1
|
Rysz MA, Schäfer AM, Kinzi J, Paloumpis N, In-Albon K, Schmidlin S, Seibert I, Ricklin D, Meyer Zu Schwabedissen HE. Erlotinib-A substrate and inhibitor of OATP2B1: pharmacokinetics and CYP3A-mediated metabolism in rSlco2b1 -/- and SLCO2B1 +/+ rats. Drug Metab Dispos 2025; 53:100069. [PMID: 40239314 DOI: 10.1016/j.dmd.2025.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
The tyrosine kinase inhibitor erlotinib is recognized as a substrate of cytochrome P450 enzymes and drug transporters. Indeed, erlotinib's extensive metabolism to the active metabolite OSI-420 (desmethyl erlotinib) mainly involves CYP3A enzymes. Additionally, erlotinib is assumed to interact with the organic anion transporting polypeptide (OATP)2B1. In this study, we aimed to investigate the role of human OATP2B1 in erlotinib's metabolism through in vitro and in vivo experiments. Using Madin-Darby canine kidney cells expressing human OATP2B1 for competitive counterflow experiments, we confirmed erlotinib as inhibitor and substrate of the transporter. Moreover, in vitro transport experiments revealed higher cellular accumulation of erlotinib at pH 5.5 than that at pH 7.4. Pharmacokinetic evaluation of orally administered erlotinib in male SLCO2B1+/+ and rSlco2b1-/- rats revealed that the human OATP2B1 does not significantly alter serum levels of erlotinib or its main metabolite OSI-420, although we observed a longer mean residence time of the metabolite in humanized rats. Although there was no difference in the OSI-420:erlotinib ratio over time in SLCO2B1+/+ and rSlco2b1-/- rats, we assessed the role of CYP3A1 and CYP3A2 in the metabolism of erlotinib. In vitro experiments showed a contribution of both enzymes to the formation of OSI-420. For CYP3A1, we found significantly higher expression in liver microsomes of male SLCO2B1+/+ rats, while the knockout genotype showed significantly higher levels of CYP3A2. However, these differences did not affect the systemic exposure of erlotinib or OSI-420 in the rats. Our findings provide further insight into the role of OATP2B1 in the disposition of orally administered erlotinib. SIGNIFICANCE STATEMENT: This study confirms that erlotinib is a substrate of the human organic anion transporting polypeptide 2B1 transporter in vitro. In vivo experiments in rat models, however, showed no significant impact of organic anion transporting polypeptide 2B1 on the systemic exposure of erlotinib or its metabolite, OSI-420. Despite variations in CYP3A enzyme expression in SLCO2B1+/+ rats, the OSI-420:erlotinib ratio remained unchanged. Although SLCO2B1+/+ rats exhibited a longer mean residence time for OSI-420, this did not significantly alter overall exposure in orally treated animals.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Wu T, Wu J, Liu L, Song H. PDZK1 gene transfer ameliorates lipopolysaccharide-induced cholestasis in rats by rescuing hepatic ABC transporters. Biosci Biotechnol Biochem 2025; 89:390-397. [PMID: 39658368 DOI: 10.1093/bbb/zbae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Lipopolysaccharide (LPS) causes inflammatory cholestasis in sepsis. We investigated the role of PDZK1 in the repression of ABC transporters in LPS-induced cholestasis. Lentiviral gene transfer of PDZK1 to rats was conducted to explore its influence on cholestasis induced by LPS. And the effect of lentivirus-mediated shRNA targeting PDZK1 on ABC transporters in rat liver BRL-3A cells was evaluated. Lentiviral vector encoding rat PDZK1 was administered to rats by tail intravenous injection. Obviously elevated serum total bile acid level and liver biochemical markers in cholestatic rats were decreased by the Lv-PDZK1 delivery. Also, Lv-PDZK1 delivery stimulated the suppressed hepatic ABC transporters expression. In vitro, after the lentiviral vector LV3/PDZK1 shRNA transfection, no expression of PDZK1 and mild expression of ABC transporters were detected in BRL-3A cells by Western blotting. Our results indicate that the lentiviral-mediated hepatocyte PDZK1 expression ameliorates LPS-induced cholestasis in rats by rescuing hepatic ABC transporters expression.
Collapse
Affiliation(s)
- Tao Wu
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Ji Wu
- Faculty of Medicine, Wuhan City College, Wuhan, China
| | - Li Liu
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Hongping Song
- Central Laboratory, Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
3
|
Zu Y, Gao Q, He Y, Deng Q, Li G, Li X, Shang T, Cheng X, Zhu C, Wang J, Liu D, Zhang C. MiR-128-3p mediates MRP2 internalization in estrogen-induced cholestasis through targeting PDZK1. ACTA MATERIA MEDICA 2025; 4. [DOI: 10.15212/amm-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Estrogens have been reported to cause dysfunction in biliary transport systems, thereby inducing cholestasis. Multidrug resistance-associated protein 2 (MRP2) is a transporter responsible for independent bile flow. Emerging evidence indicates that PDZ domain containing 1 (PDZK1) regulates localization of MRP2; however, PDZK1’s role and regulatory machinery in MRP2-mediated estrogen-induced cholestasis (EIC) remain unclear. Herein, in a mouse model of EIC, we observed downregulated PDZK1 expression in the liver and enhanced intracellular domain MRP2 internalization. Notably, expression of miR-128-3p, a potential biomarker of estrogen-related cholestasis discovered by our group, was significantly elevated. We demonstrated that miR-128-3p targeted the 3’-untranslated region of PDZK1 in EIC and consequently promoted MRP2 internalization. Accordingly, miR-128-3p suppression upregulated PDZK1, thereby suppressing MRP2 internalization and significantly attenuating cholestatic liver disease. Furthermore, we observed MRP2 internalization and PDZK1 downregulation, as well as excessive miR-128-3p, in clinical samples from patients with cholestatic liver injury. Overall, our findings illustrate that miR-128-3p inhibits PDZK1 expression, thereby inhibiting the membrane localization of MRP2 in EIC. Enhancing or restoring PDZK1 expression might therefore have therapeutic potential for cholestatic liver injury.
