the different behaviors of the selumetinib formulations. The model can be used to predict the impact of food in humans.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Maria Hammarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden. .,AstraZeneca, Pepparedsleden, SE-431 83, Mölndal, Sweden.
| | - Alexandra Mattinson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Andrea Moir
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
8
|
Franco YL, Da Silva L, Charbe N, Kinvig H, Kim S, Cristofoletti R. Integrating Forward and Reverse Translation in PBPK Modeling to Predict Food Effect on Oral Absorption of Weakly Basic Drugs. Pharm Res 2023; 40:405-418. [PMID: 36788156 DOI: 10.1007/s11095-023-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Ketoconazole and posaconazole are two weakly basic broad-spectrum antifungals classified as Biopharmaceutics Classification System class II drugs, indicating that they are highly permeable, but exhibit poor solubility. As a result, oral bioavailability and clinical efficacy can be impacted by the formulation performance in the gastrointestinal system. In this work, we have leveraged in vitro biopharmaceutics and clinical data available in the literature to build physiologically based pharmacokinetic (PBPK) models for ketoconazole and posaconazole, to determine the suitability of forward in vitro-in vivo translation for characterization of in vivo drug precipitation, and to predict food effect. METHODS A stepwise modeling approach was utilized to derive key parameters related to absorption, such as drug solubility, dissolution, and precipitation kinetics from in vitro data. These parameters were then integrated into PBPK models for the simulation of ketoconazole and posaconazole plasma concentrations in the fasted and fed states. RESULTS Forward in vitro-in vivo translation of intestinal precipitation kinetics for both model drugs resulted in poor predictions of PK profiles. Therefore, a reverse translation approach was applied, based on limited fitting of precipitation-related parameters to clinical data. Subsequent simulations for ketoconazole and posaconazole demonstrated that fasted and fed state PK profiles for both drugs were adequately recapitulated. CONCLUSION The two examples presented in this paper show how middle-out modeling approaches can be used to predict the magnitude and direction of food effects provided the model is verified on fasted state PK data.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Lais Da Silva
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Nitin Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Hannah Kinvig
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Soyoung Kim
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA.
| |
Collapse
|
9
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Han M, Xu J, Lin Y. Approaches of formulation bridging in support of orally administered drug product development. Int J Pharm 2022; 629:122380. [DOI: 10.1016/j.ijpharm.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
11
|
An Artificial Gut/Absorption Simulator: Simultaneous Evaluation of Desupersaturation and Absorption from Ketoconazole Supersaturated Solutions. J Pharm Sci 2022:S0022-3549(22)00418-X. [PMID: 36162494 DOI: 10.1016/j.xphs.2022.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
For supersaturating formulations of BCS-II compounds, which by definition have high intestinal permeability, a closed USP apparatus does not provide the necessary absorptive conditions during dissolution. To address this, an artificial gut simulator (AGS) has been constructed consisting of a 2.5 mL donor compartment in which a hollow fiber-based absorption module is suspended. Drug from donor diffuses across the hollow fiber membrane to be absorbed by the continuously flowing intraluminal receiver fluid. The membrane surface area and intraluminal fluid flow rate are tuned to obtain the physiologically observed absorption rate constant for a weakly basic, poorly water-soluble model compound, ketoconazole (KTZ). Supersaturated solutions of KTZ were generated in the donor in pH 6.5 phosphate buffer by the pH-shift method in the absence (closed system, control) and presence (open system, biorelevant) of an optimally or suboptimally tuned absorption module. Drug concentrations in the donor and intraluminal fluids were determined by in-line UV spectroscopy. The presence of an absorptive sink reduced the supersaturated solution's crystallization propensity, more so in the case of the optimally tuned AGS. This study demonstrates the significance of simulating absorption of drug at a physiological rate during dissolution studies, especially to predict the performance of formulations of BCS-II drugs.
Collapse
|
12
|
Statelova M, Vertzoni M, Kourentas A. Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM. AAPS J 2022; 24:89. [DOI: 10.1208/s12248-022-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
|
13
|
Efficient Evaluation of In Vivo Performance in Human for Generic Formulation by Novel Dissolution-Absorption Prediction (DAP) Workflow. Pharm Res 2022; 39:2203-2216. [PMID: 35836039 DOI: 10.1007/s11095-022-03337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE The pharmaceutical bioequivalence of generic medicines must be confirmed with corresponding original drugs. Although the in vitro dissolution tests are required, results of the mandatory in vitro study do not necessarily reflect the in vivo performance after oral administration. Then, we have tried to develop the novel "Dissolution-Absorption Prediction (DAP) workflow" to evaluate the in vivo performance of generic medicines. METHODS The DAP workflow consists of an "In vitro two-cell connected dissolution (TCCD) system" mimicking the changes in the luminal pH associated with gastrointestinal transit of medicines, "Evaluation of pharmacokinetics of active pharmaceutical ingredient (API)" and "Prediction of plasma concentration-time profile". TCCD system-evaluated dissolution kinetics of APIs from generic formulations and pharmacokinetic parameters based on human data regarding the original drugs were used to calculate the plasma concentration-time profiles of APIs after the oral administration of generic medicines. RESULTS The mandatory in vitro dissolution tests indicated that the dissolution properties of valsartan (BCS class II) and fexofenadine (BCS class III/IV) in generic formulations did not coincide with those in the corresponding original formulations. The TCCD system provided the very similar dissolution kinetics for the generic and original formulations for the two APIs. Plasma concentration-time profiles evaluated utilizing the dissolution profiles obtained by the TCCD system were in good agreement with the observed profiles for both the generic and original formulations for each API. CONCLUSIONS The DAP workflow would be valuable for estimating the in vivo performance of generic formulation and deducing their bioequivalence with the original formulation.
