1
|
Railic M, Vucen S, Crean A. Insights into preclinical evaluation of dissolvable microarray patches. Int J Pharm 2025; 673:125361. [PMID: 39971167 DOI: 10.1016/j.ijpharm.2025.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Drug-loaded dissolvable microarray patches (MAP) have gained significant attention due to their patient-friendly, economical, and environmentally beneficial attributes. Despite extensive research and advancements, only a limited number of MAP have progressed to clinical trials. While existing literature predominantly covers the initial stages of MAP development (e.g., manufacturing techniques, materials, design), there remains a notable gap in examining an experimental design during preclinical evaluation phase undertaken to inform progression to clinical studies. To address this gap, we present a comprehensive review of the experimental factors influencing MAP performance in preclinical research. Our in-depth analysis of the skin environment and its implications to in vitro MAP performance revealed that skin insertion methodology, media used for release and permeation testing, skin models for permeation studies, and skin metabolism are key factors that need to be considered. We critically assess current research trends and propose potential optimisations to enhance efficacy and biorelevance of in vitro methods for MAP. Additionally, we review factors influencing in vivo and in silico performance, underscoring the promising potential of in silico approaches. This article aims to provide insights that will facilitate the development and standardisation of reliable methodologies in preclinical studies of drug-loaded MAP, ultimately advancing their clinical translation.
Collapse
Affiliation(s)
- Maja Railic
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| | - Sonja Vucen
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| | - Abina Crean
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
2
|
Guan Z, Baiocco D, Barros A, Zhang Z. Microscale Delivery Systems for Hydrophilic Active Ingredients in Functional Consumer Goods. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70009. [PMID: 40223375 PMCID: PMC11994985 DOI: 10.1002/wnan.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Hydrophilic active ingredients play a crucial role in formulated consumer products, encompassing antioxidants, flavoring substances, and pharmaceuticals. Yet, their susceptibility to environmental factors, such as light, pH, temperature, and humidity, poses challenges to their stability and sustained release. Microencapsulation offers a promising avenue to address these challenges, facilitating stabilization, targeted delivery, and enhanced efficacy of hydrophilic actives. However, despite significant advancements in the field, microencapsulation of hydrophilic actives remains at the forefront of innovation. This is primarily due to the intrinsic characteristics of hydrophilic actives, including small molecular weight and thus high permeability through many microcarriers (e.g., shells), which often necessitate complex and costly technologies to be developed. Moreover, in light of escalating regulatory frameworks, the pursuit of biodegradable and other compliant materials suitable for the entrapment of hydrophilic ingredients is gaining momentum. These advancements aim to provide alternatives to currently used non-degradable synthetic polymer materials. Research is currently pushing towards meeting these regulatory constraints via cutting-edge technologies to engineer novel microscale delivery systems for hydrophilic active ingredients, including microcapsules, microspheres, microneedles, and micropatches. Although still in its infancy, this approach holds true potential for revolutionizing the future of formulated consumer goods.
Collapse
Affiliation(s)
- Zhirui Guan
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Daniele Baiocco
- Healthcare Technology Institute, School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Andre Barros
- Procter & Gamble, Brussels Innovation CentreStrombeek‐BeverBelgium
| | - Zhibing Zhang
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
4
|
Liu M, Yang H, Wang Y, Fu W, Dong C, Ye A, Zou Y, Sun S, Han D, Zhang H, Qiu Y, Xu L. Preparation of combined colchicine with loxoprofen sodium loaded in dissolvable microneedles and its anti-gouty arthritis effect. J Drug Deliv Sci Technol 2025; 104:106471. [DOI: 10.1016/j.jddst.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Le Z, Ramos MC, Shou Y, Li RR, Cheng HS, Jang CJ, Liu L, Xue C, Li X, Liu H, Lim CT, Tan NS, White AD, Charles CJ, Chen Y, Liu Z, Tay A. Bioactive sucralfate-based microneedles promote wound healing through reprogramming macrophages and protecting endogenous growth factors. Biomaterials 2024; 311:122700. [PMID: 38996671 DOI: 10.1016/j.biomaterials.2024.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Impaired wound healing due to insufficient cell proliferation and angiogenesis is a significant physical and psychological burden to patients worldwide. Therapeutic delivery of exogenous growth factors (GFs) at high doses for wound repair is non-ideal as GFs have poor stability in proteolytic wound environments. Here, we present a two-stage strategy using bioactive sucralfate-based microneedle (SUC-MN) for delivering interleukin-4 (IL-4) to accelerate wound healing. In the first stage, SUC-MN synergistically enhanced the effect of IL-4 through more potent reprogramming of pro-regenerative M2-like macrophages via the JAK-STAT pathway to increase endogenous GF production. In the second stage, sucralfate binds to GFs and sterically disfavors protease degradation to increase bioavailability of GFs. The IL-4/SUC-MN technology accelerated wound healing by 56.6 % and 46.5 % in diabetic mice wounds and porcine wounds compared to their respective untreated controls. Overall, our findings highlight the innovative use of molecular simulations to identify bioactive ingredients and their incorporation into microneedles for promoting wound healing through multiple synergistic mechanisms.