Collapse
|
4
|
Kinzi J, Hussner J, Seibert I, Vythilingam M, Vonwyl C, Gherardi C, Detampel P, Schwardt O, Ricklin D, Meyer Zu Schwabedissen HE. Impact of OATP2B1 on Pharmacokinetics of Atorvastatin Investigated in rSlco2b1-Knockout and SLCO2B1-Knockin Rats. Drug Metab Dispos 2024; 52:957-965. [PMID: 39038952 DOI: 10.1124/dmd.124.001686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Mirubagini Vythilingam
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Celina Vonwyl
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clarisse Gherardi
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Pascal Detampel
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Oliver Schwardt
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy (J.K., J.H., I.S., M.V., C.V., C.G., H.E.M.z.S.), Pharmaceutical Technology (P.D.), and Molecular Pharmacy (O.S., D.R.), Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Rysz M, Schäfer AM, Paloumpis N, Kinzi J, Brecht K, Seibert I, Schmidlin S, In-Albon K, Ricklin D, Meyer Zu Schwabedissen HE. Humanization of SLCO2B1 in Rats Increases rCYP3A1 Protein Expression but Not the Metabolism of Erlotinib to OSI-420. J Pharmacol Exp Ther 2024; 389:87-95. [PMID: 38448247 DOI: 10.1124/jpet.123.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 [(gene: solute carrier organic anion transporter family member 2B1 (SLCO2B1)] is an uptake transporter that facilitates cellular accumulation of its substrates. Comparison of SLCO2B1+/+ knockin and rSlco2b1-/- knockout rats showed a higher expression of rCYP3A1 in the humanized animals. We hypothesize that humanization of OATP2B1 not only affects cellular uptake but also metabolic activity. To further investigate this hypothesis, we used SLCO2B1+/+ and rSlco2b1-/ - rats and the OATP2B1 and rCYP3A1 substrate erlotinib, which is metabolized to OSI-420, for in vivo and ex vivo experiments. One hour after administration of a single dose of erlotinib, the knockin rats exhibited significantly lower erlotinib serum levels, but no change was observed in metabolite concentration or the OSI-420/erlotinib ratio. Similar results were obtained for liver tissue levels comparing SLCO2B1+/+ and rSlco2b1-/- rats. Liver microsomes isolated from the erlotinib-treated animals were characterized ex vivo for rCYP3A activity using testosterone, showing higher activity in the knockin rats. The contrary was observed when microsomes isolated from treatment-naïve animals were assessed for the metabolism of erlotinib to OSI-420. The latter is in contrast to the higher rCYP3A1 protein amount observed by western blot analysis in rat liver lysates and liver microsomes isolated from untreated rats. In summary, rats humanized for OATP2B1 showed higher expression of rCYP3A1 in liver and reduced serum levels of erlotinib but no change in the OSI-420/erlotinib ratio despite a lower OSI-420 formation in isolated liver microsomes. Studies with CYP3A-specific substrates are warranted to evaluate whether humanization affects not only rCYP3A1 expression but also metabolic activity in vivo. SIGNIFICANCE STATEMENT: Humanization of rats for the organic anion transporting polypeptide (OATP)2B1 increases rCYP3A1 expression and activity in liver. Using the OATP2B1/CYP3A-substrate erlotinib to assess the resulting phenotype, we observed lower erlotinib serum and liver concentrations but no impact on the liver/serum ratio. Moreover, there was no difference in the OSI-420/erlotinib ratio comparing humanized and knockout rats, suggesting that OSI-420 is not applicable to monitor differences in rCYP3A1 expression as supported by data from ex vivo experiments with rat liver microsomes.
Collapse
Affiliation(s)
- Marta Rysz
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Karin Brecht
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Lu S, Chen X, Chen Y, Zhang Y, Luo J, Jiang H, Fang L, Zhou H. Downregulation of PDZK1 by TGF-β1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells. Biochem Pharmacol 2024; 220:116015. [PMID: 38158021 DOI: 10.1016/j.bcp.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of renal tubular cells promotes renal fibrosis and the progression of chronic kidney disease (CKD). PDZ domain-containing 1 (PDZK1) is highly expressed in renal tubular epithelial cells; however, its role in TGF-β1-induced EMT remains poorly understood. The present study showed that PDZK1 expression was extremely downregulated in fibrotic mouse kidneys and its negative correlation with TGF-β1 expression and the degree of renal fibrosis. In addition, TGF-β1 downregulated the mRNA expression of PDZK1 in a time- and concentration-dependent manner in vitro. The downregulation of PDZK1 exacerbated TGF-β1-induced EMT upon oxidative stress, while the overexpression of PDZK1 had the converse effect. Subsequent investigations demonstrated that TGF-β1 downregulated PDZK1 expression via p38 MAPK or PI3K/AKT signaling in vitro, but independently of ERK/JNK MAPK signaling. Meanwhile, inhibition of the p38/JNK MAPK or PI3K/AKT signaling using chemical inhibitors restored the PDZK1 expression, mitigated renal fibrosis, and elevated renal levels of endogenous antioxidants carnitine and ergothioneine in adenine-induced CKD mice. These findings provide the first evidence suggesting a negative correlation between PDZK1 and renal fibrosis, and identifying PDZK1 as a novel suppressor of renal fibrosis in CKD through ameliorating oxidant stress.
