1
|
Ljubica J, Dukovski BJ, Krtalić I, Juretić M, Kučuk MS, Petriček I, Špoljarić D, Bočkor L, Kocbek P, Hafner A, Pepić I, Lovrić J. Overcoming barriers in formulating practically insoluble loteprednol etabonate in ophthalmic nanoemulsion. Eur J Pharm Sci 2025; 209:107077. [PMID: 40113103 DOI: 10.1016/j.ejps.2025.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Loteprednol etabonate (LE) is a soft corticosteroid recently approved for the short-term treatment of signs and symptoms of dry eye disease. LE is available on the market as a suspension, which can release only limited amount of dissolved corticosteroid after application at the ocular surface. This study is focused on the development of an oil-in-water nanoemulsion (NE) to effectively deliver dissolved LE to the ocular surface, in order to promote its absorption. We newly developed an extended-throughput 3D model of the corneal epithelium for biocompatibility study, and an innovative approach to investigate the effect of biorelevant dilution on LE release from the NE oil phase. Castor oil, Capryol® 90, Kolliphor® EL and Soluplus® were selected as NE excipients based on their potential to dissolve LE. Design of experiments was successfully employed to develop biocompatible and physically stable NE with high LE content (0.15 %, w/w) and retention efficiency (87 % after 10 months of storage at room temperature). LE retention within oil droplets (above 90 % of the initial LE content) despite biorelevant dilution simulating tear turnover suggests the potential for direct LE absorption from the NE oil droplets into the lipophilic corneal epithelium. The results obtained encourage the extension of the studies in terms of in vitro permeability and in vivo eye-related bioavailability assessment to prove the potential of the proposed LE formulation.
Collapse
Affiliation(s)
- Josip Ljubica
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia; PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | - Iva Krtalić
- PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | - Marina Juretić
- PLIVA Croatia Ltd, TEVA Member Group, Baruna Filipovića 25, 10000 Zagreb, Croatia
| | | | - Igor Petriček
- University Hospital Centre Zagreb, Mije Kišpatića 12, 10000 Zagreb, Croatia
| | - Drago Špoljarić
- Visage Technologies d.o.o., Ul. Ivana Lučića 2a, 10000 Zagreb, Croatia
| | - Luka Bočkor
- Institute for Anthropological Research, Gajeva ul. 32, 10000 Zagreb, Croatia
| | - Petra Kocbek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Anita Hafner
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivan Pepić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Viehmeister K, Manuelli A, Guerin C, Kappes S, Lamprecht A. Imaging-Based Drug Penetration Profiling in an Excised Sheep Cornea Model. Pharmaceutics 2024; 16:1126. [PMID: 39339164 PMCID: PMC11435002 DOI: 10.3390/pharmaceutics16091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Formulations designed to address ocular conditions and diseases are predominantly administered topically. While in vitro test systems have been developed to assess corneal permeation under extended contact conditions, methods focusing on determining the penetration depth and kinetics of a substance within the cornea itself rather than through it, are scarce. This study introduces a method for time-dependent penetration depth analysis (10 and 60 min) by means of a semiquantitative imaging method in comparison with a quantitative corneal depth-cut technique, employing fluorescein sodium at concentrations of 0.2 and 0.4 mg/mL as a small molecule model substance and sheep cornea as a human surrogate. Excised tissues exhibited sustained viability in modified artificial aqueous humor and maintained thickness (746 ± 43 µm) and integrity (electrical resistance 488 ± 218 Ω∙cm2) under the experimental conditions. Both methods effectively demonstrated the expected concentration- and time-dependent depth of penetration of fluorescein sodium, displaying a significantly strong correlation. The traceability of the kinetic processes was validated with polysorbate 80, which acted as a penetration enhancer. Furthermore, the imaging-based method enabled detecting the retention of larger structures, such as hyaluronic acid and nanoemulsions from the commercial eyedrop formulation NEOVIS® TOTAL multi, inside the lacrimal layer.