Collapse
|
14
|
Xu J, Zhang L, Shao X. Applications of bio-predictive dissolution tools for the development of solid oral dosage forms: Current industry experience. Drug Dev Ind Pharm 2022; 48:79-97. [PMID: 35786119 DOI: 10.1080/03639045.2022.2098315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Development and optimization of orally administered drug products often require bio-predictive tools to help with informing formulation and manufacturing decisions. Reliable bio-predictive dissolution toolkits not only allow rational development of target formulations without having to conduct excessive in vivo studies but also help in detecting critical material attributes (CMAs), critical formulation variables (CFVs), or critical process parameters (CPPs) that could impact a drug's in vivo performance. To provide early insights for scientists on the development of a bio-predictive method for drug product development, this review summarizes current phase-appropriate bio-predictive dissolution approaches applicable to address typical concerns on solubility-limited absorption, food effect, achlorhydria, development of extended-release formulation, clinically relevant specification, and biowaiver. The selection of an in vitro method which can capture the key rate-limiting step(s) of the in vivo dissolution and/or absorption is considered to have a better chance to produce a meaningful in vitro-in vivo correlation (IVIVC) or in vitro-in vivo relationship (IVIVR).
Collapse
Affiliation(s)
- Jin Xu
- Pharmaceutical Development, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United State
| | - Limin Zhang
- Analytical Strategy and Operations, Bristol-Myers Squibb, Co., One Squibb Drive, New Brunswick, NJ 08903, United State
| | - Xi Shao
- Analytical R&D, Development Science, AbbVie Inc., 1 N Waukegan Rd, North Chicago, IL, 60064, United States
| |
Collapse
|
15
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
16
|
Radivojev S, Luschin-Ebengreuth G, Pinto JT, Laggner P, Cavecchi A, Cesari N, Cella M, Melli F, Paudel A, Fröhlich E. Impact of simulated lung fluid components on the solubility of inhaled drugs and predicted in vivo performance. Int J Pharm 2021; 606:120893. [PMID: 34274456 DOI: 10.1016/j.ijpharm.2021.120893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022]
Abstract
Orally inhaled products (OIPs) are gaining increased attention, as pulmonary delivery is a preferred route for the treatment of various diseases. Yet, the field of inhalation biopharmaceutics is still in development phase. For a successful correlation between various in vitro data obtained during formulation characterization and in vivo performance, it is necessary to understand the impact of parameters such as solubility and dissolution of drugs. In this work, we used in vitro-in silico feedback-feedforward approach to gain a better insight into the biopharmaceutics behavior of inhaled Salbutamol Sulphate (SS) and Budesonide (BUD). The thorough characterization of the in vitro test media and the impact of different in vitro fluid components such as lipids and protein on the solubility of aforementioned drugs was studied. These results were subsequently used as an input into the developed in silico models to investigate potential PK parameter changes in vivo. Results revealed that media comprising lipids and albumin were the most biorelevant and impacted the solubility of BUD the most. On the contrary, no notable impact was seen in case of SS. The use of simple media such as phosphate buffer saline (PBS) might be sufficient to use in solubility studies of the highly soluble and permeable drugs. However, its use for the poorly soluble drugs is limited due to the greater potential for interactions within in vivo environment. The use of in silico tools showed that the model response varies, depending on the used media. Therefore, this work highlights the relevance of carefully selecting the media composition when investigating solubility and dissolution behavior, especially in the early phases of drug development and of poorly soluble drugs.
Collapse
Affiliation(s)
- Snezana Radivojev
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria
| | | | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | - Peter Laggner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | | | - Nicola Cesari
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Massimo Cella
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Fabrizio Melli
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz, 8010, Austria.
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria.
| |
Collapse
|
17
|
Segregur D, Barker R, Mann J, Moir A, Karlsson EM, Turner DB, Arora S, Dressman J. Evaluating the impact of acid-reducing agents on drug absorption using biorelevant in vitro tools and PBPK modeling - case example dipyridamole. Eur J Pharm Sci 2021; 160:105750. [PMID: 33581261 DOI: 10.1016/j.ejps.2021.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vitro and in silico methods have become an essential tool in assessing metabolic drug-drug interactions (DDI) and avoiding reduced efficacy and increased side-effects. Another important type of DDI is the impact of acid-reducing agent (ARA) co-therapy on drug pharmacokinetics due to changes in gastric pH, especially for poorly soluble weakly basic drugs. METHODS One-stage, two-stage and transfer dissolution experiments with dipyridamole tablets using novel biorelevant media representing the ARA effect were conducted and the results were coupled with a PBPK model. Clinical pharmacokinetic data were compared with the simulations from the PBPK model and with output from TIM-1 experiments, an evolved in vitro system which aims to simulate the physiology in the upper GI tract. RESULTS Two-stage and transfer experiments confirmed that these in vitro set-ups tend to overestimate the extent of dipyridamole precipitation occurring in the intestines in vivo. Consequently, data from one-stage dissolution testing under elevated gastric pH conditions were used as an input for PBPK modeling of the ARA/dipyridamole interaction. Using media representing the ARA effect in conjunction with the PBPK model, the ARA effect observed in vivo was successfully bracketed. As an alternative, the TIM-1 system with gastric pH values adjusted to simulate ARA pre-treatment can be used to forecast the ARA effect on dipyridamole pharmacokinetics. CONCLUSION Drug-drug interactions of dipyridamole with ARA were simulated well with a combination of dissolution experiments using biorelevant media representing the gastric environment after an ARA treatment together with the PBPK model. Adjustment of the TIM-1 model to reflect ARA-related changes in gastric pH was also successful in forecasting the interaction. Further testing of both approaches for predicting ARA-related DDIs using a wider range of drugs should be conducted to verify their utility for this purpose.