Collapse
Affiliation(s)
- Shuanghui Lu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqiong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China.
| |
Collapse
|
8
|
Kinzi J, Hussner J, Schäfer AM, Treyer A, Seibert I, Tillmann A, Mueller V, Gherardi C, Vonwyl C, Hamburger M, Meyer Zu Schwabedissen HE. Influence of Slco2b1-knockout and SLCO2B1-humanization on coproporphyrin I and III levels in rats. Br J Pharmacol 2024; 181:36-53. [PMID: 37533302 DOI: 10.1111/bph.16205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Coproporphyrin (CP) I and III are byproducts of haem synthesis currently investigated as biomarkers for drug-drug interactions involving hepatic organic anion transporting polypeptide (OATP) 1B transporters. Another hepatically expressed OATP-member is OATP2B1. The aim of this study was to test the impact of OATP2B1, which specifically transports CPIII, on CP serum levels, applying novel rat models. EXPERIMENTAL APPROACH CPIII transport kinetics and the interplay between OATP2B1 and multidrug resistance-associated proteins (MRPs) were determined in vitro using the vTF7 expression system. Novel rSlco2b1-/- and SLCO2B1+/+ rat models were characterized for physiological parameters and for CP serum levels. Hepatic and renal expression of transporters involved in CP disposition were determined by real-time qPCR, Western blot analysis, and immunohistochemistry. KEY RESULTS In vitro experiments revealed differences in transport kinetics comparing human and rat OATP2B1 and showed a consistent, species-specific interplay with hMRP3/rMRP3. Deletion of rOATP2B1 was associated with a trend towards lower CPI serum levels compared with wildtype rats, while CPIII remained unchanged. Comparing SLCO2B1+/+ with knockout rats revealed an effect of sex: only in females the genetic modification influenced CP serum levels. Analysis of hepatic and renal transporters revealed marginal, but in part, statistically significant differences in rMRP2 abundance, which may contribute to the observed changes in CP serum levels. CONCLUSION AND IMPLICATIONS Our findings support that factors other than OATP1B transporters are of relevance for basal CP levels. Only in female rats, humanization of SLCO2B1 affects basal CPI and CPIII serum levels, despite isomer selectivity of OATP2B1.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annika Tillmann
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Mueller
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clarisse Gherardi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Celina Vonwyl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
9
|
Li W, Iusuf D, Sparidans RW, Wagenaar E, Wang Y, de Waart DR, Martins MLF, van Hoppe S, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol Res 2023; 190:106724. [PMID: 36907287 DOI: 10.1016/j.phrs.2023.106724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dilek Iusuf
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, 1105 BK, Amsterdam, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Bakos É, Német O, Kucsma N, Tőkési N, Stieger B, Rushing E, Tőkés AM, Kele P, Tusnády GE, Özvegy-Laczka C. Cloning and characterization of a novel functional organic anion transporting polypeptide 3A1 isoform highly expressed in the human brain and testis. Front Pharmacol 2022; 13:958023. [PMID: 36120371 PMCID: PMC9479004 DOI: 10.3389/fphar.2022.958023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Organic anion transporting polypeptide 3A1 (OATP3A1, encoded by the SLCO3A1 gene) is a prostaglandin, oligopeptide, and steroid/thyroid hormone transporter with wide tissue distribution, expressed, e.g., in the human brain and testis. Although the physiological importance of OATP3A1 has not yet been clarified, based on its expression pattern, substrate recognition, and evolutionary conservation, OATP3A1 is a potential pharmacological target. Previously, two isoforms of OATP3A1, termed as V1 and V2, have been characterized. Here, we describe the cloning and functional characterization of a third isoform, OATP3A1_V3. The mRNA of isoform V3 is formed by alternative splicing and results in an OATP3A1 protein with an altered C-terminus compared to isoforms V1 and V2. Based on quantitative PCR, we demonstrate the widespread expression of SLCO3A1_V3 mRNA in human organs, with the highest expression in the brain and testis. By generation of an isoform V3-specific antibody and immunostaining, we show that the encoded protein is expressed in the human choroid plexus, neurons, and both germ and Sertoli cells of the testis. Moreover, we demonstrate that in contrast to isoform V1, OATP3A1_V3 localizes to the apical membrane of polarized MDCKII cells. Using HEK-293 cells engineered to overexpress OATP3A1_V3, we verify the protein’s functionality and identify dehydroepiandrosterone sulfate as a novel OATP3A1 substrate. Based on their distinct expression patterns but overlapping functions, OATP3A1 isoforms may contribute to transcellular (neuro)steroid transport in the central nervous system.
