1
|
Oday J, Hadi H, Hashim P, Richardson S, Iles A, Pamme N. Development and validation of spectrophotometric method and paper-based microfluidic devices for the quantitative determination of Amoxicillin in pure form and pharmaceutical formulations. Heliyon 2024; 10:e24968. [PMID: 38318013 PMCID: PMC10839972 DOI: 10.1016/j.heliyon.2024.e24968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
There is a growing need for easy-to-use, low cost and portable quantitative assays to determine active pharmaceutical ingredients in the pharmaceutical industry. Here, we developed a batch spectrophotometric method and a method employing a paper-based microfluidic device for the estimation of Amoxicillin (AMX) in pure solution and pharmaceutical preparations. The detection depends on the coupling reaction of Amoxicillin with diazotized sulfadimidine (DSDM) in an alkaline medium. The yellow azo dye reaction product was measured at λmax 425 nm and linearity was observed from 2 to 30 mg L-1 with a detection limit of 0.32 mg L-1 and a quantification limit of 1.2 mg L-1 was found. The reaction was then transferred onto the paper-based microfluidic device and a plateau change in color intensity was found above 10 mg L-1. Thus, the paper-based microfluidic device can be applied for the semi-quantitative determination of Amoxicillin in pure solution and commercial pharmaceutical products for rapid screening.
Collapse
Affiliation(s)
- Jwan Oday
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Hind Hadi
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Parween Hashim
- Department of Chemistry, College of Science, University of Duhok, Duhok, Iraq
| | - Samantha Richardson
- School of Natural Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
2
|
Ranbir, Kumar M, Singh G, Singh J, Kaur N, Singh N. Machine Learning-Based Analytical Systems: Food Forensics. ACS OMEGA 2022; 7:47518-47535. [PMID: 36591133 PMCID: PMC9798398 DOI: 10.1021/acsomega.2c05632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 02/06/2024]
Abstract
Despite a large amount of money being spent on both food analyses and control measures, various food-borne illnesses associated with pathogens, toxins, pesticides, adulterants, colorants, and other contaminants pose a serious threat to human health, and thus food safety draws considerable attention in the modern pace of the world. The presence of various biogenic amines in processed food have been frequently considered as the primary quality parameter in order to check food freshness and spoilage of protein-rich food. Various conventional detection methods for detecting hazardous analytes including microscopy, nucleic acid, and immunoassay-based techniques have been employed; however, recently, array-based sensing strategies are becoming popular for the development of a highly accurate and precise analytical method. Array-based sensing is majorly facilitated by the advancements in multivariate analytical techniques as well as machine learning-based approaches. These techniques allow one to solve the typical problem associated with the interpretation of the complex response patterns generated in array-based strategies. Consequently, the machine learning-based neural networks enable the fast, robust, and accurate detection of analytes using sensor arrays. Thus, for commercial applications, most of the focus has shifted toward the development of analytical methods based on electrical and chemical sensor arrays. Therefore, herein, we briefly highlight and review the recently reported array-based sensor systems supported by machine learning and multivariate analytics to monitor food safety and quality in the field of food forensics.