Collapse
Affiliation(s)
- Domagoj Segregur
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany
| | - Richard Barker
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Andrea Moir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Eva M Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David B Turner
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Sumit Arora
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany; Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS Class II/IV weak base albendazole and its main metabolite albendazole sulfoxide. Eur J Pharm Sci 2020; 155:105552. [PMID: 32937212 DOI: 10.1016/j.ejps.2020.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to use a combined in vitro-in silico approach to develop a physiologically based pharmacokinetic model (PBPK) that predicts the bioavailability of albendazole (ABZ), a BCS class II/IV lipophilic weak base, and simulates its main metabolite albendazole sulphoxide (ABZSO) after oral administration of the current marketed dose of 400 mg in the fasted state. In vitro data was collected from solubility and dissolution tests performed with biorelevant media and transfer tests were carried out to evaluate the supersaturation and precipitation characteristics of ABZ upon gastric emptying. These in vitro results were used as biopharmaceutical inputs together with ABZ physicochemical properties including also permeability and in vitro metabolism data and information gathered from different clinical trials reported in the literature, were used to enable PBPK models to be developed using GastroPlus™ (version 9.7). As expected for this weak base with pKa = 3.6, ABZ exhibited a pronounced pH dependent solubility, with the solubility and extent of dissolution being greater at gastric pH and dropping significantly in the intestinal environment suggesting supersaturation and precipitation upon gastric emptying, which was confirmed by the transfer model experiments. PBPK models were set up for heathy volunteers using a full PBPK modeling approach and by implementing dynamic fluid volumes in the ACAT gut physiology in GastroPlus™. When coupling in vitro data (solubility values, dissolution rate and precipitation rate constant, etc.) for ABZ and with fitted values for the Vdss and liver systemic clearance of the sulfoxide metabolite to the PBPK model, the simulated profiles successfully predicated plasma concentrations of ABZ at 400 mg dose and simulated ABZSO at different ABZ dose levels and with different study populations, indicating the usefulness of combing in vitro biorelevant tools with PBPK modeling for the accurate prediction of ABZ bioavailability. The results obtained in this study also helped confirm that ABZ behaves as a BCS class IV compound.
Collapse
|
20
|
Nair AR, Lakshman YD, Anand VSK, Sree KSN, Bhat K, Dengale SJ. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech 2020; 21:309. [PMID: 33161493 PMCID: PMC7649155 DOI: 10.1208/s12249-020-01849-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Solid dispersion is the preferred technology to prepare efficacious forms of BCS class-II/IV APIs. To prepare solid dispersions, there exist a wide variety of polymeric carriers with interesting physicochemical and thermochemical characteristics available at the disposal of a formulation scientist. Since the advent of the solid dispersion technology in the early 1960s, there have been more than 5000 scientific papers published in the subject area. This review discusses the polymeric carrier properties of most extensively used polymers PVP, Copovidone, PEG, HPMC, HPMCAS, and Soluplus® in the solid dispersion technology. The literature trends about preparation techniques, dissolution, and stability improvement are analyzed from the Scopus® database to enable a formulator to make an informed choice of polymeric carrier. The stability and extent of dissolution improvement are largely dependent upon the type of polymeric carrier employed to formulate solid dispersions. With the increasing acceptance of transfer dissolution setup in the research community, it is required to evaluate the crystallization/precipitation inhibition potential of polymers under dynamic pH shift conditions. Further, there is a need to develop a regulatory framework which provides definition and complete classification along with necessarily recommended studies to characterize and evaluate solid dispersions.