Collapse
Affiliation(s)
- Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Mayk Caldas Ramos
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Renee R Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Clarisse Jm Jang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Ling Liu
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Christopher John Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
6
|
Wang B, Liao L, Liang H, Chen J, Qiu Y. Preparation and In Vitro/In Vivo Characterization of Mixed-Micelles-Loaded Dissolving Microneedles for Sustained Release of Indomethacin. Pharmaceutics 2024; 16:1505. [PMID: 39771485 PMCID: PMC11728531 DOI: 10.3390/pharmaceutics16121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery. Methods: Indomethacin-loaded mixed micelles (IDM-MMs) were prepared from Soluplus® and Poloxamer F127 by means of a thin-film hydration method. The MMs-loaded DMNs were fabricated using a two-step molding method and evaluated for storage stability, insertion ability, in vitro release, in vitro transdermal penetration, and in vivo PK/PD studies. Results: The obtained MMs were stable at 4 °C and 30 °C for 60 days. The in vitro IDM transdermal penetration was remarkably improved by the MMs-loaded DMNs compared to a commercial patch. A pharmacokinetic study demonstrated that the MMs-loaded DMNs had a relative bioavailability of 4.1 in comparison with the commercial patch. Furthermore, the MMs-loaded DMNs showed a significantly shorter lag time than the commercial patch, as well as a more stable plasma concentration than the DMNs without MMs. The therapeutic efficacy of the IDM DMNs was examined in Complete Freund's Adjuvant-induced arthritis mice. The IDM DMN treatment effectively reduced arthritis severity, resulting in decreased paw swelling, arthritis index, spleen hyperplasia, and serum IL-1β and TNF-α levels. Conclusions: Our findings demonstrated that the novel MMs-loaded DMNs were an effective strategy for sustained IDM release, providing an alternate route of anti-inflammatory drug delivery.
Collapse
Affiliation(s)
- Baojie Wang
- The Third People’s Hospital of Longgang District, Shenzhen 518112, China;
| | - Langkun Liao
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Huihui Liang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Yuqin Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
8
|
Ramadon D, Karn PR, Anjani QK, Kim MH, Cho DY, Hwang H, Kim DH, Kim DH, Kim G, Lee K, Eum JH, Im JY, Aileen V, Hamda OT, Donnelly RF. Development of ropivacaine hydrochloride-loaded dissolving microneedles as a local anesthetic agent: A proof-of-concept. Int J Pharm 2024; 660:124347. [PMID: 38885777 DOI: 10.1016/j.ijpharm.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 μm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.
Collapse
Affiliation(s)
- Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| | - Pankaj Ranjan Karn
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Youl Cho
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Hana Hwang
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Da Hye Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Dong Hwan Kim
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Gwanyoung Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Lee
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Jae Hong Eum
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Yeon Im
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Vania Aileen
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Okto Tri Hamda
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
9
|
Ando D, Ozawa A, Sakaue M, Yamamoto E, Miyazaki T, Sato Y, Koide T, Izutsu KI. Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson's Disease. Pharm Res 2024; 41:153-163. [PMID: 37923948 DOI: 10.1007/s11095-023-03621-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE We fabricated and characterized polyvinyl alcohol (PVA)-based dissolving microneedles (MNs) for transdermal drug delivery of apomorphine hydrochloride (APO), which is used in treating the wearing-off phenomenon observed in Parkinson's disease. METHODS We fabricated MN arrays with 11 × 11 needles of four different lengths (300, 600, 900, and 1200 μm) by micromolding. The APO-loaded dissolving MNs were characterized in terms of their physicochemical and functional properties. We also compared the pharmacokinetic parameters after drug administration using MNs with those after subcutaneous injection by analyzing the blood concentration of APO in rats. RESULTS PVA-based dissolving MNs longer than 600 μm could effectively puncture the stratum corneum of the rat skin with penetrability of approximately one-third of the needle length. Although APO is known to have chemical stability issues in aqueous solutions, the drug content in APO-loaded MNs was retained at 25°C for 12 weeks. The concentration of APO after the administration of APO-loaded 600-μm MNs that dissolved completely in skin within 60 min was 81%. The absorption of 200-μg APO delivered by MNs showed a Tmax of 20 min, Cmax of 76 ng/mL, and AUC0-120 min of 2,829 ng・min/mL, compared with a Tmax of 5 min, Cmax of 126 ng/mL, and AUC0-120 min of 3,224 ng・min/mL for subcutaneous injection. The bioavailability in terms of AUC0-120 min of APO delivered by MNs was 88%. CONCLUSION APO-loaded dissolving MNs can deliver APO via skin into the systemic circulation with rapid absorption and high bioavailability.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Aisa Ozawa
- Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| |
Collapse
|
10
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
11
|
Liao S, Qiu G, Hu Y, Guo B, Qiu Y. Separable and Inseparable Silk Fibroin Microneedles for the Transdermal Delivery of Colchicine: Development, Characterization, and Comparisons. AAPS PharmSciTech 2023; 25:3. [PMID: 38114734 DOI: 10.1208/s12249-023-02716-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Colchicine is the first-line option for both the treatment and prophylaxis of gout flares. However, due to potentially severe side effects, the clinical use of colchicine is limited. A well-tolerated and safe delivery system for colchicine is widely desired. For this purpose, colchicine-loaded inseparable microneedles were fabricated using silk fibroin. Additionally, separable microneedles made of silk fibroin as the needle tips and PVP K30 as the base material were developed. Both types of microneedles were evaluated for their mechanical strength, swelling and dissolution characteristics, insertion abilities, degradation properties, in vitro penetration, skin irritation, and in vivo anti-gout effects. The results demonstrated that separable microneedles had greater mechanical strength and insertion ability. Moreover, the separable microneedles separated quickly and caused little skin irritation. In the pharmacodynamic test, mice with acute gouty arthritis responded significantly to treatment with separable microneedles. In conclusion, the separable silk fibroin-based microneedles provide a promising route for colchicine delivery.
Collapse
Affiliation(s)
- Shiji Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guirong Qiu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yanping Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bohong Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuqin Qiu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
12
|
Su Y, Andrabi SM, Shahriar SMS, Wong SL, Wang G, Xie J. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms. J Control Release 2023; 356:131-141. [PMID: 36858263 PMCID: PMC10073311 DOI: 10.1016/j.jconrel.2023.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Biofilms pose a great challenge for wound management. Herein, this study describes a near-infrared (NIR) light-responsive microneedle patch for on-demand release of antimicrobial peptide for treatment of wound biofilms. IR780 iodide as a photothermal conversion agent and molecularly engineered peptide W379 as an antimicrobial agent are loaded in dissolvable poly(vinylpyrrolidone) (PVP) microneedle patches followed by coating with a phase change material 1-tetradecanol (TD). After placing in an aqueous solution or biofilm containing wounds ex vivo and in vivo, upon exposure to NIR light, the incorporated IR780 induces light-to-heat conversion, causing the melting of TD. This leads to the dissolution of PVP microneedles, enabling the release of loaded W379 peptide from the microneedles into surrounding regions (e.g., solution, biofilm, wound bed). Compared with traditional microneedle patches, NIR light responsive microneedle patches can program the release of antimicrobial peptide and show high antibacterial efficacy in vitro. Meanwhile, this work indicates that NIR light responsive TD-coated, W379-loaded PVP microneedle patches show excellent antibiofilm activities ex vivo and in vivo. Additionally, this microneedle system could be a promising platform for delivering other antimicrobial agents.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
13
|
Ben David N, Richtman Y, Gross A, Ibrahim R, Nyska A, Ramot Y, Mizrahi B. Design and Evaluation of Dissolvable Microneedles for Treating Atopic Dermatitis. Pharmaceutics 2023; 15:pharmaceutics15041109. [PMID: 37111595 PMCID: PMC10145410 DOI: 10.3390/pharmaceutics15041109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused predominantly by immune dysregulation. The global impact of AD continues to increase, making it not only a significant public health issue but also a risk factor for progression into other allergic phenotype disorders. Treatment of moderate-to-severe symptomatic AD involves general skin care, restoration of the skin barrier function, and local anti-inflammatory drug combinations, and may also require systemic therapy, which is often associated with severe adverse effects and is occasionally unsuitable for long-term use. The main objective of this study was to develop a new delivery system for AD treatment based on dissolvable microneedles containing dexamethasone incorporated in a dissolvable polyvinyl alcohol/polyvinylpyrrolidone matrix. SEM imaging of the microneedles showed well-structured arrays comprising pyramidal needles, fast drug release in vitro in Franz diffusion cells, an appropriate mechanical strength recorded with a texture analyzer, and low cytotoxicity. Significant clinical improvements, including in the dermatitis score, spleen weights, and clinical scores, were observed in an AD in vivo model using BALB/c nude mice. Taken together, our results support the hypothesis that microneedle devices loaded with dexamethasone have great potential as a treatment for AD and possibly for other skin conditions as well.