Collapse
Affiliation(s)
- Ranbir
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
| | - Manish Kumar
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
| | - Gagandeep Singh
- Department
of Biomedical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Jasvir Singh
- Department
of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Navneet Kaur
- Department
of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
- Department
of Biomedical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
3
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
4
|
Neupane A, Bastakoti M, Tamang S, Giri B. Review of drug recalls and quality of pharmaceutical products in Nepal. BMJ Open 2022; 12:e053479. [PMID: 35788073 PMCID: PMC9255392 DOI: 10.1136/bmjopen-2021-053479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To evaluate the pattern of substandard and falsified pharmaceutical products recall in Nepal. SETTING We analysed drug recall notices issued by the Department of Drug Administration (DDA), Nepal, and systematically reviewed peer-reviewed research articles during January 2010 to December 2020. PARTICIPANTS This study did not include human participants. However, data were collected from 72 drug recall notices issued by DDA and four research papers. RESULTS A total of 346 pharmaceutical products were recalled during the reported period. The number of recalled pharmaceutical products has increased significantly over the past decade in Nepal. The most frequently recalled drugs were antimicrobials followed by gastrointestinal medicines, vitamins and supplements and pain and palliative medicines among others. Number of imported recalled drugs were slightly higher (42.2%) than domestic recalled drugs (40.7%). Sixty-two percentage of recalled drugs were substandard, 11% were falsified and remaining 27% were not registered at the DDA. Similarly, higher number of modern drugs (62%) were recalled than traditional ones (35%). Hand sanitisers used to minimise COVID-19 transmission contributed significantly to the list of recalled pharmaceutical products in 2020. Most of these sanitisers contained significant amounts of methanol (as high as 75% v/v) instead of appropriate amount of ethyl or isopropyl alcohol. The peer-reviewed research papers reported issues with labelling, unregistered drugs and drugs failed in several laboratory testing. CONCLUSION Our analysis showed that number of recalls of substandard and falsified drugs are increasing in Nepal. Since the recall data in this paper did not include number of samples tested and location of samples collected, more studies to understand the prevalence of substandard and falsified drugs in Nepal is recommended.
Collapse
Affiliation(s)
- Astha Neupane
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Bagmati, Nepal
| | - Maheshwor Bastakoti
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Bagmati, Nepal
| | - Sabita Tamang
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Bagmati, Nepal
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Bagmati, Nepal
| |
Collapse
|
5
|
Bhattarai RK, Pudasaini S, Sah M, Neupane BB, Giri B. Handmade Paper as a Paper Analytical Device for Determining the Quality of an Antidiabetic Drug. ACS OMEGA 2022; 7:14074-14081. [PMID: 35559197 PMCID: PMC9089334 DOI: 10.1021/acsomega.2c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 05/14/2023]
Abstract
Paper analytical devices (PADs) are a class of low-cost, portable, and easy-to-use platform for several analytical tests in clinical diagnostics, environmental pollution monitoring, and food and drug safety screening. These devices are primarily made from cellulosic paper. Considering the importance of eco-friendly and local or distributed manufacturing of devices realized during the COVID-19 pandemic, we systematically studied the potential of handmade Nepali paper to be used in fabricating PADs in this work. We characterized five different handmade papers made from locally available plant fibers using an eco-friendly method and used them to fabricate PADs for determining the drug quality. The thickness, grammage, and apparent density of the paper samples ranged from 198.6 to 314.8 μm, 49.1 to 117.8 g/m2, and 0.23 to 0.43 g/cm3, respectively. The moisture content, water filtration, and wicking speed ranged from 5.8 to 7.1%, 35.7 to 156.7, and 0.062 to 0.124 mms-1, respectively. Furthermore, the water contact angle and porosity ranged from 76.6 to 112.1° and 79 to 83%, respectively. The best paper sample (P5) was chosen to fabricate PADs for the determination of metformin, an antidiabetic drug. The metformin assay on PADs followed a linear range from 0.0625 to 0.5 mg/mL. The assay had a limit of detection and limit of quantitation of 0.05 and 0.18 mg/mL, respectively. The average amount of metformin concentration in samples collected from local pharmacies (n = 20) was 465.6 ± 15.1 mg/tablet. When compared with the spectrophotometric method, PAD assay correctly predicted the concentration of 90% samples. The PAD assay on handmade paper may provide a low-cost and easy-to-use system for screening the quality of drugs and other point-of-need applications.