Collapse
Affiliation(s)
- Karla Viehmeister
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Aurélie Manuelli
- Horus Pharma, 22, Allée Camille Muffat, Inedi 5, 06200 Nice, France
| | - Camille Guerin
- Horus Pharma, 22, Allée Camille Muffat, Inedi 5, 06200 Nice, France
| | - Sebastian Kappes
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Université de Franche-Comté, INSERM UMR1098 Right, 25030 Besançon, France
| |
Collapse
|
4
|
Račić A, Jurišić Dukovski B, Lovrić J, Dobričić V, Vučen S, Micov A, Stepanović-Petrović R, Tomić M, Pecikoza U, Bajac J, Krajišnik D. Synergism of polysaccharide polymers in antihistamine eye drops: Influence on physicochemical properties and in vivo efficacy. Int J Pharm 2024; 655:124033. [PMID: 38522490 DOI: 10.1016/j.ijpharm.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The incorporation of polymers into drug delivery vehicles has been shown to be a useful approach to prolong the residence time of drugs in the precorneal tear film and to improve penetration into biological membranes. The main objective of this research was to formulate novel viscous eye drops with ketotifen as the active ingredient, containing the polysaccharides: chitosan (MCH), hydroxypropyl guar gum (HPG) and hyaluronic acid (SH) alone and in combination as functional polymers. DSC and FT-IR techniques showed the compatibility between ketotifen and polymers. Physicochemical and rheological analysis at ambient and simulated physiological conditions, as well as the evaluation of mucoadhesive properties showed that vehicles containing combinations of polymers have suitable physicochemical and functional properties with demonstrated synergism between combined polymers (MCH and HPG i.e. SH and HPG). The drug permeability was successfully estimated in vitro using HCE-T cell-based models. MTT cytotoxicity assay demonstrates that the tested formulations were non-toxic and well tolerated. In vivo preclinical study on mice revealed that both vehicles containing mixed polymers enhanced and prolonged the antipruritic/analgesic-like effect of ophthalmic ketotifen. Based on these results, both combinations of polysaccharide polymers, especially SH-HPG, could be considered as potential new carriers for ketotifen for ophthalmic use.
Collapse
Affiliation(s)
- Anđelka Račić
- Department of Pharmaceutical Technology and Cosmetology, University of Banja Luka, Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Bisera Jurišić Dukovski
- R&D, PLIVA Croatia Ltd., TEVA Group Member, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia.
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Sonja Vučen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Ana Micov
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Radica Stepanović-Petrović
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Maja Tomić
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Uroš Pecikoza
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Bajac
- Department of Chemical Engineering, University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
5
|
Qin Z, Li B, Deng Q, Wen Y, Feng S, Duan C, Zhao B, Li H, Gao Y, Ban J. Polymer Nanoparticles with 2-HP-β-Cyclodextrin for Enhanced Retention of Uptake into HCE-T Cells. Molecules 2024; 29:658. [PMID: 38338402 PMCID: PMC10856407 DOI: 10.3390/molecules29030658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-β-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-β-CD)/PLGA NPs and the drug-loaded TA-(2-HP-β-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-β-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-β-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-β-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-β-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.
Collapse
Affiliation(s)
- Zhenmiao Qin
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Baohua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Qiyi Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Shiquan Feng
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Chengcheng Duan
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Beicheng Zhao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Hailong Li
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Yanan Gao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| |
Collapse
|
6
|
Abdalkader RK, Fujita T. Corneal epithelium models for safety assessment in drug development: Present and future directions. Exp Eye Res 2023; 237:109697. [PMID: 37890755 DOI: 10.1016/j.exer.2023.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The human corneal epithelial barrier plays a crucial role in drug testing studies, including drug absorption, distribution, metabolism, and excretion (ADME), as well as toxicity testing during the preclinical stages of drug development. However, despite the valuable insights gained from animal and current in vitro models, there remains a significant discrepancy between preclinical drug predictions and actual clinical outcomes. Additionally, there is a growing emphasis on adhering to the 3R principles (refine, reduce, replace) to minimize the use of animals in testing. To tackle these challenges, there is a rising demand for alternative in vitro models that closely mimic the human corneal epithelium. Recently, remarkable advancements have been made in two key areas: microphysiological systems (MPS) or organs-on-chips (OoCs), and stem cell-derived organoids. These cutting-edge platforms integrate four major disciplines: stem cells, microfluidics, bioprinting, and biosensing technologies. This integration holds great promise in developing powerful and biomimetic models of the human cornea.