Collapse
|
14
|
Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers (Basel) 2022; 14:polym14173541. [PMID: 36080616 PMCID: PMC9460443 DOI: 10.3390/polym14173541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6–3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6–3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6–3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.
Collapse
|
15
|
Sabbagh F, Kim BS. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin Drug Deliv 2022; 19:1099-1113. [DOI: 10.1080/17425247.2022.2119220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
16
|
Chen A, Luo Y, Xu J, Guan X, He H, Xuan X, Wu J. Latest on biomaterial-based therapies for topical treatment of psoriasis. J Mater Chem B 2022; 10:7397-7417. [PMID: 35770701 DOI: 10.1039/d2tb00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueran Guan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jiang Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Nagra U, Barkat K, Ashraf MU, Shabbir M. Feasibility of Enhancing Skin Permeability of Acyclovir through Sterile Topical Lyophilized Wafer on Self-Dissolving Microneedle-Treated Skin. Dose Response 2022; 20:15593258221097594. [PMID: 35602585 PMCID: PMC9122490 DOI: 10.1177/15593258221097594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Acyclovir is an antiviral drug that is frequently prescribed for the herpes
virus. However, the drug requires frequent dosing due to limited bioavailability
(10–26.7%). The rationale of the present study was to develop a self-dissolving
microneedle system for local and systemic delivery of acyclovir using a topical
lyophilized wafer on microneedle-treated skin to provide the drug at the site of
infection. The microneedles prepared with hydroxypropyl methylcellulose (HPMC)
(8% w/w) or HPMC (8% w/w)-polyvinyl pyrrolidone (PVP) (30% w/w) penetrated
excised rat skin, showing sufficient mechanical strength and rapid polymer
dissolution. The topical wafer was prepared with acyclovir (40% w/w; equivalent
to 200 mg of drug), gelatin (10% w/w), mannitol (5% w/w), and sodium chloride
(5% w/w). The uniform distribution of acyclovir within the wafer in an amorphous
form was confirmed by differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA). No polymer–drug interaction was evident in the
lyophilized wafer as per Fourier transform infrared spectroscopy (FTIR)
analysis. The wafer showed a sufficiently porous structure for rapid hydration
as per scanning electron microscopy (SEM) analysis. During
ex-vivo analysis, the skin was pre-treated with a
self-dissolving microneedle array for 5 minutes, and the wafer was placed on
this microporated-skin. Topical wafer provided ∼7–11 times higher skin
concentration than the ID99 reported with a lower lag-time. Based on
in-vivo testing, ∼2.58 µg/ml of Cmax was achieved in rabbit
plasma during 24 hours’ study. Our findings suggest that the self-dissolving
microneedle-assisted topical wafer, proposed for the first time, would be
efficacious against the infection residing in the skin layer and for systemic
therapy.
Collapse
Affiliation(s)
- Uzair Nagra
- Department of Pharmacy, The University of Lahore - New Campus, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
18
|
Antonara L, Dallas PP, Rekkas DM. A novel 3D printing enabled method for fast and reliable construction of polymeric microneedles using experimental design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
|
20
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
21
|
Men Z, Lu X, He T, Wu M, Su T, Shen T. Microneedle patch-assisted transdermal administration of recombinant hirudin for the treatment of thrombotic diseases. Int J Pharm 2022; 612:121332. [PMID: 34902453 DOI: 10.1016/j.ijpharm.2021.121332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The painless microneedle patch (MNP), widely explored for transdermal drug delivery of macromolecules, can overcome the limitations of traditional administrations of protein and polypeptide anticoagulant drugs. We constructed a recombinant hirudin-loaded microneedle patch, suitable for patients with thrombotic diseases requiring long-term preventive medication. The recombinant hirudin-loaded dissoluble microneedle patch (RHDMNP) was created using a mold casting technique and polyvinylpyrrolidone and polyvinyl alcohol were used as the matrix material with a 1:1.2 ratio. We prepared bilayer RHDMNPs with pyramidal appearance and 0.37 N/needle strength. The intradermal dissolution height of the microneedle reached approximately 78.67% of the total height, and 68.12% of the drug was delivered into the skin. The 12-hour cumulative permeation of the MNP was 21.69 ± 3.90 μg/cm2. The MNP showed a Tmax of 1.5 h, Cmax of 144 ± 71 ng/mL, and area under curve (AUC) of 495 ± 66 ng/mL·min compared to Tmax of 0.5 h, Cmax of 249 ± 89 ng/mL, and AUC of 944 ± 65 ng/mL·min for the subcutaneous injection group. Both in vivo and in vitro experiments showed that the RHDMNP exerted effective anticoagulant effects, prevented the incidence of acute pulmonary embolism, and revealed the potential for venous thrombosis prevention.