Collapse
Affiliation(s)
- Éva Bakos
- Institute of Enzymology, RCNS, Budapest, Hungary
| | | | - Nóra Kucsma
- Institute of Enzymology, RCNS, Budapest, Hungary
| | | | - Bruno Stieger
- University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - Elisabeth Rushing
- University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Kele
- Institute of Organic Chemistry, RCNS, Budapest, Hungary
| | | | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Budapest, Hungary
- *Correspondence: Csilla Özvegy-Laczka,
| |
Collapse
|
11
|
Pan H, Huan C, Zhang W, Hou Y, Zhou Z, Yao J, Gao S. PDZK1 upregulates nitric oxide production through the PI3K/ERK2 pathway to inhibit porcine circovirus type 2 replication. Vet Microbiol 2022; 272:109514. [PMID: 35917623 DOI: 10.1016/j.vetmic.2022.109514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ziyan Zhou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
12
|
Morita T, Akiyoshi T, Tsuchitani T, Kataoka H, Araki N, Yajima K, Katayama K, Imaoka A, Ohtani H. Inhibitory Effects of Cranberry Juice and Its Components on Intestinal OATP1A2 and OATP2B1: Identification of Avicularin as a Novel Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3310-3320. [PMID: 35230114 DOI: 10.1021/acs.jafc.2c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic anion-transporting polypeptide (OATP) 1A2 and OATP2B1 mediate the intestinal absorption of drugs. This study aimed to identify fruit juices or fruit juice components that inhibit OATPs and assess the risk of associated food-drug interactions. Inhibitory potency was assessed by examining the uptake of [3H]estrone 3-sulfate and [3H]fexofenadine into HEK293 cells expressing OATP1A2 or OATP2B1. In vivo experiments were conducted using mice to evaluate the effects of cranberry juice on the pharmacokinetics of orally administered fexofenadine. Of eight examined fruit juices, cranberry juice inhibited the functions of both OATPs most potently. Avicularin, a component of cranberry juice, was identified as a novel OATP inhibitor. It exhibited IC50 values of 9.0 and 37 μM for the inhibition of estrone 3-sulfate uptake mediated by OATP1A2 and OATP2B1, respectively. A pharmacokinetic experiment revealed that fexofenadine exposure was significantly reduced (by 50%) by cranberry juice. Cranberry juice may cause drug interactions with OATP substrates.
Collapse
Affiliation(s)
- Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Toshiaki Tsuchitani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroki Kataoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Naoya Araki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuhiro Katayama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
13
|
Schäfer AM, Gilgen PM, Spirgi C, Potterat O, Meyer Zu Schwabedissen HE. Constituents of Passiflora incarnata, but Not of Valeriana officinalis, Interact with the Organic Anion Transporting Polypeptides (OATP)2B1 and OATP1A2. PLANTA MEDICA 2022; 88:152-162. [PMID: 33511622 DOI: 10.1055/a-1305-3936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herbal medication used in the treatment of sleep disorders and anxiety often contain extracts of Valeriana officinalis or Passiflora incarnata. Valerenic acid in V. officinalis and apigenin, orientin, and vitexin in P. incarnata are thought to contribute to their therapeutic effect. It was the aim of this study to test whether these constituents of herbal extracts are interacting with the uptake of estrone 3-sulfate, pregnenolone sulfate, and dehydroepiandrosterone sulfate mediated by the uptake transporters organic anion transporting polypeptide 2B1 (OATP2B1) or organic anion transporting polypeptide 1A2 (OATP1A2). Madin-Darby canine kidney cells overexpressing OATP2B1 or OATP1A2 were used to determine the influence of the constituents on the cellular accumulation of the sulfated steroids. Subsequently, competitive counterflow experiments were applied to test whether identified inhibitors are also substrates of the transporters. Valerenic acid only interacted with OATP2B1, whereas apigenin, orientin, and vitexin interacted with OATP2B1 and OATP1A2. Competitive counterflow revealed that orientin is a substrate of both transporters, while apigenin was transported by OATP1A2 and vitexin by OATP2B1. In a next step, commercially available P. incarnata preparations were assessed for their influence on the transporters, revealing inhibition of transporter-mediated estrone 3-sulfate uptake. HPLC-UV-MS analysis confirmed the presence of orientin and vitexin in these preparations, thereby suggesting that these constituents are involved in the interaction. Our data indicate that constituents of P. incarnata may alter the function of OATP2B1 and OATP1A2, which could affect the uptake of other compounds relying on uptake mediated by the transporters.
Collapse
Affiliation(s)
- Anima M Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Pierrine M Gilgen
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clara Spirgi
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Pharmaceutical Biology, Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
14
|
Hussner J, Foletti A, Seibert I, Fuchs A, Schuler E, Malagnino V, Grube M, Meyer Zu Schwabedissen HE. Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metab Pharmacokinet 2021; 41:100418. [PMID: 34628357 DOI: 10.1016/j.dmpk.2021.100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The human drug transporter Organic Anion Transporting Polypeptide (hOATP)2B1 facilitates cellular uptake of its substrates. Various studies suggest that hOATP2B1 is involved in intestinal absorption, but preclinical evaluations performed in rodents do not support this. Thus, our study aimed to compare the expression and function of hOATP2B1 with its orthologue in rats (rOatp2b1). Even if the general expression pattern was comparable, the transporters exhibited substantial differences on functional level. While bromosulfophthalein and atorvastatin were substrates of both transporters, the steroid sulfate conjugates estrone 3-sulfate (E1S), progesterone sulfate and dehydroepiandrosterone sulfate were only transported by hOATP2B1. To further elucidate these functional differences, experiments searching for the E1S substrate recognition site were conducted generating human-rat chimera as well as partly humanized variants of rOatp2b1. The rOatp2b1-329-hOATP2B1 chimera led to a significant increase in E1S uptake suggesting the C-terminal part of the human transporter is involved. However, humanization of various regions within this part, namely of the transmembrane domain (TMD)-9, TMD-10 or the extracellular loop-5 did not significantly change E1S transport function. Replacement of the intracellular loop-3, slightly enhanced cellular accumulation of sulfated steroids. Taken together, we report that OATP2B1 exhibited differences in recognition of steroid sulfate conjugates comparing the rat and human orthologues.