Collapse
Affiliation(s)
- Ram Kumar Bhattarai
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
- Kantipur
Valley College, Lalitpur 44700, Nepal
| | - Sanam Pudasaini
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
| | - Mukesh Sah
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
- Kantipur
Valley College, Lalitpur 44700, Nepal
| | | | - Basant Giri
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
| |
Collapse
|
6
|
Silva R, Ahamed A, Cheong YH, Zhao K, Ding R, Lisak G. Non-equilibrium potentiometric sensors integrated with metal modified paper-based microfluidic solution sampling substrates for determination of heavy metals in complex environmental samples. Anal Chim Acta 2022; 1197:339495. [DOI: 10.1016/j.aca.2022.339495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/04/2023]
|
7
|
Laliwala A, Svechkarev D, Sadykov MR, Endres J, Bayles KW, Mohs AM. Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array. Anal Chem 2022; 94:2615-2624. [PMID: 35073053 PMCID: PMC10091516 DOI: 10.1021/acs.analchem.1c05021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the leading cause of morbidity and mortality in the world, particularly due to a delay in treatment and misidentification of the bacterial species causing the infection. Therefore, rapid and accurate identification of these pathogens has been of prime importance. The conventional diagnostic techniques include microbiological, biochemical, and genetic analyses, which are time-consuming, require large sample volumes, expensive equipment, reagents, and trained personnel. In response, we have now developed a paper-based ratiometric fluorescent sensor array. Environment-sensitive fluorescent dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates fabricated using photolithography, upon interaction with bacterial cell envelopes, generate unique fluorescence response patterns. The stability and reproducibility of the sensor array response were thoroughly investigated, and the analysis procedure was refined for optimal performance. Using neural networks for response pattern analysis, the sensor was able to identify 16 bacterial species and recognize their Gram status with an accuracy rate greater than 90%. The paper-based sensor was stable for up to 6 months after fabrication and required 30 times lower dye and sample volumes as compared to the analogous solution-based sensor. Therefore, this approach opens avenues to a state-of-the-art diagnostic tool that can be potentially translated into clinical applications in low-resource environments.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Marat R. Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jennifer Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| |
Collapse
|
8
|
Sinha A, Basu M, Chandna P. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:109-158. [PMID: 35033281 DOI: 10.1016/bs.pmbts.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microfluidic industry has evolved through years with acquired scientific knowledge from different, and already developed industries. Consequently, a wide range of materials like silicon from the electronic industry to all the way, silicone, from the chemical engineering industry, has been spotted to solve similar challenges. Although a typical microfluidic chip, fabricated from glass or polymer substrates offers definite benefits, however, paper-based microfluidic analytical devices (μPADs) possess numerous special benefits for practical implementation at a lower price. Owing to these features, in recent years, paper microfluidics has drawn immense interest from researchers in industry and academia alike. These devices have wider applications with advantages like lower cost, speedy detection, user-easiness, biocompatibility, sensitivity, and specificity etc. when compared to other microfluidic devices. Therefore, these sensitive but affordable devices fit themselves into point-of-care (POC) testing with features in demand like natural disposability, situational flexibility, and the capability to store and analyze the target at the point of requirement. Gradually, advancements in fabrication technologies, assay development techniques, and improved packaging capabilities, have contributed significantly to the real-time identification and health investigation through paper microfluidics; however, the growth has not been limited to the biomedical field; industries like electronics, energy storage and many more have expanded substantially. Here, we represent an overall state of the paper-based microfluidic technology by covering the fundamentals, working principles, different fabrication procedures, applications for various needs and then to make things more practical, the real-life scenario and practical challenges involved in launching a device into the market have been revealed. To conclude, recent contribution of μPADs in the 2020 pandemic and potential future possibilities have been reviewed.
Collapse
|
9
|
Khanal B, Pokhrel P, Khanal B, Giri B. Machine-Learning-Assisted Analysis of Colorimetric Assays on Paper Analytical Devices. ACS OMEGA 2021; 6:33837-33845. [PMID: 34926930 PMCID: PMC8675014 DOI: 10.1021/acsomega.1c05086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Paper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary, resulting in less accurate results. Recently, machine-learning (ML)-assisted models have been used in image analysis. We evaluated a combination of four ML models-logistic regression, support vector machine (SVM), random forest, and artificial neural network (ANN)-as well as three image color spaces, RGB, HSV, and LAB, for their ability to accurately predict analyte concentrations. We used images of PADs taken at varying lighting conditions, with different cameras and users for food color and enzyme inhibition assays to create training and test datasets. The prediction accuracy was higher for food color than enzyme inhibition assays in most of the ML models and color space combinations. All models better predicted coarse-level classifications than fine-grained concentration classes. ML models using the sample color along with a reference color increased the models' ability to predict the result in which the reference color may have partially factored out the variation in ambient assay and imaging conditions. The best concentration class prediction accuracy obtained for food color was 0.966 when using the ANN model and LAB color space. The accuracy for enzyme inhibition assay was 0.908 when using the SVM model and LAB color space. Appropriate models and color space combinations can be useful to analyze large numbers of samples on PADs as a powerful low-cost quick field-testing tool.