Collapse
Affiliation(s)
- Zening Men
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaotong Lu
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Ting He
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengfang Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Tong Su
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Teng Shen
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Prabhu A, Jose J, Kumar L, Salwa S, Vijay Kumar M, Nabavi SM. Transdermal Delivery of Curcumin-Loaded Solid Lipid Nanoparticles as Microneedle Patch: an In Vitro and In Vivo Study. AAPS PharmSciTech 2022; 23:49. [PMID: 34988698 DOI: 10.1208/s12249-021-02186-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Curcumin is well known for its neuroprotective effect, and also able to alleviate Parkinsonian features. Clinical application of curcumin is limited due to its low bioavailability. Hence, we hypothesized that the microneedles (MN) containing drug-loaded solid lipid nanoparticles (SLNs) may be able to improve its bioavailability and efficacy. The SLNs were prepared with microemulsion technique using glyceryl monostearate as a lipid and tween 80 as a stabilizer. The particle size, polydispersity index, zeta potential, and entrapment efficiency of prepared SLNs were determined. The optimized formulation was incorporated into microneedle arrays using micromolding technique and fabricated microneedle patch were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, optical microscopy, ex vivo permeation studies, histology studies, and fluorescent microscopy. The fabricated microneedle patch was also evaluated for neuroprotective activity and skin irritation potential. Fourier transform infrared spectroscopy studies of SLNs and microneedles confirmed the chemical compatibility of excipients with curcumin. The developed microneedles were also found to be non-irritant with decreased degree of bradykinesia, high motor coordination, and balance ability. The study provided a theoretical basis for the use of novel microneedle containing curcumin-loaded solid lipid nanoparticles as a useful tool for the treatment of Parkinson's disease.
Collapse
|
23
|
|
24
|
Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers (Basel) 2021; 13:polym13152405. [PMID: 34372008 PMCID: PMC8348894 DOI: 10.3390/polym13152405] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.
Collapse
|
25
|
He T, Luo Y, Zhang Q, Men Z, Su T, Fan L, Chen H, Shen T. Hyalase-Mediated Cascade Degradation of a Matrix Barrier and Immune Cell Penetration by a Photothermal Microneedle for Efficient Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26790-26799. [PMID: 34061496 DOI: 10.1021/acsami.1c06725] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For melanoma with high lethality and metastasis rate, traditional therapy has limited effects; local photothermal therapy (PTT) synergetic with immune therapy for cancer treatment can perhaps improve the situation. However, because of the natural existence of the tumor matrix barrier, the penetration depth of drugs and immune cells often dampens the efficacy of cancer treatment. Herein, we report an innovative synergetic PTT and immune therapy through dissolving microneedles for the codelivery of the hyaluronidase-modified semiconductor polymer nanoparticles containing poly(cyclopentadithiophene-alt-benzothiadiazole) and immune adjuvant polyinosinic-polycytidylic acid (PIC). Benefiting from the dissolution of an extracellular matrix of hyaluronidase, the semiconductor polymer nanoparticles and PIC penetrate the tumor deeply, under synergetic therapy with PTT, activating the immune cells and enhancing the T-cell immune response for inhibition of tumor growth and metastasis. This study provides a promising platform for effective melanoma treatment and a novel strategy to overcome the stromal barrier.
Collapse
Affiliation(s)
- Ting He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Yu Luo
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, P.R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China
| | - Zening Men
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Tong Su
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Hangrong Chen
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Teng Shen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| |
Collapse
|
26
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
27
|
Oleksa V, Bernátová I, Patsula V, Líšková S, Bališ P, Radošinská J, Mičurová A, Kluknavský M, Jasenovec T, Radošinská D, Macková H, Horák D. Poly(ethylene glycol)-Alendronate-Coated Magnetite Nanoparticles Do Not Alter Cardiovascular Functions and Red Blood Cells' Properties in Hypertensive Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1238. [PMID: 34067225 PMCID: PMC8151198 DOI: 10.3390/nano11051238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol) terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles, designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration (1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition, Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure regulation, vascular function, and RBCs in hypertensive rats.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Iveta Bernátová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Silvia Líšková
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Peter Bališ
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Andrea Mičurová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Michal Kluknavský
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Tomáš Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
| | - Dominika Radošinská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Hana Macková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| |
Collapse
|
28
|
Lim SH, Kathuria H, Amir MHB, Zhang X, Duong HT, Ho PCL, Kang L. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release 2021; 329:907-918. [DOI: 10.1016/j.jconrel.2020.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
|
29
|