Collapse
Affiliation(s)
- Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annalise Foletti
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Fuchs
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Eveline Schuler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Institute of Pharmacology, C_DAT Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
15
|
Medwid S, Price HR, Taylor DP, Mailloux J, Schwarz UI, Kim RB, Tirona RG. Organic Anion Transporting Polypeptide 2B1 (OATP2B1) Genetic Variants: In Vitro Functional Characterization and Association With Circulating Concentrations of Endogenous Substrates. Front Pharmacol 2021; 12:713567. [PMID: 34594217 PMCID: PMC8476882 DOI: 10.3389/fphar.2021.713567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, gene SLCO2B1) is an uptake transporter that is thought to determine drug disposition and in particular, the oral absorption of medications. At present, the clinical relevance of SLCO2B1 genetic variation on pharmacokinetics is poorly understood. We sought to determine the functional activity of 5 of the most common missense OATP2B1 variants (c.76_84del, c.601G>A, c.917G>A, c.935G>A, and c.1457C>T) and a predicted dysfunctional variant (c.332G>A) in vitro. Furthermore, we measured the basal plasma concentrations of endogenous OATP2B1 substrates, namely estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate, coproporphyrin I (CPI), and CPIII, and assessed their relationships with SLCO2B1 genotypes in 93 healthy participants. Compared to reference OATP2B1, the transport activities of the c.332G>A, c.601G>A and c.1457C>T variants were reduced among the substrates examined (estrone sulfate, DHEAS, CPI, CPIII and rosuvastatin), although there were substrate-dependent effects. Lower transport function of OATP2B1 variants could be explained by diminished cell surface expression. Other OATP2B1 variants (c.76-84del, c.917G>A and c.935G>A) had similar activity to the reference transporter. In the clinical cohort, the SLCO2B1 c.935G>A allele was associated with both higher plasma CPI (42%) and CPIII (31%) concentrations, while SLCO2B1 c.917G>A was linked to lower plasma CPIII by 28% after accounting for the effects of age, sex, and SLCO1B1 genotypes. No association was observed between SLCO2B1 variant alleles and estrone sulfate or DHEAS plasma concentrations, however 45% higher plasma pregnenolone sulfate level was associated with SLCO2B1 c.1457C>T. Taken together, we found that the impacts of OATP2B1 variants on transport activities in vitro were not fully aligned with their associations to plasma concentrations of endogenous substrates in vivo. Additional studies are required to determine whether circulating endogenous substrates reflect OATP2B1 activity.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Hayley R Price
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Daniel P Taylor
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jaymie Mailloux
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Richard B Kim
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Rommel G Tirona
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Handa O, Goda K, Handa Y, Fukushima S, Osawa M, Murao T, Matsumoto H, Umegaki E, Fujita Y, Nishio K, Shiotani A. PDZK1 induces resistance to apoptosis in esophageal adenocarcinoma cells. Esophagus 2021; 18:655-662. [PMID: 33586076 DOI: 10.1007/s10388-021-00819-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Esophageal cancer is a lethal malignancy with a poor prognosis. The incidence of esophageal adenocarcinoma, which develops from Barrett's esophagus (BE), has recently been increasing. In a previous study, we found that PDZK1 expression is higher in long segment BE compared to that in short-segment BE. However, the function of PDZK1 in the mucosa of BE is unclear. AIMS Clarify the role of PDZK1 in BE mucosa using PDZK1 overexpressed cells. METHODS Human adenocarcinoma-derived OE33 cells were used as a parental cell line and transfected to generate PDZK1 overexpressed OE33 cells (PC cells) or transfected with empty vector as control cells (NC cells). Cell growth of NC and PC cells in 10% fetal bovine serum was evaluated by cell counting. The effect of PDZK1 on proteasome inhibitor (PSI)-induced apoptosis was qualified by fluorescence microscopy and quantified by flow cytometry. Expression of apoptosis-related proteins was evaluated by western blotting. RESULTS There were no significant differences in cell growth between NC and PC cells. PSI significantly increased apoptosis in NC cells, but not in PC cells. In response to PSI, increased levels of cleaved-caspase3 and decreased pro-caspase3 levels were found in NC cells, but not in PC cells. In NC cells, PSI significantly decreased Bcl-2 expression without affecting Bax levels. In contrast, high expression of both Bcl-2 and Bax was observed in PC cells. CONCLUSION Overexpression of PDZK1 protein induces an apoptosis-resistant phenotype in BE cells, which may be a potential therapeutic target.
Collapse
Affiliation(s)
- Osamu Handa
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan.
| | - Kyousuke Goda
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Yukiko Handa
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Shinya Fukushima
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Motoyasu Osawa
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Takahisa Murao
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Hiroshi Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Eiji Umegaki
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Yoshihiko Fujita
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuto Nishio
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Akiko Shiotani
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| |
Collapse
|
17
|
Schäfer AM, Meyer zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics 2021; 13:pharmaceutics13060834. [PMID: 34199715 PMCID: PMC8226904 DOI: 10.3390/pharmaceutics13060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is an important pharmacological target, but it is very effectively protected by the blood–brain barrier (BBB), thereby impairing the efficacy of many potential active compounds as they are unable to cross this barrier. Among others, membranous efflux transporters like P-Glycoprotein are involved in the integrity of this barrier. In addition to these, however, uptake transporters have also been found to selectively uptake certain compounds into the CNS. These transporters are localized in the BBB as well as in neurons or in the choroid plexus. Among them, from a pharmacological point of view, representatives of the organic anion transporting polypeptides (OATPs) are of particular interest, as they mediate the cellular entry of a variety of different pharmaceutical compounds. Thus, OATPs in the BBB potentially offer the possibility of CNS targeting approaches. For these purposes, a profound understanding of the expression and localization of these transporters is crucial. This review therefore summarizes the current state of knowledge of the expression and localization of OATPs in the CNS, gives an overview of their possible physiological role, and outlines their possible pharmacological relevance using selected examples.