Collapse
Affiliation(s)
- Rodi Kado Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Takuya Fujita
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan; Department of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
7
|
De Hoon I, Boukherroub R, De Smedt SC, Szunerits S, Sauvage F. In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea. Mol Pharm 2023. [PMID: 37314950 DOI: 10.1021/acs.molpharmaceut.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Li X, Jiang X, Zhou X, Cheng Y, Cao F. Development of dexamethasone suspension eye drops: A comparative investigation of ternary and quaternary cyclodextrin aggregates. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
10
|
Formulation of olopatadine hydrochloride viscous eye drops - physicochemical, biopharmaceutical and efficacy assessment using in vitro and in vivo approaches. Eur J Pharm Sci 2021; 166:105906. [PMID: 34118409 DOI: 10.1016/j.ejps.2021.105906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
The aim of this work was the formulation and the comprehensive evaluation of the viscous eye drops using vehicles containing medium chain chitosan (0.5% w/v), hydroxypropyl guar gum (0.25% w/v) and their combination as carriers for olopatadine (0.1% w/v). Physicochemical properties (appearance, clarity, pH, osmolality, viscosity and drug content) of the tested formulations were within acceptable ranges for the ophthalmic preparations, while DSC and FT-IR techniques demonstrated the compatibility between olopatadine and polymers. The drug permeability was successfully estimated in vitro using both HCE-T cell-based models (Model I and Model II) and the parallel artificial membrane permeability assay (PAMPA), considering the impact of chitosan as a permeation enhancer. The MTT cytotoxicity assay demonstrates that the tested formulations (diluted 10-fold in HBSS pH 5.5) were non-toxic and well tolerated. An ocular itch test on mice was carried out with the formulation containing the combination of polymers comparable with a commercially available olopatadine eye drops without viscosity enhancers. The tested eye drops produced a slightly higher anti-pruritic/analgesic-like effect than the commercial preparation. It could be assumed that the use of this viscous ophthalmic vehicle due to its advanced mucoadhesive properties and good safety profile is a feasible strategy to improve the efficacy of olopatadine.
Collapse
|
11
|
Xu C, Lu J, Zhou L, Liang J, Fang L, Cao F. Multifunctional nanocomposite eye drops of cyclodextrin complex@layered double hydroxides for relay drug delivery to the posterior segment of the eye. Carbohydr Polym 2021; 260:117800. [PMID: 33712148 DOI: 10.1016/j.carbpol.2021.117800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
Topical drug delivery system to the posterior segment of the eye is facing many challenges, such as rapid drug elimination, low permeability, and low concentration at the targeted sites. To overcome these challenges, Multifunctional nanocomposite eye drops of dexamethasone-carboxymethyl-β-cyclodextrin@layered double hydroxides-glycylsarcosine (DEX-CM-β-CD@LDH-GS) were developed for relay drug delivery. Herein, our studies demonstrated that DEX-CM-β-CD@LDH-GS could penetrate through human conjunctival epithelial cells with an intact structure and exhibited integrity in the sclera of rabbits' eyes with in vivo fluorescence resonance energy transfer imaging. Consequently, tissue distribution indicated that DEX-CM-β-CD@LDH-GS nanocomposite eye drops could maintain the effective therapeutic concentration of DEX in choroid-retina within 3 h. As a relay drug delivery system, drug-CD@LDH nanocomposites offer an efficient strategy for drug delivery from ocular surface to the posterior segment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China; WuXi Clinical Development Services Co., Ltd, 666 Gaoxin Road, Wuhan, 430075, China
| | - Jinhui Lu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Li Zhou
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Jie Liang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
12
|
