1
|
Gao F, Feng X, Li X. Recent advances in polymeric nanoparticles for the treatment of hepatic diseases. Front Pharmacol 2025; 16:1528752. [PMID: 39925843 PMCID: PMC11802823 DOI: 10.3389/fphar.2025.1528752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The liver performs crucial roles in energy metabolism, detoxification, and immune regulation. Hepatic diseases, including hepatitis, liver fibrosis, and liver cancer, have posed a significant threat to global health, emphasizing the critical need for the development of novel and effective treatment approaches. Nanotechnology, an emerging technology, has been extensively researched in medicine. Among the many types of nanomaterials, polymeric nanoparticles (NPs) are widely used in drug delivery systems. Compared to traditional therapies, they offer significant advantages in the treatment of liver disease by improving outcomes and reducing side effects. This review introduced the development of liver disease and discussed the application of natural polymers and synthetic polymers in their management. Furthermore, this paper reviewed the application of polymeric nanoparticles -mainly chitosan (CS), hyaluronic acid (HA), polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA)-in liver disease treatment, focusing on their use in various delivery systems for pure bioactive compounds of natural origin, drugs, nucleic acids, peptides, and others. Finally, the challenges and future perspectives of the NPs were discussed to provide guidance for further research directions, with the aim of promoting the clinical application of nanotherapeutics in treating hepatic diseases.
Collapse
Affiliation(s)
| | | | - Xinyu Li
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Kunkel AA, McHugh KJ. Injectable controlled-release systems for the prevention and treatment of infectious diseases. J Biomed Mater Res A 2024; 112:1224-1240. [PMID: 37740704 DOI: 10.1002/jbm.a.37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Pharmaceutical drugs, including vaccines, pre- and post-exposure prophylactics, and chronic drug therapies, are crucial tools in the prevention and treatment of infectious diseases. These drugs have the ability to increase survival and improve patient quality of life; however, infectious diseases still accounted for more than 10.2 million deaths in 2019 before the COVID-19 pandemic. High mortality can be, in part, attributed to challenges in the availability of adequate drugs and vaccines, limited accessibility, poor drug bioavailability, the high cost of some treatments, and low patient adherence. A majority of these factors are logistical rather than technical challenges, providing an opportunity for existing drugs and vaccines to be improved through formulation. Injectable controlled-release drug delivery systems are one class of formulations that have the potential to overcome many of these limitations by releasing their contents in a sustained manner to reduce the need for frequent re-administration and improve clinical outcomes. This review provides an overview of injectable controlled drug delivery platforms, including microparticles, nanoparticles, and injectable gels, detailing recent developments using these systems for single-injection vaccination, long-acting prophylaxis, and sustained-release treatments for infectious disease.
Collapse
Affiliation(s)
- Alyssa A Kunkel
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Mohammed SW, El-Megrab NA, Hasan AA, Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur J Pharm Sci 2024; 195:106714. [PMID: 38301972 DOI: 10.1016/j.ejps.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.
Collapse
Affiliation(s)
- Sabaa Wafiq Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Damodaran A, Zachariah SM, Nair SC. Novel therapeutic approaches for the management of hepatitis infections. Ther Deliv 2024; 15:211-232. [PMID: 38410933 DOI: 10.4155/tde-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.
Collapse
Affiliation(s)
- Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Subin Mary Zachariah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Sreeja Chandrasekharan Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
5
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
6
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
7
|
Raman S, Khan AA, Mahmood S. Nose to brain delivery of selegiline loaded PLGA/lipid nanoparticles: Synthesis, characterisation and brain pharmacokinetics evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Pawar MA, Vora LK, Kompella P, Pokuri VK, Vavia PR. Long-acting microspheres of Human Chorionic Gonadotropin hormone: In-vitro and in-vivo evaluation. Int J Pharm 2022; 611:121312. [PMID: 34822964 DOI: 10.1016/j.ijpharm.2021.121312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Human Chorionic Gonadotropin (hCG) hormone is used to cause ovulation, treat infertility in women, and increase sperm count in men. Conventional hCG solution formulations require multiple administration of hCG per week and cause patient noncompliance. The long-acting PLGA depot microspheres (MS) approach with hCG can improve patient compliance, increase the efficacy of hCG with a lower total dose and improve quality of life. Therefore, hCG was encapsulated by a modified double emulsion solvent evaporation technique within PLGA MS by high-speed homogenizer and industrially scalable in-line homogenizer, respectively. MS was characterized for particle size, encapsulation efficiency (EE), surface morphology, and in-vitro release. The spherical, dense, non-porous microspheres were obtained with a size of 58.88 ± 0.18 µm. Microspheres showed high EE (77.4% ± 5.9%) with low initial burst release (12.82% ± 2.07%). Circular Dichroism and SDS-PAGE analysis indicated good stability and structural integrity of hCG in the microspheres. Its bioactivity was proven further by a bioassay study in immature Wistar rats. Pharmacokinetic analysis showed that the hCG PLGA MS maintained serum hCG concentration up to 13 days compared to multiple injections of a marketed conventional parenteral injectable formulation of hCG. Thus, it can be ascertained that the hCG PLGA MS may have great potential for clinical use in long-term therapy.