Collapse
Affiliation(s)
- Anima M. Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology, University Medicine of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel./Fax: +49-3834-865636
| |
Collapse
|
18
|
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1 - The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol 2021; 188:114534. [PMID: 33794186 DOI: 10.1016/j.bcp.2021.114534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
The organic anion transporting polypeptide 2B1 (OATP2B1) was one of the first cloned members of the SLCO family. However, its physiological and pharmacological role is still poorly understood, and object of a current debate on the transporter's relevance. Within this commentary, we summarize the data currently available on the transporter's expression and its substrates and highlight the strength and difficulties of the methods that have been applied to gather these data. The conclusion drawn from these findings was that OATP2B1 due to its intestinal expression is most likely involved in oral drug absorption of its substrate and therefore prone for interactions. This has been tested in in vivo drug interaction and/or pharmacogenetic studies. While some of these support the notion of OATP2B1 being of relevance in drug absorption, the pharmacogenetic findings are rather inconclusive. We will explain our thoughts why OATP2B1 may not influence the general systemic pharmacokinetic of certain substrates, but possibly local distribution processes, like the transfer across the blood-brain-barrier. Besides the pharmacokinetic aspects, there are data on endogenous molecules like coproporphyrins and sulfated steroids. Therefore, we will also highlight possible physiological roles of OATP2B1, which are driven by its expression pattern in the tubular cells of the kidney as well as its expression in the blood brain barrier. Finally we also deal with the advantages and disadvantages in the use of animal models to decipher the role of OATP2B1 in pharmacokinetics of its substrates and beyond.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
19
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Ali Y, Shams T, Cheng Z, Li Y, Chun CSW, Shu W, Bao X, Zhu L, Murray M, Zhou F. Impaired Transport Activity of Human Organic Anion Transporters (OATs) and Organic Anion Transporting Polypeptides (OATPs) by Wnt Inhibitors. J Pharm Sci 2020; 110:914-924. [PMID: 33049263 DOI: 10.1016/j.xphs.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The Wnt/β-catenin signaling pathway is dysregulated in diseases and Wnt inhibitors like PRI-724 are in clinical development. This study evaluated the regulatory actions of PRI-724 and other Wnt inhibitors on the transport activity of human renal Organic anion transporters (OATs) and Organic anion transporting polypeptides (OATPs). The substrate uptake by OAT4 and OATP2B1 was markedly decreased by PRI-724 (Vmax/Km: ∼26% and ∼17% of corresponding control), with less pronounced decreases in OAT1, OAT3 and OAT1A2. PRI-724 decreased the plasma membrane expression of inhibited OATs/OATPs but didn't affect their total cellular expression. Two model Wnt inhibitors - FH535 and 21H7 - were also tested in comparative studies. Like PRI-724, they also strongly decreased the activities and membrane expression of multiple OATs/OATPs. In contrast, FH535 didn't affect the substrate uptake by organic cation transporters. In control studies, the EGFR inhibitor lapatinib did not inhibit the function of some OATs/OATPs. Together these findings suggest that Wnt inhibitors selectively modulate the function of multiple organic anions transporters, so their clinical use may have unanticipated effects on drug entry into cells. These findings are pertinent to current clinical trials that have been designed to understand the safety and efficacy of new Wnt inhibitor drugs.
Collapse
Affiliation(s)
- Youmna Ali
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Tahiatul Shams
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Chelsea Siu-Wai Chun
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia; Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province, 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, New South Wales, 2000 Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, New South Wales 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia.
| |
Collapse
|
21
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
22
|
Schäfer AM, Meyer Zu Schwabedissen HE, Bien-Möller S, Hubeny A, Vogelgesang S, Oswald S, Grube M. OATP1A2 and OATP2B1 Are Interacting with Dopamine-Receptor Agonists and Antagonists. Mol Pharm 2020; 17:1987-1995. [PMID: 32343897 DOI: 10.1021/acs.molpharmaceut.0c00159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interaction with the dopaminergic system in the central nervous system is either therapeutically intended or it is a side effect. In both cases, dopamine-receptor agonists (DRA) like the ergoline derivative bromocriptine and dopamine-receptor antagonists (DRAn) like metoclopramide have to cross the blood-brain barrier (BBB). The organic anion transporting polypeptides (OATP) 1A2 and 2B1 are cellular uptake carriers for a variety of endogenous and xenobiotic compounds. As both transporters are expressed in endothelial cells of the BBB, the aim of the present study was to determine whether the DRA bromocriptine, cabergoline, and pergolide and the DRAn metoclopramide and domperidone are interacting with OATP1A2 and 2B1 and could therefore be candidate genes modifying wanted and unwanted effects of these drugs. Localization of both transporters in the brain was confirmed using LC-MS/MS and immunofluorescence stainings. For the functional studies, MDCKII cells stably expressing OATP1A2 or 2B1 were used. Initial interaction studies with the well-characterized transporter substrate estrone 3-sulfate revealed that all tested compounds except pergolide inhibit the transport function of both proteins with the most potent effect for bromocriptine (IC50 = 2.2 μM (OATP1A2) and IC50 = 2.5 μM (OATP2B1)). Further studies using the indirect competitive counterflow method identified bromocriptine, cabergoline, and domperidone as substrates of both transporters, whereas metoclopramide was only transported by OATP1A2. These findings were verified for domperidone by direct measurements using its tritium-labeled form as a tracer. Moreover, the transporter-mediated uptake of this compound was sensitive to the OATP1A2 and OATP2B1 inhibitor naringin. In conclusion, this study suggests that OATP1A2 and 2B1 may play a role in the uptake of DR agonists and antagonists into the brain.