Collapse
|
21
|
Pepin XJH, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, Babiskin A, Kolhatkar V, Seo P, Taylor LS, Sjögren E, Butler JM, Kostewicz E, Tannergren C, Koziolek M, Kesisoglou F, Dallmann A, Zhao Y, Suarez-Sharp S. In Vitro Biopredictive Methods: A Workshop Summary Report. J Pharm Sci 2020; 110:567-583. [PMID: 32956678 DOI: 10.1016/j.xphs.2020.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
This workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions. After introducing the objectives of the workshop and the expectations from the breakout sessions, Day 1 of the workshop focused on the best practices and challenges in measuring in vitro inputs needed for modeling, such as the drug solubility, the dissolution rate of the drug product, potential precipitation of the drug and drug permeability. This paper reports the podium presentations and summarizes breakout session discussions related to A) the best strategies for determining solubility, supersaturation and critical supersaturation; B) the best strategies for the development of biopredictive (clinically relevant) dissolution methods; C) the challenges associated with describing gastro-intestinal systems parameters such as mucus, liquid volume and motility; and D) the challenges with translating biopharmaceutical measures of drug permeability along the gastrointestinal tract to a meaningful model parameter.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jennifer Dressman
- Fraunhofer Institute for Molecular Biology and Applied Ecology and Goethe University, Frankfurt, Germany
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Poonam Delvadia
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Xinyuan Zhang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Paul Seo
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lynne S Taylor
- Purdue University, College of Pharmacy, West Lafayette, IN, USA
| | | | - James M Butler
- Biopharmaceutics, Drug Product Design & Dev, GlaxoSmithKline R&D, Ware, UK
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Mirko Koziolek
- University of Greifswald, Institute of Pharmacy, Greifswald, Germany; Current: NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - André Dallmann
- Clinical Pharmacometrics, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Yang Zhao
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sandra Suarez-Sharp
- Regulatory Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
22
|
Biorelevant Two-Stage In Vitro Testing for rDCS Classification and in PBPK Modeling–Case Example Ritonavir. J Pharm Sci 2020; 109:2512-2526. [DOI: 10.1016/j.xphs.2020.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
|
23
|
Six years of progress in the oral biopharmaceutics area – A summary from the IMI OrBiTo project. Eur J Pharm Biopharm 2020; 152:236-247. [DOI: 10.1016/j.ejpb.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
|
24
|
Hamed R, Alnadi SH, Awadallah A. The Effect of Enzymes and Sodium Lauryl Sulfate on the Surface Tension of Dissolution Media: Toward Understanding the Solubility and Dissolution of Carvedilol. AAPS PharmSciTech 2020; 21:146. [PMID: 32435989 DOI: 10.1208/s12249-020-01683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this work was to study the effect of the physiologically relevant enzymes pepsin, pancreatin, and the synthetic surfactant sodium lauryl sulfate (SLS) on the surface tension of the dissolution media and the solubility and dissolution of the weakly basic drug carvedilol. Compendial dissolution media and buffer solutions that simulate the gastrointestinal fluid, prepared with and without the addition of SLS, were used in this study. The surface tension of the dissolution media; critical micelle concentration (CMC) of SLS in buffer solutions; and size, polydispersity index, and zeta potential of SLS micelles loading carvedilol were determined. The solubility and dissolution of carvedilol were investigated and compared with those of the corresponding media prepared without the addition of pepsin, pancreatin, and SLS. Results showed that the addition of pepsin, pancreatin, and SLS lowered the surface tension of the dissolution media to 54.8, 55.7, and ~ 30 mN/m, respectively. The solubility of carvedilol was significantly enhanced with pepsin and SLS; however, no significant difference was found with pancreatin. The dissolution rate of carvedilol was fast in simulated gastric fluid with and without pepsin. The dissolution was further enhanced in media with pancreatin and SLS. The dissolution data were corroborated with the molar micellar solubilization (X) of SLS, ranging between 0.02 and 3.09. Understanding the effect of pepsin, pancreatin, and SLS on the surface tension of the dissolution media and the solubility and dissolution of poorly soluble drugs can improve our knowledge of the performance of these drugs in vivo.
Collapse
|
25
|
O’Dwyer PJ, Imanidis G, Box KJ, Reppas C. On the Usefulness of Two Small-Scale In Vitro Setups in the Evaluation of Luminal Precipitation of Lipophilic Weak Bases in Early Formulation Development. Pharmaceutics 2020; 12:pharmaceutics12030272. [PMID: 32188116 PMCID: PMC7151110 DOI: 10.3390/pharmaceutics12030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
A small-scale biphasic dissolution setup and a small-scale dissolution-permeation (D-P) setup were evaluated for their usefulness in simulating the luminal precipitation of three lipophilic weak bases—dipyridamole, ketoconazole and itraconazole. The transition from the gastric to intestinal environment was incorporated into both experimental procedures. Emulsification during the biphasic dissolution experiments had a minimal impact on the data, when appropriate risk mitigation steps were incorporated. Precipitation parameters estimated from the in vitro data were inputted into the Simcyp® physiologically based pharmacokinetic (PBPK) modelling software and simulated human plasma profiles were compared with previously published pharmacokinetic data. Average Cmax and AUC values estimated using experimentally derived precipitation parameters from the biphasic experiments deviated from corresponding published actual values less than values estimated using the default simulator parameters for precipitation. The slow rate of transport through the biomimetic membrane in the D-P setup limited its usefulness in forecasting the rates of in vivo precipitation used in the modelling of average plasma profiles.
Collapse
Affiliation(s)
- Patrick J. O’Dwyer
- Pion Inc. (UK) Ltd., Forest Row, East Sussex RH18 5DW, UK; (P.J.O.); (K.J.B.)
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, GR 157 84 Zografou, Greece
| | - Georgios Imanidis
- School of Life Sciences, Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland;
- Department of Pharmaceutical Sciences, University of Basel, CH 4056 Basel, Switzerland
| | - Karl J. Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex RH18 5DW, UK; (P.J.O.); (K.J.B.)