Di Natale C, De Rosa D, Profeta M, Jamaledin R, Attanasio A, Lagreca E, Scognamiglio PL, Netti PA, Vecchione R. Design of biodegradable bi-compartmental microneedles for the stabilization and the controlled release of the labile molecule collagenase for skin healthcare. J Mater Chem B 2021; 9:392-403. [DOI: 10.1039/d0tb02279a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymeric microneedles (MNs) have emerged as a novel class of drug delivery system thanks to their ability in penetrating the skin with no pain, encapsulate active proteins and in particular, proposed bicompartimental MNs can tune protein release.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
- Interdisciplinary Research Center of Biomaterials
| | - Domenico De Rosa
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| | - Martina Profeta
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| | - Alessandro Attanasio
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| | - Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
- Interdisciplinary Research Center of Biomaterials
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB
- Istituto Italiano di Tecnologia
- Napoli 80125
- Italy
| |
Collapse
|
30
|
|
31
|
Yan Q, Wang W, Weng J, Zhang Z, Yin L, Yang Q, Guo F, Wang X, Chen F, Yang G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer's disease. Drug Deliv 2020; 27:1147-1155. [PMID: 32729341 PMCID: PMC7470133 DOI: 10.1080/10717544.2020.1797240] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
Increasingly attention has been paid to the transdermal drug delivery systems with microneedles owing to their excellent compliance, high efficiency, and controllable drug release, therefore, become promising alternative with tremendous advantages for delivering specific drugs such as huperzine A (Hup A) for treatment of Alzheimer's disease (AD) yet with low oral bioavailability. The purpose of the present study is to design, prepare, and evaluate a dissolving microneedle patch (DMNP) as a transdermal delivery system for the Hup A, investigating its in vitro drug release profiles and in vivo pharmacokinetics as well as pharmacodynamics treating of AD. Skin penetration experiments and intradermal dissolution tests showed that the blank DMNP could successfully penetrate the skin with an adequate depth and could be quickly dissolved within 5 min. In vitro transdermal release tests exhibited that more than 80% of the Hup A was accumulatively permeated from DMNP through the skin within three days, indicating a sustained release profile. In vivo pharmacokinetic analysis demonstrated that the DMNP group resulted in longer T max (twofold), longer t 1/2 (fivefold), lower C max (3:4), and larger AUC(0-∞) (twofold), compared with the oral group at the same dose of Hup A. Pharmacodynamic research showed a significant improvement in cognitive function in AD rats treated with DMNP-Hup A and Oral-Hup A, as compared to the model group without treatment. Those results demonstrated that this predesigned DMNP is a promising alternative to deliver Hup A transdermally for the treatment of AD.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weiwei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhenghan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lina Yin
- Zhejiang Academy of Medical Sciences, Institute of Materia Medica, Hangzhou, China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Fangyuan Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xingang Wang
- Department of Burns, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fan Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Life Sciences School of Hubei University, Wuhan, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
32
|
Franco MKKD, Sepulveda AF, Vigato AA, Oshiro A, Machado IP, Kent B, Clemens D, Yokaichiya F, Araujo DR. Supramolecular Structure of Temperature‐Dependent Polymeric Hydrogels Modulated by Drug Incorporation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Anderson F. Sepulveda
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Aryane A. Vigato
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Alisson Oshiro
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
| | - Ian Pompermayer Machado
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo SP Brazil
| | - Ben Kent
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
- School of Chemistry University of New South Wales. Kensington Australia
| | - Daniel Clemens
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Fabiano Yokaichiya
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Daniele Ribeiro Araujo
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| |
Collapse
|
33
|
Sabri AH, Cater Z, Gurnani P, Ogilvie J, Segal J, Scurr DJ, Marlow M. Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. Int J Pharm 2020; 589:119808. [DOI: 10.1016/j.ijpharm.2020.119808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
|
34
|
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 2020; 156:20-39. [DOI: 10.1016/j.ejpb.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
|
35
|
Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur J Pharm Biopharm 2020; 157:66-73. [PMID: 33059004 DOI: 10.1016/j.ejpb.2020.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
In order to increase the utilization rate of drug carried by microneedles and reduce waste, a two-step casting method was proposed to fabricate tip-loaded dissolving microneedles in this paper. The tip-loaded dissolving microneedles, also named layered microneedles, was consisted of two layers. The tip layer of the microneedles carried model drug, while the backing layer was fabricated with pure dissolving material. Polyvinyl alcohol, polyvinylpyrrolidone and hyaluronic acid were used as the base materials to fabricate the dissolving layers of the microneedle patches. Rhodamine B was chosen as the model drug to show the layered structure of tip-loaded microneedles. The material formulation and fabricating conditions of the tip-loaded dissolving microneedles and their transdermal insulin delivery efficiency were systematically studied. Nanoindentation testing showed that the tips of all three kinds of dissolving microneedles can bear the maximum loading of 50 mN with no damages, indicated sufficient mechanical strength for smooth skin puncturing as the minimum pressure required was 10 mN only. Moreover, our fabricated tip-loaded dissolving microneedles can greatly reduce the drug waste cause by unused backing layer in normal microneedles and realize a 30% enhancement of drug delivery efficiency after puncture treatment.