Collapse
Affiliation(s)
- Manoj A Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | - Lalitkumar K Vora
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | | | | | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
9
|
Chen R, Wang T, Song J, Pu D, He D, Li J, Yang J, Li K, Zhong C, Zhang J. Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics. Int J Nanomedicine 2021; 16:4959-4984. [PMID: 34326637 PMCID: PMC8315226 DOI: 10.2147/ijn.s315705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.
Collapse
Affiliation(s)
- Ran Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Song
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Daojun Pu
- Pharmaceutical Institute, Southwest Pharmaceutical Limited Company, Chongqing, 400038, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianjun Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
10
|
Bolla PK, Gote V, Singh M, Yellepeddi VK, Patel M, Pal D, Gong X, Sambalingam D, Renukuntla J. Preparation and characterization of lutein loaded folate conjugated polymeric nanoparticles. J Microencapsul 2020; 37:502-516. [PMID: 32842813 DOI: 10.1080/02652048.2020.1809724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To prepare and characterise lutein-loaded polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOLATE) nanoparticles and evaluate enhanced uptake in SK-N-BE(2) cells. METHODS Nanoparticles were prepared using O/W emulsion solvent evaporation and characterised using DLS, SEM, DSC, FTIR and in-vitro release. Lutein-uptake in SK-N-BE(2) cells was determined using flow-cytometry, confocal-microscopy and HPLC. Control was lutein PLGA nanoparticles. RESULTS The size of lutein-loaded PLGA and PLGA-PEG-FOLATE nanoparticles were 189.6 ± 18.79 nm and 188.0 ± 4.06 nm, respectively. Lutein entrapment was ∼61%(w/w) and ∼73%(w/w) for PLGA and PLGA-PEG-FOLATE nanoparticles, respectively. DSC and FTIR confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies showed ∼1.6 and ∼2-fold enhanced uptake of lutein from PLGA-PEG-FOLATE nanoparticles compared to PLGA nanoparticles and lutein, respectively. Cumulative release of lutein was higher in PLGA nanoparticles (100% (w/w) within 24 h) compared to PLGA-PEG-FOLATE nanoparticles (∼80% (w/w) in 48 h). CONCLUSION Lutein-loaded PLGA-PEG-FOLATE nanoparticles could be a potential treatment for hypoxic ischaemic encephalopathy.
Collapse
Affiliation(s)
- Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA.,Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Mahima Singh
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Venkata Kashyap Yellepeddi
- Division of Clinical Pharmacology, Department of Paediatrics, University of UTAH, Salt Lake City, UT, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Manan Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Xiaoming Gong
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Devaraj Sambalingam
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| |
Collapse
|
11
|
Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells. Pharmaceutics 2020; 12:pharmaceutics12090798. [PMID: 32847030 PMCID: PMC7558721 DOI: 10.3390/pharmaceutics12090798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of visual loss and is responsible for approximately 9% of global blindness. It is a progressive eye disorder seen in elderly people (>65 years) mainly affecting the macula. Lutein, a carotenoid, is an antioxidant, and has shown neuroprotective properties in the retina. However, lutein has poor bioavailability owing to poor aqueous solubility. Drug delivery to the posterior segment of the eye is challenging due to the blood–retina barrier. Retinal pigment epithelium (RPE) expresses the sodium-dependent multivitamin transporter (SMVT) transport system which selectively uptakes biotin by active transport. In this study, we aimed to enhance lutein uptake into retinal cells using PLGA–PEG–biotin nanoparticles. Lutein loaded polymeric nanoparticles were prepared using O/W solvent-evaporation method. Particle size and zeta potential (ZP) were determined using Malvern Zetasizer. Other characterizations included differential scanning calorimetry, FTIR, and in-vitro release studies. In-vitro uptake and cytotoxicity studies were conducted in ARPE-19 cells using flow cytometry and confocal microscopy. Lutein was successfully encapsulated into PLGA and PLGA–PEG–biotin nanoparticles (<250 nm) with uniform size distribution and high ZP. The entrapment efficiency of lutein was ≈56% and ≈75% for lutein-loaded PLGA and PLGA–PEG–biotin nanoparticles, respectively. FTIR and DSC confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies in ARPE-19 cells confirmed a higher uptake of lutein with PLGA–PEG–biotin nanoparticles compared to PLGA nanoparticles and lutein alone. In vitro cytotoxicity results confirmed that the nanoparticles were safe, effective, and non-toxic. Findings from this study suggest that lutein-loaded PLGA–PEG–biotin nanoparticles can be potentially used for treatment of AMD for higher lutein uptake.