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, GR 157 84 Zografou, Greece
- Correspondence: ; Tel.: +30-210-727-4678; Fax: +30-210-727-4027
| |
Collapse
|
26
|
Passos JS, Martino LCD, Dartora VFC, Araujo GLBD, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci 2020; 149:105296. [PMID: 32151706 DOI: 10.1016/j.ejps.2020.105296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Considering the increased incidence of sporotrichosis and other fungal infections in rural and urban areas, and the limitations and adverse effects of oral itraconazole therapy, we studied nanostructured lipid carriers (NLC) as topical delivery systems to increase itraconazole localization in skin lesions and associate efficacy with reduced systemic exposure. Unloaded and itraconazole-loaded NLC showed nanometric size (~216-340 nm), negative zeta potential (~ -17 mV), and high entrapment efficiency (~97%). NLC treatment decreased transepidermal water loss, an index of cutaneous barrier function, in intact skin and in tissues damaged with a linear incision (to mimic lesions) by 23-36%, and reduced drug transdermal delivery by ~2-fold, demonstrating its ability to localize itraconazole within the skin. The unloaded and itraconazole-loaded NLC were considered safe, as indicated by scores of 0.5 and 0.6 in HET-CAM models, respectively, and lack of toxicity (measured by survival and health index) on the Galleria mellonella larvae. The values obtained for minimum inhibitory concentration and minimum fungicidal concentration on Sporothrix brasiliensis yeasts were 0.25 and 32 μg/mL, respectively. The drug in solution displayed similar values, indicating that encapsulation does not hinder itraconazole antifungal effect. NLC treatment improved the survival rate and health index of G. mellonella larvae infected with S. brasiliensis yeasts and C. albicans, demonstrating antifungal efficacy. Taken together, itraconazole encapsulation in NLC represents a viable strategy to optimize cutaneous localization without compromising its efficacy against fungal infections.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Luiza Capello de Martino
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | | | - Gabriel L B de Araujo
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Auch C, Jede C, Harms M, Wagner C, Mäder K. Impact of amorphization and GI physiology on supersaturation and precipitation of poorly soluble weakly basic drugs using a small-scale in vitro transfer model. Int J Pharm 2020; 574:118917. [PMID: 31811926 DOI: 10.1016/j.ijpharm.2019.118917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
Formulation of amorphous solid dispersions (ASD) is one possibility to improve poor aqueous drug solubility by creating supersaturation. In case of weakly basic drugs like ketoconazole (KTZ), supersaturation can also be generated during the gastrointestinal (GI) transfer from the stomach to the intestine due to pH-dependent solubility. In both cases, the supersaturation during dissolution can be stabilized by polymeric precipitation inhibitors. A small-scale GI transfer model was used to compare the dissolution performance of ASD versus crystalline KTZ with the polymeric precipitation inhibitor HPMCAS. Similar in vitro AUCs were found for the transfer from SGF pH2 into FaSSIF. Moreover, the impact of variability in gastric pH on drug dissolution was assessed. Here, the ASD performed significantly better at a simulated hypochlorhydric gastric pHof 4. Last, the importance of drug-polymer interactions for precipitation inhibition was evaluated. HPMCAS HF and LF grades with and without the basic polymer Eudragit EPO were used. However, EPO caused a faster precipitation probably due to competition for the interaction sites between KTZ and HPMCAS. Thus, the results are suited to assess the benefits of amorphous formulations vs. precipitation inhibitors under different gastrointestinal conditions to optimize the design of such drug delivery systems.
Collapse
Affiliation(s)
- Carolin Auch
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany; Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Jede
- Department of Analytical Development, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Meike Harms
- Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Wagner
- Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany.
| |
Collapse
|
28
|
Chegireddy M, Hanegave GK, Lakshman D, Urazov A, Sree KN, Lewis SA, Dengale SJ. The Significance of Utilizing In Vitro Transfer Model and Media Selection to Study the Dissolution Performance of Weak Ionizable Bases: Investigation Using Saquinavir as a Model Drug. AAPS PharmSciTech 2020; 21:47. [PMID: 31900686 DOI: 10.1208/s12249-019-1563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 01/20/2023] Open
Abstract
This study investigated the dissolution behavior of BCS class II ionizable weak base Saquinavir and its mesylate salt in the multi-compartment transfer setup employing different composition of dissolution media. The dissolution behavior of Saquinavir was studied by using a two-compartment transfer model representing the transfer of drug from the stomach (donor compartment) to the upper intestine (acceptor compartment). Various buffers like phosphate, bicarbonate, FaSSIF, and FeSSIF were employed. The dissolution was also studied in the concomitant presence of the additional solute, i.e., Quercetin. Further, the dissolution profiles of Saquinavir and its mesylate salt were simulated by GastroPlusTM, and the simulated dissolution profiles were compared against the experimental ones. The formation of in situ HCl salt and water-soluble amorphous phosphate aggregates was confirmed in the donor and acceptor compartments of the transfer setup, respectively. As the consequence of the lower solubility product of HCl salt of Saquinavir, the solubility advantage of mesylate salt was vanished leading to the lower than the predicted dissolution in the acceptor compartment. However, the formation of water-soluble aggregates in the presence of the phosphate salts was observed leading to the higher than the predicted dissolution of the free base in the transfer setup. Interestingly, the formation of such water-soluble aggregates was found to be hindered in the concomitant presence of an ionic solute resulting in the lower dissolution rates. The in situ generation of salts and aggregates in the transfer model lead to the inconsistent prediction of dissolution profiles by GastroPlusTM.
Collapse
|
29
|
Eedara BB, Tucker IG, Das SC. A STELLA simulation model for in vitro dissolution testing of respirable size particles. Sci Rep 2019; 9:18522. [PMID: 31811249 PMCID: PMC6898627 DOI: 10.1038/s41598-019-55164-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022] Open
Abstract
In vitro dissolution testing is a useful quality control tool to discriminate the formulations and to approximate the in vivo drug release profiles. A dissolution apparatus has been custom-made for dissolution testing of dry powder formulations in a small volume of stationary medium (25 μL spread over 4.91 cm2 area i.e. ~50 μm thick). To understand the system and predict the key parameters which influence the dissolution of respirable size particles, a simulation model was constructed using STELLA modeling software. Using this model, the permeation (dissolution followed by diffusion through the membrane) of two anti-tubercular drugs of differing solubilities, moxifloxacin (17.68 ± 0.85 mg mL-1) and ethionamide (0.46 ± 0.02 mg mL-1), from the respirable size particles and their diffusion from a solution were simulated. The simulated permeation profiles of moxifloxacin from solution and respirable size particles were similar, indicating fast dissolution of the particles. However, the simulated permeation profile of ethionamide from respirable size particles showed slower permeation compared to the solution indicating the slow dissolution of the respirable size particles of ethionamide. The sensitivity analysis suggested that increased mucus volume and membrane thickness decreased the permeation of drug. While this model was useful in predicting and distinguishing the dissolution behaviours of respirable size moxifloxacin and ethionamide, further improvement could be made using appropriate initial parameter values obtained by experiments.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand
| | - Ian G Tucker
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand.