Collapse
|
36
|
Calcutt JJ, Roberts MS, Anissimov YG. Modeling drug transport within the viable skin - a review. Expert Opin Drug Metab Toxicol 2020; 17:105-119. [PMID: 33017199 DOI: 10.1080/17425255.2020.1832081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In the past, mathematical modeling of the transport of transdermal drugs has been primarily focused on the stratum corneum. However, the development of pharmaceutical technologies, such as chemical enhancers, iontophoresis, and microneedles, has led to two outcomes; an increase in permeability in the stratum corneum or the ability to negate the layer entirely. As a result, these outcomes have made the transport of a solute in the viable skin far more critical when studying transdermal drug delivery. AREAS COVERED The review will explicitly show the various attempts to model drug transport within the viable skin. Furthermore, a brief review will be conducted on the different models that explain stratum corneum transport, microneedle dynamics and estimation of the diffusion coefficient. EXPERT OPINION Future development of mathematical models requires the focus to be changed from traditional diffusion-based tissue models to more sophisticated three-dimensional models that incorporate the physiology of the skin.
Collapse
Affiliation(s)
- Joshua J Calcutt
- School of Environment and Science, Griffith University , Gold Coast, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute , Brisbane, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Basil Hetzel Institute for Translational Medical Research, the Queen Elizabeth Hospital , Adelaide, Australia
| | - Yuri G Anissimov
- School of Environment and Science, Griffith University , Gold Coast, Australia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University , Moscow, Russia
| |
Collapse
|
37
|
Kathuria H, Lim D, Cai J, Chung BG, Kang L. Microneedles with Tunable Dissolution Rate. ACS Biomater Sci Eng 2020; 6:5061-5068. [DOI: 10.1021/acsbiomaterials.0c00759] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Dennis Lim
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Junyu Cai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
38
|
Lv X, Li S. Graphene Oxide-Crospolyvinylpyrrolidone Hybrid Microspheres for the Efficient Adsorption of 2,4,6-Trichlorophenol. ACS OMEGA 2020; 5:18862-18871. [PMID: 32775888 PMCID: PMC7408203 DOI: 10.1021/acsomega.0c02028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Microspheres of the graphene oxide and crospolyvinylpyrrolidone composite (GO-PVPP) were prepared via suspension polymerization and investigated for the adsorption of 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. The microspheres were thoroughly characterized using scanning electron microscopy, infrared spectroscopy, N2 physisorption, elemental analysis, X-ray diffraction, and thermogravimetric analysis. The GO-PVPP microspheres comprised GO sheets on the surface and demonstrated good thermal stability, good swelling rate, and excellent adsorption capacity of 2,4,6-TCP (up to 466.77 mg/g). The adsorptions were determined as a function of pH, temperature, adsorbent loading, adsorption time, and initial content of 2,4,6-TCP in the solutions. The sorption kinetics was satisfactorily modeled using the pseudo-second-order rate equation, and the sorption equilibrium can be described using the Freundlich model. The 2,4,6-TCP adsorption by GO-PVPP was shown to be endothermic and spontaneous. The reusability of GO-PVPP was also demonstrated by the adsorption and desorption cycles.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Chemical and Biochemical
Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sifang Li
- Department of Chemical and Biochemical
Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
39
|
Experimental and theoretical studies of drug-polymer interactions to control the drug distributions in dissolving microneedles. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Ronnander P, Simon L, Koch A. Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur J Pharm Biopharm 2020; 146:32-40. [DOI: 10.1016/j.ejpb.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
41
|
Rabiei M, Kashanian S, Samavati SS, Jamasb S, McInnes SJP. Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 2019; 28:356-367. [DOI: 10.1080/1061186x.2019.1693579] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Morteza Rabiei
- Department of Nanobiotechnology, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | - Shahriar Jamasb
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Steven J. P. McInnes
- School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia
| |
Collapse
|
42
|
Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z. Transdermal Microneedles-A Materials Perspective. AAPS PharmSciTech 2019; 21:12. [PMID: 31807980 DOI: 10.1208/s12249-019-1560-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Transdermal drug delivery is an emerging field in the pharmaceutical remit compared with conventional methods (oral and parenteral). Microneedle (MN)-based devices have gained significant interest as a strategy to overcome the skin's formidable barrier: the stratum corneum. This approach provides a less invasive, more efficient, patient friendly method of drug delivery with the ability to incorporate various therapeutic agents including macromolecules (proteins and peptides), anti-cancer agents and other hydrophilic and hydrophobic compounds. This short review attempts to assess the various materials involved in the fabrication of MNs as well as incorporation of other excipients to improve drug delivery for novel medical devices. The focus will be on polymers, metals and other inorganic materials utilised for MN drug delivery, as well as their application, limitations and future work to be carried out.