Bíró T, Bocsik A, Jurišić Dukovski B, Gróf I, Lovrić J, Csóka I, Deli MA, Aigner Z. New Approach in Ocular Drug Delivery: In vitro and ex vivo Investigation of Cyclodextrin-Containing, Mucoadhesive Eye Drop Formulations. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:351-360. [PMID: 33568896 PMCID: PMC7868180 DOI: 10.2147/dddt.s264745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/18/2020] [Indexed: 01/31/2023]
Abstract
Background Optimal transcorneal penetration is necessary for ocular therapy; meanwhile, it is limited by the complex structure and defensive mechanisms of the eye. Antimicrobial stability of topical ophthalmic formulations is especially important. According to previous studies, the mostly used preservative, benzalkonium-chloride is irritative and toxic on corneal epithelial cells; therefore, novel non-toxic, antimicrobial agents are required. In this study, prednisolone-containing ophthalmic formulations were developed with expected optimal permeation without toxic or irritative effects. Methods The toxicity and permeability of prednisolone-containing eye drops were studied on a human corneal epithelial cell line (HCE-T) and ex vivo cornea model. The lipophilic drug is dissolved by the formation of cyclodextrin inclusion complex. Zinc-containing mucoadhesive biopolymer was applied as an alternative preservative agent, whose toxicity was compared with benzalkonium-chloride. Results As the results show, benzalkonium-chloride-containing samples were toxic on HCE-T cells. The biopolymer caused no cell damage after the treatment. This was confirmed by immunohistochemistry assay. The in vitro permeability was significantly higher in formulations with prednisolone-cyclodextrin complex compared with suspension formulation. According to the ex vivo permeability study, the biopolymer-containing samples had significantly lower permeability. Conclusion Considering the mucoadhesive attribute of target formulations, prolonged absorption is expected after application with less frequent administration. It can be stated that the compositions are innovative approaches as novel non-toxic ophthalmic formulations with optimal drug permeability.
Collapse
Affiliation(s)
- Tivadar Bíró
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Zhou X, Li X, Xu J, Cheng Y, Cao F. Latanoprost-loaded cyclodextrin microaggregate suspension eye drops for enhanced bioavailability and stability. Eur J Pharm Sci 2021; 160:105758. [PMID: 33588044 DOI: 10.1016/j.ejps.2021.105758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The bioavailability of conventional eye drops is very low due to different physiological barriers. Commercial latanoprost (LAT) eye drops (Xalatan®) need to be refrigerated and protected from light. The purpose of this study was to develop novel LAT eye drops to improve ocular bioavailability and stability. METHODS Ophthalmic suspension containing LAT/γ-cyclodextrin (γCD) aggregates was designed and the preparation process was sufficiently studied. The prepared formulations were evaluated for pH, viscosity, osmolality, particle size, entrapment efficiency and in vitro release study. In vitro permeability study using Human Corneal Epithelial Cells and in vivo studies on rabbits were also performed. RESULTS LAT/γCD aggregates were formed and confirmed by scanning electron microscopy. LAT/γCD eye drops showed obvious sustained release profiles and were more stable than Xalatan®. In vitro corneal permeation study indicated LAT/γCD eye drops had no significant cytotoxicity and had higher cell permeability. In vivo precorneal retention study showed AUC0-6 h, Cmax, and mean residence time (MRT) of LAT/γCD eye drops were 3.98, 2.12, and 2.07 times higher than those of Xalatan®, respectively. In vivo ocular distribution study revealed that AUC0-24 h, Cmax, and MRT for latanoprost acid in aqueous humor exhibited 2.60-fold, 1.36-fold, and 1.99-fold increase in LAT/γCD eye drops group than those of Xalatan® group, respectively. CONCLUSION Cyclodextrin microaggregate suspension eye drops represent a potential strategy for enhanced bioavailability and stability of LAT.