Collapse
|
12
|
Comparative Study of PLGA in-situ Implant and Nanoparticle Formulations of Entecavir; in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Strack P, Külzer R, Sommer F, Bretschneider T, Merkel OM, Grube A. A smart approach to enable preclinical studies in pharmaceutical industry: PLGA-based extended release formulation platform for subcutaneous applications. Drug Dev Ind Pharm 2020; 46:635-645. [PMID: 32163304 DOI: 10.1080/03639045.2020.1742146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: Validation of a prospective new therapeutic concept in a proof of concept study is costly and time-consuming. In particular, pharmacologically active tool compounds often lack suitable pharmacokinetic (PK) properties for subsequent studies. The current work describes a PLGA-based formulation platform, encapsulating different preclinical research compounds into extended release microparticles, to optimize their PK properties after subcutaneous administration.Significance: Developing a PLGA-based formulation platform offers the advantage of enabling early proof of concept studies in pharmaceutical research for a variety of preclinical compounds by providing a tailor-made PK profile.Methods: Different model compounds were encapsulated into PLGA microparticles, utilizing emulsification solvent evaporation or spray drying techniques. Formulations aiming different release rates were manufactured and characterized. Optimized formulations were assessed in in vivo studies to determine their PK properties, with the mean residence time (MRT) as one key PK parameter.Results: Utilizing both manufacturing methods, tested tool compounds were encapsulated successfully, with a drug load between 5% and 40% w/w, and an extended release time up to 250 h. In the following PK studies, the MRT was extended by a factor of 90, resulting in prolonged coverage of the required target through level. This approach was confirmed to be equally successful for additional internal compounds, verifying a general applicability of the platform.Conclusion: For different active pharmaceutical ingredients (API), an optimized, tailor-made PK profile was obtained utilizing the described formulation platform. This approach is applicable for a variety of pharmacologically active tool compounds, reducing timelines and costs in preclinical research.
Collapse
Affiliation(s)
- Patrick Strack
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.,Ludwig-Maximilians Universität München, München, Germany
| | - Raimund Külzer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Florian Sommer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Achim Grube
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
14
|
Wang J, Li S, Chen T, Xian W, Zhang H, Wu L, Zhu W, Zeng Q. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:93. [PMID: 31392433 DOI: 10.1007/s10856-019-6294-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
To enhance the bioavailability of protein therapeutants and improve the stability of storage and delivery, a series of branched amphiphilic block copolymers consisting of cholic acid (CA) initiated poly(D,L-lactide-co-glycolide) (CA-PLGA) and water-soluble polyethyleneimine cross-linked polyethylene glycol (PEI-PEG) denoted as CA-PLGA-b-(PEI-PEG) were synthesized and characterized. CA-PLGA-b-(PEI-PEG) presented low cytotoxicity by MTT and cck-8 assay. The cationic CA-PLGA-b-(PEI-PEG) micelles (diameter about 100 nm and zeta potential 34-61 mV) were prepared through self-assembly method, and complexed with insulin via electrostatic interaction to obtain nanoscale micelle/insulin complexes. The micelle/insulin complexes-loaded CA-PLGA microspheres (MIC-MS, 10.4 ± 3.85 μm) were manufactured by employing a double emulsion (W1/O/W2) method. The in vitro insulin release behavior and in vivo hypoglycaemic effect of MIC-MS on streptozotocin (STZ) induced diabetic rats were compared with those of the insulin-loaded CA-PLGA microspheres (INS-MS, 7.8 ± 2.57 μm). The initial burst in vitro release of MIC-MS was markedly lower than that of INS-MS (P < 0.01), and the pharmacological availability of MIC-MS via subcutaneous administration was 148.9% relative to INS-MS. Therefore, the cationic CA-PLGA-b-(PEI-PEG) micelles can effectively increase the bioavailability of insulin in CA-PLGA microspheres and can be considered as a potential protein carrier.