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand.
| |
Collapse
|
30
|
Cristofoletti R, Hens B, Patel N, Esteban VV, Schmidt S, Dressman J. Integrating Drug- and Formulation-Related Properties With Gastrointestinal Tract Variability Using a Product-Specific Particle Size Approach: Case Example Ibuprofen. J Pharm Sci 2019; 108:3842-3847. [PMID: 31539541 DOI: 10.1016/j.xphs.2019.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
In the present study, an in vitro-in vivo extrapolation of dissolution integrated to a physiologically based pharmacokinetics modeling approach, considering a product-specific particle size distribution and a self-buffering effect of the drug, is introduced and appears to be a promising translational modeling strategy to support drug product development, manufacturing changes and setting clinically relevant specifications for immediate release formulations containing ibuprofen and other weak acids with similar properties.
Collapse
Affiliation(s)
- Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827.
| | - Bart Hens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Nikunjkumar Patel
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Valvanera Vozmediano Esteban
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Veseli A, Žakelj S, Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev Ind Pharm 2019; 45:1717-1724. [PMID: 31512934 DOI: 10.1080/03639045.2019.1665062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The significance of thermodynamic solubility in biopharmaceutical compound or drug characterization as well as the importance of having methods that accurately establish it have been extensively addressed. Nonetheless, its precise determination continues to remain a challenging task to accomplish. Even more so when the number of compounds to evaluate is high and the available amount of each compound is low, both of which are inevitable for the compound characterization during the drug development process. Except for the shake-flask method which is still considered as the 'gold standard' in obtaining thermodynamic data, it is currently difficult to say that another satisfactory model which is routinely used to determine thermodynamic solubility is being applied. Therefore, this review summarizes the various experimental approaches which are based on the classical shake flask method but have yet attempted to speed up the experimental process of obtaining such data more conveniently. The most important experimental features of these approaches are provided to the reader. Some advantages and disadvantages associated with each approach are also highlighted, consequently offering a resource to those looking for the most appropriate of the approaches that have already fared well at determining the biopharmaceutically relevant drug solubility.
Collapse
Affiliation(s)
- Ardita Veseli
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| | - Simon Žakelj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| | - Albin Kristl
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
32
|
Jankovic S, O'Dwyer PJ, Box KJ, Imanidis G, Reppas C, Kuentz M. Biphasic drug release testing coupled with diffusing wave spectroscopy for mechanistic understanding of solid dispersion performance. Eur J Pharm Sci 2019; 137:105001. [DOI: 10.1016/j.ejps.2019.105001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
33
|
Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, Andreas CJ, Schaefer KJ, Mann J, McAllister M, Jamei M, Kostewicz E, Kesisoglou F, Langguth P, Minekus M, Müllertz A, Schilderink R, Koziolek M, Jedamzik P, Weitschies W, Reppas C, Augustijns P. In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm 2019; 136:70-83. [DOI: 10.1016/j.ejpb.2018.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
|
34
|
Jede C, Wagner C, Kubas H, Weber C, Weigandt M, Koziolek M, Weitschies W. Automated small-scale in vitro transfer model as screening tool for the prediction of in vivo-dissolution and precipitation of poorly solubles. Int J Pharm 2019; 556:150-158. [PMID: 30553006 DOI: 10.1016/j.ijpharm.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Precipitation testing, especially for weakly basic APIs, represents a key parameter in drug substance characterization during early development stages, where the amount of API available is limited. Therefore, it was the aim of this study to develop an automated small-scale in vitro transfer model to characterize the supersaturation and precipitation behavior of two poorly water-soluble drugs. Following automation and scale-down of the standard transfer model, the developed small-scale model was used to assess the impact of gastrointestinal variability, i.e. gastric pH, gastric emptying, and gastrointestinal fluid volumes, on supersaturation and precipitation of two weakly basic model compounds, ketoconazole and a new chemical entity from the research laboratories of Merck KGaA, MSC-A. The experiments revealed that variations in gastrointestinal parameters affected the in vitro behavior of ketoconazole, but not of MSC-A. Elevated gastric pH, as it can result from co-medication with acid-reducing drugs, resulted in lower degrees of supersaturation for both substances. This result is in agreement with the observation that the oral bioavailability of ketoconazole is lowered when proton pump inhibitors are co-administered. The small-scale transfer model presented herein represents a valuable in vitro tool to assess the risk of drug precipitation, additionally covering a broad range of gastrointestinal parameters.