Collapse
Affiliation(s)
- Xiangying Zhou
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaolin Li
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jiangmin Xu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yanju Cheng
- Department of Biologics R&D Center, Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Road, Jiangning District, Nanjing 211122, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
14
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
15
|
Synthesis and Ex Vivo Trans-Corneal Permeation of Penetratin Analogues as Ophthalmic Carriers: Preliminary Results. Pharmaceutics 2020; 12:pharmaceutics12080728. [PMID: 32756470 PMCID: PMC7466059 DOI: 10.3390/pharmaceutics12080728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Among enhancing strategies proposed in ocular drug delivery, a rising interest is directed to cell penetrating peptides (CPPs), amino acid short sequences primarily known for their intrinsic ability to cell internalization and, by extension, to cross biological barriers. In fact, CPPs may be considered as carrier for delivering therapeutic agents across biological membranes, including ocular tissues. Several CPPs have been proposed in ophthalmic delivery, and, among them, penetratin (PNT), a 16-amino acids natural peptide, stands out. Therefore, we describe the synthesis via the mimotopic approach of short fluorescently labeled analogues of both PNT and its reversed sequence PNT-R. Their ability to cross ocular membranes was checked ex vivo using freshly explanted porcine cornea. Furthermore, some sequences were studied by circular dichroism. Despite the hydrophilic nature and the relatively high molecular weight (approx. 1.6 kDa), all analogues showed a not negligible trans-corneal diffusion, indicating a partial preservation of penetration activity, even if no sequences reached the noteworthy ability of PNT. It was not possible to find a correlation between structure and corneal penetration ability, and further studies, exploring peptides distribution within corneal layers, for example using imaging techniques, deserve to be performed to figure out a possible difference in intracellular delivery.
Collapse
|
16
|
Rubelowski AK, Latta L, Katiyar P, Stachon T, Käsmann-Kellner B, Seitz B, Szentmáry N. HCE-T cell line lacks cornea-specific differentiation markers compared to primary limbal epithelial cells and differentiated corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2020; 258:565-575. [PMID: 31927639 DOI: 10.1007/s00417-019-04563-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Human corneal epithelial cell-transformed (HCE-T) cell line is used as a widely accepted barrier model for pharmacological investigations in the context of eye application. The differentiation of (limbal) corneal epithelial into mature corneal epithelium coincides with the expression of established differentiation markers. If these differentiation mechanisms are disturbed, it will lead to ocular surface disease. In this study, we want to compare the expression of differentiation markers in the HCE-T cell line to differentiated primary epithelial cells (pCECs) and primary limbal epithelial cell (LEC) culture. This is necessary in order to decide whether HCE-T cells could be a tool to study the differentiation process and its regulatory networks in corneal epithelium. METHODS Primary limbal epithelial cells (LECs) for cell culture and primary corneal epithelial cells (pCECs) as differentiated tissue samples were obtained from the limbus or central cornea region of corneal donors. HCE-T cell line was purchased from RIKEN Institute RCB-2280.Expression levels of conjunctival- and corneal-specific keratin and adhesion markers (KRT3, KRT12, KRT13, KRT19, DSG1), stem cell and differentiation markers (PAX6, ABCG2, ADH7, TP63, ALDH1A1), and additional (unvalidated) putative differentiation and stem cell markers (CTSV, SPINK7, DKK1) were analyzed with qPCR. Additionally, KRT3, KRT12, DSG1, and PAX6 protein levels were analyzed with Western blot. RESULTS KRT3, KRT12, DSG1, PAX6, ADH7, and ALDH1A1 mRNA expressions were higher in LECs and magnitudes higher in pCECs compared to HCE-T cells. KRT3, KRT12, PAX6, ALDH1A1, ADH7, TP63, and CTSV mRNAs have shown increasing mRNA expression from HCE-T < HCE-T cultured in keratinocyte serum-free medium (KSFM) < LEC < to pCEC.KRT3 and KRT12 protein expressions were only slightly increased in LEC compared to HCE-T samples, and the strongest signals were seen in pCEC samples. DSG1 protein expression was only detected in pCECs. PAX6 protein expression was hardly detected in HCE-T cells, and no difference could be seen between LECs and pCECs. CONCLUSIONS The HCE-T cell line is even less differentiated than LECs regarding the investigated markers and therefore might also lack the ability to express differentiation markers at protein level. Hence, this cell line is not suitable to study corneal differentiation processes. Primary LECs in the way cultured here are not an ideal system compared to differentiated epithelium in organ culture but should be preferred to HCE-T cells if corneal differentiation markers are investigated. Other cell models or differentiation protocols should be developed in the future to gain new tools for research on ocular surface diseases.