Collapse
Affiliation(s)
- Anima M Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | - Sandra Bien-Möller
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Andrea Hubeny
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Silke Vogelgesang
- Department of Pathology, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Stefan Oswald
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.,Institute of Pharmacology and Toxicology, Rostock, University Medical Center, 18057 Rostock, Germany
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology and Clinical Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
23
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
24
|
Wang P, Wang WJ, Choi-Nurvitadhi J, Lescaille Y, Murray JW, Wolkoff AW. Rat Organic Anion Transport Protein 1A1 Interacts Directly With Organic Anion Transport Protein 1A4 Facilitating Its Maturation and Trafficking to the Hepatocyte Plasma Membrane. Hepatology 2019; 70:2156-2170. [PMID: 31102415 PMCID: PMC6859187 DOI: 10.1002/hep.30772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/12/2019] [Indexed: 12/16/2022]
Abstract
Organic anion transport proteins (OATPs) on the basolateral surface of hepatocytes mediate uptake of a number of drugs and endogenous compounds. Previous studies showed that rat OATP1A1 (rOATP1A1) has a postsynaptic density protein, drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) consensus binding motif at its C-terminus and binds to PDZ domain containing 1 (PDZK1), which is required for its cell-surface localization. PDZK1 associates with rOATP1A1-containing endocytic vesicles within cells, mediating recruitment of motor proteins required for microtubule-based trafficking to the plasma membrane. rOATP1A4 also traffics to the plasma membrane, although it lacks a PDZ binding consensus sequence. The current study was designed to test the hypothesis that trafficking of rOATP1A4 to the plasma membrane requires its direct interaction with rOATP1A1 resulting in a complex that traffics through the cell in common subcellular vesicles in which the cytosolic tail of rOATP1A1 is bound to PDZK1. We found that 74% of rOATP1A4-containing rat liver endocytic vesicles (n = 12,044) also contained rOATP1A1. Studies in transfected HEK293 cells showed surface localization of rOATP1A1 only when coexpressed with PDZK1 whereas rOATP1A4 required coexpression with rOATP1A1 and PDZK1. Studies in stably transfected HeLa cells that constitutively expressed PDZK1 showed that coexpression of rOATP1A4 with rOATP1A1 resulted in more rapid appearance of rOATP1A4 on the plasma membrane and faster maturation to its fully glycosylated form. Similar results were observed on immunofluorescence analysis of single cells. Immunoprecipitation of rat liver or transfected HeLa cell lysates with rOATP1A1 antibody specifically co-immunoprecipitated rOATP1A4 as determined by western blotting. Conclusion: These studies indicate that optimal rOATP1A4 trafficking to the cell surface is dependent upon coexpression and interaction with rOATP1A1. As rOATP1A1 binds to the chaperone protein, PDZK1, rOATP1A4 functionally hitchhikes through the cell with this complex.
Collapse
Affiliation(s)
- Pijun Wang
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | - Wen-Jun Wang
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | - Jo Choi-Nurvitadhi
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | - Yaniuska Lescaille
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Division of Hepatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | - John W. Murray
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | - Allan W. Wolkoff
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA,Division of Hepatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| |
Collapse
|
25
|
Zhang Y, Hagenbuch B. Protein-protein interactions of drug uptake transporters that are important for liver and kidney. Biochem Pharmacol 2019; 168:384-391. [PMID: 31381872 DOI: 10.1016/j.bcp.2019.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Drug uptake transporters are membrane proteins responsible for the trans-membrane transport of endo- and xenobiotics, including numerous drugs. They are important for the uptake of drugs into target tissues or into organs for metabolism and excretion. Many drug uptake transporters have a broad spectrum of structural-independent substrates, which make them vulnerable to drug-drug interactions. Recent studies have shown more and more complex pharmacokinetics involving transporters, and regulatory agencies now require studies to be performed to measure the involvement of transporters in drug development. A better understanding of the factors affecting the expression of transporters is needed. Despite many efforts devoted to the functional characterization of different drug uptake transporters, transporter in vitro to in vivo extrapolations are far from predicting the behavior under physiological conditions. There is an increasing number of uptake transporters demonstrated to form protein-protein interactions or to oligomerize. This raises the possibility that these interactions between or among transporters could help explaining the gap between in vitro and in vivo measurement of drug transporters. In this review, we summarized protein-protein interactions of drug uptake transporters that are important for pharmacokinetics, especially those in the liver and the kidneys.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
26
|
Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15:301-316. [PMID: 30728454 PMCID: PMC6619437 DOI: 10.1038/s41581-019-0111-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Uraemic syndrome (also known as uremic syndrome) in patients with advanced chronic kidney disease involves the accumulation in plasma of small-molecule uraemic solutes and uraemic toxins (also known as uremic toxins), dysfunction of multiple organs and dysbiosis of the gut microbiota. As such, uraemic syndrome can be viewed as a disease of perturbed inter-organ and inter-organism (host-microbiota) communication. Multiple biological pathways are affected, including those controlled by solute carrier (SLC) and ATP-binding cassette (ABC) transporters and drug-metabolizing enzymes, many of which are also involved in drug absorption, distribution, metabolism and elimination (ADME). The remote sensing and signalling hypothesis identifies SLC and ABC transporter-mediated communication between organs and/or between the host and gut microbiota as key to the homeostasis of metabolites, antioxidants, signalling molecules, microbiota-derived products and dietary components in body tissues and fluid compartments. Thus, this hypothesis provides a useful perspective on the pathobiology of uraemic syndrome. Pathways considered central to drug ADME might be particularly important for the body's attempts to restore homeostasis, including the correction of disturbances due to kidney injury and the accumulation of uraemic solutes and toxins. This Review discusses how the remote sensing and signalling hypothesis helps to provide a systems-level understanding of aspects of uraemia that could lead to novel approaches to its treatment.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kevin T Bush