Collapse
Affiliation(s)
- Bidur Khanal
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
- Nepal
Applied Mathematics and Informatics Institute for Research, Kathmandu 44600, Nepal
| | - Pravin Pokhrel
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
| | - Bishesh Khanal
- Nepal
Applied Mathematics and Informatics Institute for Research, Kathmandu 44600, Nepal
| | - Basant Giri
- Center
for Analytical Sciences, Kathmandu Institute
of Applied Sciences, Kathmandu 44600, Nepal
| |
Collapse
|
10
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules 2021; 26:molecules26216606. [PMID: 34771013 PMCID: PMC8588557 DOI: 10.3390/molecules26216606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal medicine has become popular in recent years as an alternative medicine. The problem arises when herbal medicines contain an undeclared synthetic drug that is illegally added, since it is a natural product that does not contain any chemical drugs due to the potential cause of harmful effects. Supervision of herbal medicines is important to ensure that these herbal medicines are still safe to use. Thus, developing a reliable analytical technique for the determination of adulterated drugs in herbal medicine is gaining interest. This review aims to provide a recent analytical method that has been used within the past 5 years (2016-2021) for the determination of chemical adulterants in herbal medicine.
Collapse
|
12
|
A Simple Paper-Based α-Amylase Separating System for Potential Application in Biological Sciences. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00022-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Pratiwi R, Noviana E, Fauziati R, Carrão DB, Gandhi FA, Majid MA, Saputri FA. A Review of Analytical Methods for Codeine Determination. Molecules 2021; 26:800. [PMID: 33557168 PMCID: PMC7913935 DOI: 10.3390/molecules26040800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Codeine is derived from morphine, an opioid analgesic, and has weaker analgesic and sedative effects than the parent molecule. This weak opioid is commonly used in combination with other drugs for over-the-counter cough relief medication. Due to the psychoactive properties of opioid drugs, the easily obtained codeine often becomes subject to misuse. Codeine misuse has emerged as a concerning public health issue due to its associated adverse effects such as headache, nausea, vomiting, and hemorrhage. Thus, it is very important to develop reliable analytical techniques to detect codeine for both quality control of pharmaceutical formulations and identifying drug misuse in the community. This review aims to provide critical outlooks on analytical methods applicable to the determination of codeine.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.A.G.); (M.A.M.); (F.A.S.)
| | - Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Rizky Fauziati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.A.G.); (M.A.M.); (F.A.S.)
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil;
| | - Firas Adinda Gandhi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.A.G.); (M.A.M.); (F.A.S.)
| | - Mutiara Aini Majid
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.A.G.); (M.A.M.); (F.A.S.)
| | - Febrina Amelia Saputri
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.A.G.); (M.A.M.); (F.A.S.)
| |
Collapse
|
14
|
Ding R, Cheong YH, Ahamed A, Lisak G. Heavy Metals Detection with Paper-Based Electrochemical Sensors. Anal Chem 2021; 93:1880-1888. [DOI: 10.1021/acs.analchem.0c04247] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ruiyu Ding
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| | - Yi Heng Cheong
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| | - Ashiq Ahamed
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku, Finland
| | - Grzegorz Lisak
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| |
Collapse
|
15
|
Mohamed AA, Ismail EM, Ali S. A highly sensitive colorimetric assessment of hexavalent chromium using a digital camera. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:657. [PMID: 32968831 DOI: 10.1007/s10661-020-08615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Simple, low-cost, and sensitive methods for the assessment of hexavalent chromium as an important environmental pollutant are highly desirable, especially under resource-limited settings. Therefore, herein we propose an original approach for the simple, low-cost, selective, and extremely sensitive assessment of Cr(VI) utilizing its catalysis of the micellar sensitized o-dianisidine (DA)-hydrogen peroxide reaction. The initial rate of the amended reaction is monitored by tracing the oxidation product, either by a digital camera video recording or spectrophotometrically at 440 nm, for 120 s from mixing the reactants. The optimized reaction conditions were 5 mmol L-1 DA, 0.6 mol L-1 H2O2, 2.0 v/v% Tween 20, and 10 mmol L-1 chloroacetate buffer (pH 4.5 ± 0.1), at 30 °C. The linear calibration graph extends to 90.0 ng mL-1 Cr(VI) with detection limits (3Sb) of 0.8 and 1.0 ng mL-1, for the video recording and spectrophotometric procedures, respectively. The amended method was successfully applied to the assessment of Cr(IV) in natural and polluted industrial wastewaters. The analytical data were in excellent statistical harmony with those of the standard ETAAS method. The proposed method is two orders of magnitude more sensitive than the diphenylcarbazide standard spectrophotometric method.Graphical abstract.