Collapse
Affiliation(s)
- Anna-Klara Rubelowski
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Lorenz Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - Priya Katiyar
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Jurišić Dukovski B, Juretić M, Bračko D, Randjelović D, Savić S, Crespo Moral M, Diebold Y, Filipović-Grčić J, Pepić I, Lovrić J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int J Pharm 2019; 576:118979. [PMID: 31870964 DOI: 10.1016/j.ijpharm.2019.118979] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
Abstract
Inflammation plays a key role in dry eye disease (DED) affecting millions of people worldwide. Non-steroidal anti-inflammatory drugs (NSAIDs) can be used topically to act on the inflammatory component of DED, but their limited aqueous solubility raises formulation issues. The aim of this study was development and optimization of functional cationic nanoemulsions (NEs) for DED treatment, as a formulation approach to circumvent solubility problems, prolong drug residence at the ocular surface and stabilize the tear film. Ibuprofen was employed as the model NSAID, chitosan as the cationic agent, and lecithin as the anionic surfactant enabling chitosan incorporation. Moreover, lecithin is a mixture of phospholipids including phosphatidylcholine and phosphatidylethanolamine, two constituents of the natural tear film important for its stability. NEs were characterized in terms of droplet size, polydispersity index, zeta-potential, pH, viscosity, osmolarity, surface tension, entrapment efficiency, stability, sterilizability and in vitro release. NEs mucoadhesive properties were tested rheologically after mixing with mucin dispersion. Biocompatibility was assessed employing 3D HCE-T cell-based model and ex vivo model using porcine corneas. The results of our study pointed out the NE formulation with 0.05% (w/w) chitosan as the lead formulation with physicochemical properties adequate for ophthalmic application, mucoadhesive character and excellent biocompatibility.
Collapse
Affiliation(s)
- Bisera Jurišić Dukovski
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Marina Juretić
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia
| | - Danka Bračko
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia
| | - Danijela Randjelović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Microelectronic Technologies, Belgrade, Serbia
| | - Snežana Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Belgrade, Serbia
| | - Mario Crespo Moral
- University of Valladolid, Institute of Applied Ophthalmo-Biology (IOBA), Valladolid, Spain
| | - Yolanda Diebold
- University of Valladolid, Institute of Applied Ophthalmo-Biology (IOBA), Valladolid, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Jelena Filipović-Grčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Ivan Pepić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia.
| |
Collapse
|
18
|
In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:621-634. [PMID: 31639085 DOI: 10.2478/acph-2019-0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/19/2023]
Abstract
Oil-in-water nanoemulsions (NEs) represent one of the formulation approaches to improve eye-related bio-availability of lipophilic drugs. The potential of cationic NEs is pronounced due to the electrostatic interaction of positively charged droplets with negatively charged mucins present in the tear film, providing prolonged formulation residence at the ocular surface. The aim of this study was to develop a cationic ophthalmic NE with cationic lipid stearylamine (SA) as a carrier of a positive charge. The addition of a nonionic surfactant provided the dual electro-steric stabilization of NEs and enabled tuning of SA concentration to achieve an optimal balance between its interaction with mucins and biocompatibility. Physicochemical characterization, stability profile, in vitro mucoadhesion study and biocompatibility study employing 3D HCE-T cell-based model of corneal epithelium pointed out the NE with 0.05 % (m/m) SA as the leading formulation. Minimizing SA content while retaining droplet/mucin interactions is of great importance for efficacy and safety of future ophthalmic drug products.