Collapse
Affiliation(s)
- Christian Jede
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany; Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Holger Kubas
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christian Weber
- Project and Dossier Leadership, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Markus Weigandt
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Mirko Koziolek
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.
| |
Collapse
|
35
|
Biopharmaceutic IVIVE-Mechanistic Modeling of Single- and Two-Phase In Vitro Experiments to Obtain Drug-Specific Parameters for Incorporation Into PBPK Models. J Pharm Sci 2018; 108:1604-1618. [PMID: 30476508 DOI: 10.1016/j.xphs.2018.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
Abstract
The physiological relevance of single-phase (aqueous only) and 2-phase (aqueous and organic phase) in vitro dissolution experiments was compared by mechanistic modeling. For orally dosed dipyridamole, stepwise, sequential estimation/confirmation of biopharmaceutical parameters from in vitro solubility-dissolution data was followed, before applying them within a physiologically based pharmacokinetic (PBPK) model. The PBPK model predicted clinical dipyridamole luminal and plasma concentration profiles reasonably well for a range of doses only where the precipitation rate constant was derived from the 2-phase experiment. The population model predicted a distribution of maximal precipitated fractions from 0% to 45% of the 90 mg dose (mean 7.6%). Such population information cannot be obtained directly from a few in vitro experiments; however well they may represent an "average" and several extreme subjects (those with low-high luminal fluid volumes, pH, etc.) because there is no indication of outcome likelihood. For this purpose, direct input of in vitro dissolution/precipitation profiles to a PBPK model is insufficient-mechanistic modeling is required. Biopharmaceutical in vitro-in vivo extrapolation tools can also simulate the effect of key experimental parameters (dissolution volumes, pH, paddle speed, etc.) on dissolution/precipitation behavior, thereby helping to identify critical variables, which may impact the number or design of in vitro experiments.
Collapse
|
36
|
Enhancement of ketoconazole dissolution rate by the liquisolid technique. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:325-336. [PMID: 31259692 DOI: 10.2478/acph-2018-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 11/20/2022]
Abstract
The study was conducted to enhance the dissolution rate of ketoconazole (KCZ) (a poorly water-soluble drug) using the liquisolid technique. Microcrystalline cellulose, colloidal silica, PEG400 and polyvinyl pyrrolidone (PVP) were employed as a carrier, coating substance, nonvolatile solvent and additive in the KCZ liquisolid compact formulation, respectively. The drug-to-PEG400 and carrier-to-coating ratio variations, PVP concentration and aging effects on the in vitro release behavior were assessed. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) data revealed no alterations in the crystalline form of the drug and the KCZ-excipient interactions within the process. The load factor and the drug release rate were significantly enhanced compared to directly compressed tablets in the presence of the additive. Increasing the PEG400-to-drug ratio in liquid medications enhanced the dissolution rate remarkably. The dissolution profile and hardness of liquisolid compacts were not significantly altered by keeping the tablets at 40 °C and relative humidity of 75 % for 6 months. With the proposed modification of the liquisolid process, it is possible to obtain flowable, compactible liquisolid powders of high-dose poorly-water soluble drugs with an enhanced dissolution rate.
Collapse
|
37
|
Horkovics-Kovats S. Comparison of dissolution time profiles: No similarity but where is the difference? Eur J Pharm Sci 2018; 121:9-15. [DOI: 10.1016/j.ejps.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
38
|
Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm 2018; 129:222-246. [DOI: 10.1016/j.ejpb.2018.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
|
39
|
Jede C, Wagner C, Kubas H, Weber C, Weitschies W. In-line derivative spectroscopy as a promising application to a small-scale in vitro transfer model in biorelevant supersaturation and precipitation testing. J Pharm Pharmacol 2018; 70:1315-1323. [DOI: 10.1111/jphp.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/07/2018] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Dissolution testing of poorly soluble and precipitating drugs is of great importance for pharmaceutical industry. As offline HPLC analytics is time-consuming and labour-intensive, the development of suitable in-line analytics to measure drug concentration allows better predictions of drug dissolution and precipitation. The purpose of this study was to develop an in-line derivative spectroscopic method which facilitates drug concentration measurements in suspensions without additional sample preparation.
Methods
Solubility, dissolution and precipitation of ketoconazole were analysed using derivative spectroscopy and HPLC.
Key findings
Results of solubility and dissolution experiments were highly comparable. Due to higher sampling frequency and lack of sample preparations, supersaturation in a pH-shift experiment was more accurately captured by UV in-line analytics. The application of a prefiltration step and flow-through cuvettes facilitates implementation of in-line derivative spectroscopy into an in vitro transfer model with changing UV-active media and high supersaturation in highly turbid samples.
Conclusions
Although the application of derivative spectroscopy has been described previously, the approach described herein is novel and well-suited for the application in an automated in vitro transfer model. Moreover, it represents a promising tool for drug substance characterisation, candidate selection and formulation development.