Collapse
Affiliation(s)
- Ashraf A Mohamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Ethar M Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Samah Ali
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah, Saudi Arabia
- The National Organization for Drug Control and Research, Al-Agouzah, Giza, Egypt
| |
Collapse
|
16
|
Suo S, Liu M, Gan Y. An LBM-PNM framework for immiscible flow: With applications to droplet spreading on porous surfaces. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Emerging applications of paper-based analytical devices for drug analysis: A review. Anal Chim Acta 2020; 1116:70-90. [DOI: 10.1016/j.aca.2020.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
|
18
|
Martins GV, Marques AC, Fortunato E, Sales MGF. Paper-based (bio)sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Fuyal M, Giri B. A Combined System of Paper Device and Portable Spectrometer for the Detection of Pesticide Residues. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Selection of appropriate protein assay method for a paper microfluidics platform. Pract Lab Med 2020; 21:e00166. [PMID: 32478161 PMCID: PMC7248653 DOI: 10.1016/j.plabm.2020.e00166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/05/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Background Paper-analytical devices (PADs) have gained popularity as a simple and low-cost alternative for determining a wide range of analytes including proteins. Even though several colorimetric PADs methods for protein estimation are reported in literature, they lack justification for the chosen method and parameters therein. Aim Major aim of this work was to thoroughly evaluate the most commonly used colorimetric protein assays and recommend the most appropriate method for PADs platform. Method We performed following six colorimetric protein assays on PADs: biuret, lowry, bicinchoninic acid, bradford, bromocresol green, and tetrabromophenol blue. We obtained assay signal by analyzing images of the PADs and then assessed analytical figures of merit. Result Precision, accuracy, LOD, and LOQ of PADs protein assay methods ranged from 1.2 to 6.4%, 73.3–102.4%, 0.3–3.8 mg/mL, and 1.2–12.8 mg/mL, respectively. Out of six methods, we determined bromocresol green and tetrabromophenol blue as the best methods for serum and urine samples, respectively based on their optimized parameters and analytical figures of merit. The total average serum and urine protein in human samples were found to be 94.6 ± 16.2 mg/mL and 2.1 ± 1.5 mg/mL, respectively using PADs methods. The PADs result on human samples moderately correlated with the results from spectrophotometric determination (r2 > 0.6). Conclusion Paper-based protein assays were easy to perform and were completed with thousand-fold less volume of samples/reagents without a spectrophotometer compared to conventional assay methods. After testing human samples, we found one protein assay method may not be appropriate for all types of samples. Thorough evaluation of colorimetric protein assays on paper-analytical device. Bromocresol green and tetrabromophenol blue methods were found to be best suited for serum and urine samples, respectively. The selected methods are comparable with spectrophotometric assay protocols for human serum and urine samples.