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Schäfer AM, Potterat O, Seibert I, Fertig O, Meyer Zu Schwabedissen HE. Hyperforin-Induced Activation of the Pregnane X Receptor Is Influenced by the Organic Anion-Transporting Polypeptide 2B1. Mol Pharmacol 2019; 95:313-323. [PMID: 30573512 DOI: 10.1124/mol.118.114066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/17/2018] [Indexed: 02/14/2025] Open
Abstract
The herbal remedy St. John's wort (SJW) is used in the treatment of mild depressive symptoms and is known for its drug-drug interaction potential when enhanced expression of CYP3A4 modifies clearance of concomitantly applied substrate drugs. Hyperforin is one constituent of SJW that alters CYP3A4 expression by activation of the nuclear receptor pregnane X receptor (PXR). However, little is known about the transmembrane transport of hyperforin. One membrane protein that modulates cellular entry of drugs is the organic anion-transporting polypeptide (OATP) 2B1. It was the aim of this study to test whether hyperforin interacts with this transport protein. Transport inhibition studies and competitive counterflow experiments suggested that hyperforin is a substrate of OATP2B1. This notion was validated by showing that the presence of OATP2B1 enhanced the hyperforin-induced PXR activation in cell-based luciferase assays. Moreover, in Caco-2 cells transcellular transport of the known OATP2B1 substrate atorvastatin was changed in the presence of hyperforin, resulting in an increased efflux ratio. Eleven commercially available SJW formulations were assessed for their influence on OATP2B1-mediated transport of estrone 3-sulfate and for their impact on CYP3A4 promoter transactivation. The correlation between effect size and the hyperforin content as determined by high-performance liquid chromatography with ultraviolet detection suggested that hyperforin is the major determinant. Our results indicate an interaction between hyperforin and OATP2B1, which is not only known to contribute to hepatocellular uptake but also to intestinal absorption of its substrates. These findings extend the complexity of mechanisms that should be considered when evaluating the interaction potential of SJW preparations.
Collapse
Affiliation(s)
- Anima M Schäfer
- Laboratories of origin: Biopharmacy (A.M.S., I.S., H.E.M.z.S.) and Pharmaceutical Biology (O.P., O.F.), Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Laboratories of origin: Biopharmacy (A.M.S., I.S., H.E.M.z.S.) and Pharmaceutical Biology (O.P., O.F.), Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Laboratories of origin: Biopharmacy (A.M.S., I.S., H.E.M.z.S.) and Pharmaceutical Biology (O.P., O.F.), Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Orlando Fertig
- Laboratories of origin: Biopharmacy (A.M.S., I.S., H.E.M.z.S.) and Pharmaceutical Biology (O.P., O.F.), Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Laboratories of origin: Biopharmacy (A.M.S., I.S., H.E.M.z.S.) and Pharmaceutical Biology (O.P., O.F.), Department Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Lu X, Chan T, Cheng Z, Shams T, Zhu L, Murray M, Zhou F. The 5'-AMP-Activated Protein Kinase Regulates the Function and Expression of Human Organic Anion Transporting Polypeptide 1A2. Mol Pharmacol 2018; 94:1412-1420. [PMID: 30348897 DOI: 10.1124/mol.118.113423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are important membrane proteins that mediate the cellular uptake of drugs and endogenous substances. OATP1A2 is widely distributed in many human tissues that are targeted in drug therapy; defective OATP1A2 leads to altered drug disposition influencing therapeutic outcomes. 5'-AMP-activated protein kinase (AMPK) signaling plays an important role in the pathogenesis of the metabolic syndrome characterized by an increased incidence of type II diabetes and nonalcoholic fatty liver disease. This study investigated the regulatory role of AMPK in OATP1A2 transport function and expression. We found that the treatment of AMPK-specific inhibitor compound C (dorsomorphin dihydrochloride) decreased OATP1A2-mediated uptake of estrone-3-sulfate in a concentration- and time-dependent manner. The impaired OATP1A2 function was associated with a reduced Vmax [154.6 ± 17.9 pmol × (μg × 4 minutes)-1 in compound C-treated cells vs. 413.6 ± 52.5 pmol × (μg × 4 minutes)-1 in controls]; the Km was unchanged. The cell-surface expression of OATP1A2 was decreased by compound C treatment, but total cellular expression was unchanged. The impaired cell-surface expression of OATP1A2 was associated with accelerated internalization and impaired targeting/recycling. Silencing of the AMPK α1-subunit using specific small interfering RNA corroborated the findings with compound C and revealed a role for AMPK in regulating OATP1A2 protein stability. Overall, this study implicated AMPK in the regulation of the function and expression of OATP1A2, which potentially impacts on the disposition of OATP1A2 drug substrates that may be used to treat patients with the metabolic syndrome and other diseases.
Collapse
Affiliation(s)
- Xiaoxi Lu
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Ting Chan
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Zhengqi Cheng
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Tahiatul Shams
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Ling Zhu
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Michael Murray
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Fanfan Zhou
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| |
Collapse
|