Collapse
Affiliation(s)
- Christian Jede
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Christian Wagner
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Holger Kubas
- Department of Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Christian Weber
- Project and Dossier Leadership, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Hamed R, Kamal A. Concentration Profiles of Carvedilol: A Comparison Between In Vitro Transfer Model and Dissolution Testing. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Hamed R, Alnadi SH. Transfer Behavior of the Weakly Acidic BCS Class II Drug Valsartan from the Stomach to the Small Intestine During Fasted and Fed States. AAPS PharmSciTech 2018; 19:2213-2225. [PMID: 29736887 DOI: 10.1208/s12249-018-1028-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to investigate the transfer behavior of the weakly acidic BCS class II drug valsartan from the stomach to the small intestine during fasted and fed states. An in vitro transfer model previously introduced by Kostewicz et al. (J Pharm Pharmacol 56(1):43-51, 2004) based on a syringe pump and a USP paddle apparatus was used to determine the concentration profiles of valsartan in the small intestine. Donor phases of simulated gastric fluid during fasted (FaSSGF) and fed (FeSSGF) states were used to predisperse Diovan® tablets (160 mg valsartan). The initial concentrations of valsartan in FaSSGF and FeSSGF were 6.2 and 91.8%, respectively. Valsartan dispersions were then transferred to acceptor phases that simulate intestinal fluid and cover the physiological properties (pH, buffer capacity, and ionic strength) of the gastrointestinal fluid at a flow rate of 2 mL/min. The pH measurements were reported at time intervals corresponded to those of the transfer experiments to investigate the effect of percent dissolved of valsartan in the donor phase on lowering the pH of the acceptor phases. The f2 similarity test was used to compare the concentration profiles in the acceptor phases. In fasted state, the concentration of valsartan in the acceptor phases ranged between 33.1 and 89.4% after 240 min. Whereas in fed state, valsartan was fully dissolved in all acceptor phases within a range of 94.5-104.9% after 240 min. Therefore, the transfer model provides a useful screen for the concentrations of valsartan in the small intestine during fasted and fed states.
Collapse
|
42
|
O'Dwyer PJ, Litou C, Box KJ, Dressman JB, Kostewicz ES, Kuentz M, Reppas C. In vitro methods to assess drug precipitation in the fasted small intestine – a PEARRL review. J Pharm Pharmacol 2018; 71:536-556. [DOI: 10.1111/jphp.12951] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
Drug precipitation in vivo poses a significant challenge for the pharmaceutical industry. During the drug development process, the impact of drug supersaturation or precipitation on the in vivo behaviour of drug products is evaluated with in vitro techniques. This review focuses on the small and full scale in vitro methods to assess drug precipitation in the fasted small intestine.
Key findings
Many methods have been developed in an attempt to evaluate drug precipitation in the fasted state, with varying degrees of complexity and scale. In early stages of drug development, when drug quantities are typically limited, small-scale tests facilitate an early evaluation of the potential precipitation risk in vivo and allow rapid screening of prototype formulations. At later stages of formulation development, full-scale methods are necessary to predict the behaviour of formulations at clinically relevant doses. Multicompartment models allow the evaluation of drug precipitation after transfer from stomach to the upper small intestine. Optimisation of available biopharmaceutics tools for evaluating precipitation in the fasted small intestine is crucial for accelerating the development of novel breakthrough medicines and reducing the development costs.
Summary
Despite the progress from compendial quality control dissolution methods, further work is required to validate the usefulness of proposed setups and to increase their biorelevance, particularly in simulating the absorption of drug along the intestinal lumen. Coupling results from in vitro testing with physiologically based pharmacokinetic modelling holds significant promise and requires further evaluation.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Chara Litou
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
43
|
Kou D, Zhang C, Yiu H, Ng T, Lubach JW, Janson M, Mao C, Durk M, Chinn L, Winter H, Wigman L, Yehl P. In Vitro, in Silico, and in Vivo Assessments of Intestinal Precipitation and Its Impact on Bioavailability of a BCS Class 2 Basic Compound. Mol Pharm 2018. [PMID: 29522347 DOI: 10.1021/acs.molpharmaceut.7b01143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.
Collapse
Affiliation(s)
| | - Chen Zhang
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fiolka T, Dressman J. Development, current applications and future roles of biorelevant two-stage in vitro testing in drug development. J Pharm Pharmacol 2018; 70:335-348. [DOI: 10.1111/jphp.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/16/2017] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Various types of two stage in vitro testing have been used in a number of experimental settings. In addition to its application in quality control and for regulatory purposes, two-stage in vitro testing has also been shown to be a valuable technique to evaluate the supersaturation and precipitation behavior of poorly soluble drugs during drug development.
Key findings
The so-called ‘transfer model’, which is an example of two-stage testing, has provided valuable information about the in vivo performance of poorly soluble, weakly basic drugs by simulating the gastrointestinal drug transit from the stomach into the small intestine with a peristaltic pump. The evolution of the transfer model has resulted in various modifications of the experimental model set-up. Concomitantly, various research groups have developed simplified approaches to two-stage testing to investigate the supersaturation and precipitation behavior of weakly basic drugs without the necessity of using a transfer pump.
Summary
Given the diversity among the various two-stage test methods available today, a more harmonized approach needs to be taken to optimize the use of two stage testing at different stages of drug development.
Collapse
Affiliation(s)
- Tom Fiolka
- Department of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Jennifer Dressman
- Department of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
45
|
Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug. Mol Pharm 2017; 14:4305-4320. [DOI: 10.1021/acs.molpharmaceut.7b00406] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shriram M. Pathak
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - Aaron Ruff
- Department
of Pharmaceutical Technology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse
9, Frankfurt am Main 60438, Germany
| | - Edmund S. Kostewicz
- Department
of Pharmaceutical Technology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse
9, Frankfurt am Main 60438, Germany
| | - Nikunjkumar Patel
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - David B. Turner
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - Masoud Jamei
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| |
Collapse
|
46
|
In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption. Eur J Pharm Sci 2017; 106:431-438. [DOI: 10.1016/j.ejps.2017.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022]
|
47
|
Evaluating the predictability of the in vitro transfer model and in vivo rat studies as a surrogate to investigate the supersaturation and precipitation behaviour of different Albendazole formulations for humans. Eur J Pharm Sci 2017; 105:108-118. [DOI: 10.1016/j.ejps.2017.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/10/2023]
|