Collapse
Affiliation(s)
- Jun Wang
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shunying Li
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjiao Xian
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huiwu Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Therapeutics & Drug Discovery Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Wu
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Zhu
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingbing Zeng
- Biomaterials Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Henry SJ, Barrett SE, Forster SP, Teller RS, Yang Z, Li L, Mackey MA, Doto GJ, Ruth MP, Tsuchiya T, Klein LJ, Gindy ME. Exploration of long-acting implant formulations of hepatitis B drug entecavir. Eur J Pharm Sci 2019; 136:104958. [PMID: 31212018 DOI: 10.1016/j.ejps.2019.104958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/01/2022]
Abstract
Alternative formulations of entecavir, a once daily oral hepatitis B antiretroviral, may improve treatment adherence by patients. We explored the use of biocompatible polymers to control entecavir dissolution in two formats suitable for subcutaneous implantation. Hot melt extrudates were prepared by extruding entecavir-polymer blends at specified weight ratios. Dip-coated tablets were prepared by compressing entecavir in a multi-tip tooling. Tablets were dip-coated in solutions of polymer and dried. In rodents, entecavir-poly(caprolactone) extrudates demonstrated >180 days of continuous drug release, although below the estimated efficacious target input rate. Drug pharmacokinetic profiles were tunable by varying the polymer employed and implant format. The rank order trends of drug input rates observed in vitro were observed in vivo in the detected plasma concentrations of entecavir. In all dose groups entecavir was not tolerated locally at the site of administration where adverse event severity correlated with drug input rate. These polymer-based implantable formats have applicability to long-acting formulations of high solubility compounds beyond entecavir.
Collapse
Affiliation(s)
- Steven J Henry
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ryan S Teller
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Zhen Yang
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Li Li
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Megan A Mackey
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Gregory J Doto
- Safety Assessment and Laboratory Animal Resources (SALAR), Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Michael P Ruth
- Safety Assessment and Laboratory Animal Resources (SALAR), Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Takayuki Tsuchiya
- Safety Assessment and Laboratory Animal Resources (SALAR), Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Lee J Klein
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Marian E Gindy
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
16
|
Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 2019; 134:69-80. [DOI: 10.1016/j.ejps.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 01/31/2023]
|
17
|
Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: Preparation and in vitro and in vivo evaluation. Int J Pharm 2019; 560:27-34. [PMID: 30711615 DOI: 10.1016/j.ijpharm.2019.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022]
Abstract
To avoid severe exacerbations in the load of hepatitis B virus (HBV) as a consequence of discontinuous use of anti-HBV drugs, entecavir (ETV), the first-line anti-HBV drug, was primally formulated as extended-release poly (lactic-co-glycolic acid) microspheres in the present study. Because ETV is slightly soluble in water and in some other organic solvents used for microsphere preparation, methods for solid-microencapsulation were employed to fabricate the ETV microspheres. The optimized microspheres were evaluated for their morphology, particle size, drug loading, in vitro drug release, and in vivo pharmacokinetics in rats. The optimized formulation was found to have a mean particle size of 86 µm and drug loading of 13%. Differential scanning calorimetry and powder X-ray diffraction indicated that ETV existed in crystal, amorphous, and molecular states in the microspheres. In vitro and in vivo release revealed that the dissolution of ETV dominated the release process. The morphology of the microspheres and changes in the morphology during in vitro release were assessed by scanning electron microscopy. The novel ETV-MS described in this study should have great potential for clinical use as an alternative treatment against HBV.
Collapse
|
18
|
Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC. J Pharm Anal 2019; 9:100-107. [PMID: 31011466 PMCID: PMC6460425 DOI: 10.1016/j.jpha.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022] Open
Abstract
Poly(lactide-co-glycolide acid) (PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial, it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4′-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption, increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 µg/mL, enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.
Collapse
|
19
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|