Collapse
|
43
|
Ronnander JP, Simon L, Koch A. Transdermal Delivery of Sumatriptan Succinate Using Iontophoresis and Dissolving Microneedles. J Pharm Sci 2019; 108:3649-3656. [PMID: 31374318 DOI: 10.1016/j.xphs.2019.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
This study focuses on the in vitro transdermal transport of sumatriptan succinate using combined iontophoresis and dissolving polymeric microneedle arrays. Permeation experiments were performed to evaluate the effects of formulation parameters on drug release from polyvinylpyrrolidone systems under mild electrical current (≤500 μA/cm2). The preparations consisted of hydrophilic, positively charged molecules encapsulated in a water-soluble and biocompatible polymeric material. Current densities of 100, 300, and 500 μA/cm2 were applied during a 6-h period using silver/silver chloride electrodes. The circular array consisted of 600 needles and occupied a 0.785 cm2 area. Tests, carried out with Franz diffusion cells and skin of Göttingen minipigs, showed that small decreases in the polymer concentration led to negligible lag times and marked increases in the cumulative amount of drug permeated in 6 h (Q6h) and in the flux (Jss). At 500 μA/cm2, Q6h and Jss nearly doubled for a microneedle loaded with 5% (w/w) sumatriptan and 20% (w/w) PVP (lag time = 0 min; Q6h = 2888 μg/cm2; Jss = 490 μg/cm2/h) relative to a system loaded with 5% (w/w) drug and 30% (w/w) PVP (lag time = 36 min; Q6h = 1437 μg/cm2; Jss = 266 μg/cm2/h).
Collapse
Affiliation(s)
- James Paul Ronnander
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Laurent Simon
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102.
| | - Andreas Koch
- LTS Lohmann Therapie-Systeme AG, Lohmannstraβe 2, 56626 Andernach, Germany
| |
Collapse
|
44
|
Ahmed KS, Shan X, Mao J, Qiu L, Chen J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1448-1458. [DOI: 10.1016/j.msec.2019.02.095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 01/06/2023]
|
45
|
Cheng H, Liu M, Du X, Xu J, Zhai Y, Ji J, He S, Zhai G. Recent progress of micro-needle formulations: Fabrication strategies and delivery applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm 2018; 45:188-201. [DOI: 10.1080/03639045.2018.1539497] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saili Dharadhar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Kalina, Mumbai, 400 098, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Kalina, Mumbai, 400 098, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| |
Collapse
|
47
|
Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur J Pharm Sci 2018; 125:54-63. [PMID: 30223035 DOI: 10.1016/j.ejps.2018.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/09/2018] [Accepted: 09/13/2018] [Indexed: 11/22/2022]
Abstract
A mathematical model was developed to predict the transport of sumatriptan molecules across the skin followed by absorption into the bloodstream. The drug was encapsulated in dissolving polyvinylpyrrolidone-based microneedles shaped in the form of pyramids. Mass balance equations were derived to simulate the dissolution and transport of the pharmaceutical ingredient. The theoretical framework made it possible to assess and predict the effects of key parameters on the release profile. The skin concentration increased with the loading dose and the height of the microneedle. An inverse relationship was noted between the amount of drug released in the dermal layer and the pitch width. These results were validated with in-vitro diffusion studies previously conducted using Göttingen minipig skin. The new mathematical approach successfully explained the in-vitro permeation of three different sumatriptan-containing formulations.
Collapse
|
48
|
Pamornpathomkul B, Ngawhirunpat T, Tekko IA, Vora L, McCarthy HO, Donnelly RF. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci 2018; 121:200-209. [DOI: 10.1016/j.ejps.2018.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023]
|
49
|
Mini-Review: Assessing the Potential Impact of Microneedle Technologies on Home Healthcare Applications. MEDICINES 2018; 5:medicines5020050. [PMID: 29890643 PMCID: PMC6023334 DOI: 10.3390/medicines5020050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023]
Abstract
The increasing devolution of healthcare towards community care has meant that the management of many conditions is conducted within the home either by community nurses or by the patients themselves. The administration of medicines within home healthcare scenarios can however be problematic—especially when considering the delivery of medicines through injection. The possibility of needlestick injury (NSI) has become an ever-present hazard within healthcare settings, with a significant proportion of percutaneous injuries occurring during the handling and disposal of the needle. The emergence of transdermal microneedle systems, however, offers a potentially revolutionary advance and could dramatically improve safety—particularly within home healthcare where there are mounting concerns over the use and disposal of sharps. A mini-review of the advantages proffered by microneedle drug delivery technologies is presented and the potential impact on delivery of medicines within the home is critically appraised.
Collapse
|