Collapse
|
19
|
Antolić K, Juretić M, Dukovski BJ, Hafner A, Lovrić J, Pepić I. Cryocornea - toward enhancing the capacity and throughput of ex vivo corneal model. Drug Dev Ind Pharm 2019; 45:1856-1861. [PMID: 31550918 DOI: 10.1080/03639045.2019.1672713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The objective of this study was to investigate the effects of the concentration of two intracellular (i.e. propylene glycol and glycerol) and four extracellular (i.e. dextran, hydroxypropyl methylcellulose, polyvinylpyrolidone, trehalose) cryoprotective agents as well as the effects of freeze-thawing procedures on the corneal cryoprotection.Significance: The corneal cryopreservation may possibly become the long-term storage technique of choice for collection of animal corneas suitable for ex vivo drug testing.Methods: The integrity of corneal barrier was evaluated by measurements of transepithelial electrical resistance.Results: Under the investigated experimental conditions the best result was obtained for slow freezing (2 h at -20 °C followed by 46 h at -70 °C) and rapid thawing (0.25 h at 34 °C) procedure where 20% (w/V) trehalose in Krebs Ringer buffer solution was used as extracellular cryoprotective agent.Conclusions: The selection of corneal freeze-thawing protocol as well as the optimal type and concentration of a cryoprotective agent allows the cryostorage of porcine corneal tissues with suitable TEER properties (cryocornea).
Collapse
Affiliation(s)
- Katarina Antolić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Marina Juretić
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|
20
|
Gu Y, Xu C, Wang Y, Zhou X, Fang L, Cao F. Multifunctional Nanocomposites Based on Liposomes and Layered Double Hydroxides Conjugated with Glycylsarcosine for Efficient Topical Drug Delivery to the Posterior Segment of the Eye. Mol Pharm 2019; 16:2845-2857. [DOI: 10.1021/acs.molpharmaceut.8b01136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan Gu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
- Parexel China Co., Ltd., No.488, Middle Yincheng Road, Pudong, Shanghai 200120, China
| | - Chen Xu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yanyan Wang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiangying Zhou
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
21
|
QobuR – A new in vitro human corneal epithelial model for preclinical drug screening. Eur J Pharm Biopharm 2019; 136:164-173. [DOI: 10.1016/j.ejpb.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022]
|
22
|
Pescina S, Ostacolo C, Gomez-Monterrey IM, Sala M, Bertamino A, Sonvico F, Padula C, Santi P, Bianchera A, Nicoli S. Cell penetrating peptides in ocular drug delivery: State of the art. J Control Release 2018; 284:84-102. [PMID: 29913221 DOI: 10.1016/j.jconrel.2018.06.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Despite the increasing number of effective therapeutics for eye diseases, their treatment is still challenging due to the presence of effective barriers protecting eye tissues. Cell Penetrating Peptides (CPPs), synthetic and natural short amino acid sequences able to cross cellular membrane thanks to a transduction domain, have been proposed as possible enhancing strategies for ophthalmic delivery. In this review, a general description of CPPs classes, design approaches and proposed cellular uptake mechanisms will be provided to the reader as an introduction to ocular CPPs application, together with an overview of the main problems related to ocular administration. The results obtained with CPPs for the treatment of anterior and posterior segment eye diseases will be then introduced, with a focus on non-invasive or minimally invasive administration, shifting from CPPs capability to obtain intracellular delivery to their ability to cross biological barriers. The problems related to in vitro, ex vivo and in vivo models used to investigate CPPs mediated ocular delivery will be also addressed together with potential ocular toxicity issues.