Collapse
|
21
|
Distance-based paper device using polydiacetylene liposome as a chromogenic substance for rapid and in-field analysis of quaternary ammonium compounds. Anal Bioanal Chem 2020; 412:3221-3230. [PMID: 32242258 DOI: 10.1007/s00216-020-02583-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
This work presents an affordable distance-based microfluidic paper-based device (μPAD), using polydiacetylene (PDA) liposome as a chromogenic substance with a smartphone-based photo editor, for rapid and in-field analysis of quaternary ammonium compounds (QACs) (e.g., didecyldimethylammonium chloride (DDAC), benzyldimethyltetradecyl ammonium chloride (BAC), and cetylpyridinium chloride (CPC)). In-field analysis of these compounds is important to ensure their antimicrobial activity and user safety since they are widely utilized as disinfectants in households and hospitals. The μPAD featured a thermometer-like shape consisting of a sample reservoir and a microchannel as the detection zone, which was pre-deposited with PDA liposome. The color change from blue to red appeared in the presence of QACs and the color bar lengths were proportional to the QAC concentrations. Reactions of QACs with the PDA required a specific pH range (from pH 4.0 to 10.0) and a readout time of 7 min. Analytical performance characteristics of the device were tested with DDAC, BAC, and CPC showing acceptable specificity, accuracy (96.1-109.4%), and precision (%RSDs ≤ 9.3%). Limits of detection and quantitation were in the ranges of 20 to 80 and 70 to 250 μM, respectively. Feasibility of the newly developed device was demonstrated for in-field analysis of QACs in fumigation solution providing comparable results with those obtained from a colorimetric assay (P > 0.05). The proposed device shows potentials for further applications of other analytes since it offers speed, simplicity, and affordability for in-field analysis, especially in remote areas where expertise, resources, and infrastructures are limited. Graphical abstract.
Collapse
|
22
|
Zhang H, Hua D, Huang C, Samal SK, Xiong R, Sauvage F, Braeckmans K, Remaut K, De Smedt SC. Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905486. [PMID: 32009266 DOI: 10.1002/adma.201905486] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Indexed: 05/28/2023]
Abstract
The globalization of drug trade leads to the expansion of pharmaceutical counterfeiting. The immense threat of low quality drugs to millions of patients is considered to be an under-addressed global health challenge. Analytical authentication technologies are the most effective methods to identify active pharmaceutical ingredients and impurities. However, most of these analytical testing techniques are expensive and need skilled personnel. To combat counterfeiting of drugs, the package of an increasing number of drugs is being protected through advanced package labeling technologies. Though, package labeling is only effective if the drugs are not repackaged. Therefore "in-drug labeling," instead of "drug package labeling," may become powerful tools to protect drugs. This review aims to overview how advanced micro- and nanomaterials might become interesting markers for the labeling of tablets and capsules. Clearly, how well such identifiers can be integrated into "solid drugs" without compromising drug safety and efficacy remains a challenge. Also, incorporation of tags has so far only been reported for the protection of solid drug dosage forms. No doubts that in-drug labeling technologies for "liquid drugs," like injectables which contain expensive peptides, monoclonal antibodies, vaccines, dermal fillers, could help to protect them from counterfeiting as well.
Collapse
Affiliation(s)
- Heyang Zhang
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Dawei Hua
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, 751023, Bhubaneswar, India
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
23
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
24
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2018. [DOI: 10.1002/celc.201800677] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Waldemir J. Paschoalino
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Sergio Kogikoski
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Juliana F. Giarola
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lory Cantelli
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Thais M. Rabelo
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Tatiana M. Pessanha
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| |
Collapse
|
26
|
Phadungcharoen N, Plianwong S, Srivichai C, Chanthananon N, Kaosal W, Pannil O, Opanasopit P, Ngawhirunpat T, Rojanarata T. Green, fast and cheap paper-based method for estimating equivalence ratio of cationic carriers to DNA in gene delivery formulations. Eur J Pharm Sci 2018; 115:204-211. [DOI: 10.1016/j.ejps.2018.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022]
|
27
|
Hamedpour V, Leardi R, Suzuki K, Citterio D. Fabrication of paper-based analytical devices optimized by central composite design. Analyst 2018; 143:2102-2108. [DOI: 10.1039/c8an00332g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described.
Collapse
Affiliation(s)
- Vahid Hamedpour
- Department of Applied Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | | | - Koji Suzuki
- Department of Applied Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Daniel Citterio
- Department of Applied Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|