Collapse
Affiliation(s)
- S Pescina
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - C Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - I M Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - M Sala
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - A Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - F Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - C Padula
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - P Santi
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - A Bianchera
- BiopharmanetTEC, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - S Nicoli
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| |
Collapse
|
23
|
Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M. New Human Organotypic Corneal Tissue Model for Ophthalmic Drug Delivery Studies. ACTA ACUST UNITED AC 2018; 59:2880-2898. [DOI: 10.1167/iovs.18-23944] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yulia Kaluzhny
- MatTek Corporation, Ashland, Massachusetts, United States
| | | | - Thoa Truong
- MatTek Corporation, Ashland, Massachusetts, United States
| | | | - Patrick Hayden
- MatTek Corporation, Ashland, Massachusetts, United States
| | | |
Collapse
|
24
|
Krtalić I, Radošević S, Hafner A, Grassi M, Nenadić M, Cetina-Čižmek B, Filipović-Grčić J, Pepić I, Lovrić J. D-Optimal Design in the Development of Rheologically Improved In Situ Forming Ophthalmic Gel. J Pharm Sci 2018; 107:1562-1571. [DOI: 10.1016/j.xphs.2018.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
|
25
|
Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models. Eur J Pharm Sci 2018; 120:133-141. [PMID: 29702232 DOI: 10.1016/j.ejps.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/22/2018] [Accepted: 04/21/2018] [Indexed: 11/23/2022]
Abstract
The objective of this study was to systematically investigate the effects of surface active ophthalmic excipients on the corneal permeation of ophthalmic drugs using in vitro (HCE-T cell-based model) and ex vivo (freshly excised porcine cornea) models. The permeation of four ophthalmic drugs (i.e., timolol maleate, chloramphenicol, diclofenac sodium and dexamethasone) across in vitro and ex vivo corneal models was evaluated in the absence and presence of four commonly used surface active ophthalmic excipients (i.e., Polysorbate 80, Tyloxapol, Cremophor® EL and Pluronic® F68). The concentration and self-aggregation-dependent effects of surface active ophthalmic excipients on ophthalmic drug permeability were studied from the concentration region where only dissolved monomer molecules of surface active ophthalmic excipients exist, as well as the concentration region in which aggregates of variable size and dispersion are spontaneously formed. Neither the surface active ophthalmic excipients nor the ophthalmic drugs at all concentrations that were tested significantly affected the barrier properties of both corneal models, as assessed by transepithelial electrical resistance (TEER) monitoring during the permeability experiments. The lowest concentration of all investigated surface active ophthalmic excipients did not significantly affect the ophthalmic drug permeability across both of the corneal models that were used. For three ophthalmic drugs (i.e., chloramphenicol, diclofenac sodium and dexamethasone), depressed in vitro and ex vivo permeability were observed in the concentration range of either Polysorbate 80, Tyloxapol, Cremophor® EL or Pluronic® F68, at which self-aggregation is detected. The effect was the most pronounced for Cremophor® EL (1 and 2%, w/V) and was the least pronounced for Pluronic® F68 (1%, w/V). However, all surface active ophthalmic excipients over the entire concentration range that was tested did not significantly affect the in vitro and ex vivo permeability of timolol maleate, which is the most hydrophilic ophthalmic drug that was investigated. The results of the dynamic light scattering measurements point to the association of ophthalmic drugs with self-aggregates of surface active ophthalmic excipients as the potential mechanism of the observed permeability-depressing effect of surface active ophthalmic excipients. A strong and statistically significant correlation was observed between in vitro and ex vivo permeability of ophthalmic drugs in the presence of surface active ophthalmic excipients, which indicates that the observed permeability-altering effects of surface active ophthalmic excipients were comparable and were mediated by the same mechanism in both corneal models.
Collapse
|