1
|
Russano F, Corrado G, Bonadies A, Migliano E, di Giacomo R, Esposito E, Zamagni C, Ala A, Campana L, Fabrizio T, Ghilli M, Palli D, Renne M, Cabula R, Pelle F, Silvestri B, Dieci MV, Guarneri V, Rastrelli M. Prospective multicentre study of patients with cutaneous metastases from breast cancer treated with electrochemotherapy. Clin Exp Metastasis 2025; 42:32. [PMID: 40439892 PMCID: PMC12122555 DOI: 10.1007/s10585-025-10350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/04/2025] [Indexed: 06/02/2025]
Abstract
Electrochemotherapy (ECT) is a local treatment combining chemotherapy with electroporation. This prospective multicentre study aimed to evaluate the efficacy of ECT in the treatment of patients with skin metastases from breast cancer and confirm whether "luminal A-like" tumors are more responsive to treatment. One-hundred and ninety-five patients were included in the analysis. 55% achieved complete response, 27% partial response (objective response OR 82%); 12% stable disease and 5% experienced progressive disease. The analysis by tumor phenotype showed a significant better response rate in Luminal A-like (p = 0.0060) and Luminal B-like (p = 0.0271) groups compared to Triple-Negative. Patients were divided into 4 groups based on the number and size of cutaneous metastases. Higher response rate was observed in patients with small (≤ 3 cm), single or multiple, metastases (OR rate 95% and 90%, respectively); larger tumors (> 3 cm) showed an OR rate of 85%. Tumor response was not affected by the presence of distant metastases, whereas patients with large cutaneous lesions and distant metastases showed a OR rate of 58%. One-year local progression-free survival (LPFS) was 86% (C.I. 82-89%). In the multivariate analysis, patient age and response to ECT were significantly associated with longer LPFS. This study confirms the efficacy of ECT in small-volume cutaneous metastases from breast cancer regardless the presence of systemic disease and suggests higher efficacy in patients with luminal A- and luminal B-like tumors. ECT can be utilized not only as a palliative measure but also as an alternative treatment for patients not eligible for standard treatments, or in combination with them. Trial registered on https://clinicaltrials.gov/study/NCT06683404 (date of registration 11/11/2024) retrospectively registered.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Giacomo Corrado
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | | | | | - Raimondo di Giacomo
- Chirurgia Oncologica di Senologia Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Emanuela Esposito
- Chirurgia Oncologica di Senologia Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Claudio Zamagni
- IRCCS Azienda Ospedaliero-universitaria di Bologna, Bologna, Italy
| | - Ada Ala
- Breast Unit, Città della Salute di Torino, Torino, Italy
| | - Luca Campana
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padova, Padova, Italy
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tommaso Fabrizio
- IRCCS-Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italia
| | - Matteo Ghilli
- Breast Centre, University Hospital of Pisa, Pisa, Italy
| | - Dante Palli
- Breast Unit, UOC Chirurgia Generale, Piacenza, 29121, Italy
| | - Mariuccia Renne
- Chirurgia Senologica/UOC Chirurgia Generale AOU "R. Dulbecco" Catanzaro, Catanzaro, Italy
| | - Roberta Cabula
- Ospedale Oncologico "A.Businco"- ARNAS Cagliari, Cagliari, Italy
| | - Fabio Pelle
- Chirurgia Senologia Istituto Tumori Regina Elena, Roma, Italy
| | - Barbara Silvestri
- Oncology and Haematology Unit, Azienda Unità Sanitaria Locale Socio-Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
2
|
El-Tanani M, Rabbani SA, Babiker R, El-Tanani Y, Satyam SM, Porntaveetus T. Emerging Multifunctional Biomaterials for Addressing Drug Resistance in Cancer. BIOLOGY 2025; 14:497. [PMID: 40427686 PMCID: PMC12108606 DOI: 10.3390/biology14050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Drug resistance remains a major barrier to effective cancer treatment, contributing to poor patient outcomes. Multifunctional biomaterials integrating electrical and catalytic properties offer a transformative strategy to target diverse resistance mechanisms. This review explores their ability to modulate cellular processes, remodel the tumor microenvironment (TME), and enhance drug delivery. Electrically active biomaterials enhance drug uptake and apoptotic sensitivity by altering membrane potentials, ion channels, and intracellular signaling, synergizing with chemotherapy. Catalytic biomaterials generate reactive oxygen species (ROS), activate prodrugs, reprogram hypoxic and acidic TME, and degrade the extracellular matrix (ECM) to improve drug penetration. Hybrid nanomaterials (e.g., conductive hydrogels, electrocatalytic nanoparticles), synergize electrical and catalytic properties for localized, stimuli-responsive therapy and targeted drug release, minimizing systemic toxicity. Despite challenges in biocompatibility and scalability, future integration with immunotherapy, personalized medicine, and intelligent self-adaptive systems capable of real-time tumor response promises to accelerate clinical translation. The development of these adaptive biomaterials, alongside advancements in nanotechnology and AI-driven platforms, represents the next frontier in precision oncology. This review highlights the potential of multifunctional biomaterials to revolutionize cancer therapy by addressing multidrug resistance at cellular, genetic, and microenvironmental levels, offering a roadmap to improve therapeutic outcomes and reshape oncology practice.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | | | - Shakta Mani Satyam
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Thantrira Porntaveetus
- Center of Excellence in Precision Medicine and Digital Health, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
3
|
Kulbacka J, Novickij V. Is electroporation the key to drug delivery in drug-resistant cancers? Expert Opin Drug Deliv 2025; 22:441-445. [PMID: 39985482 DOI: 10.1080/17425247.2025.2471463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
4
|
Rembiałkowska N, Kucharczyk J, Radzevičiūtė-Valčiukė E, Novickij V, Tonci M, Dündar A, Kulbacka J, Szlasa W. Enhancing lung cancer growth inhibition with calcium ions: Role of mid- and high-frequency electric field pulses. Biomed Pharmacother 2024; 181:117691. [PMID: 39557010 DOI: 10.1016/j.biopha.2024.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Calcium electroporation (CaEP) involves the combination of calcium ions with electroporation, which is induced by pulsed electric fields (PEFs). This study explores the application of high-frequency unipolar nanosecond pulsed electric fields (nsPEFs: 8-14 kV/cm, 200 ns, 10 kHz, 100 kHz, 1 MHz repetition frequency pulse bursts, n = 100) and their potential in inhibiting lung cancer cell growth. As a reference, standard microsecond range parametric protocols were used (100 µs x 8 pulses). Methods included cell permeability quantification through Yo-Pro-1 uptake, cell viability assays, immunofluorescence studies for apoptosis and EMT markers, analysis of cell death types depending on repetition frequency pulse bursts. We determined the susceptibility of human lung cancer to electric pulses, characterized the efficacy of CaEP, and investigated cell death types depending on repetition frequency pulse bursts. We have shown that adding calcium ions to the applied nsPEF protocol increases cytotoxicity. Additionally, the use of these electroporation parameters can modulate key cellular processes, such as the epithelial-mesenchymal transition and apoptosis, as indicated by changes in the expression of markers such as E-cadherin, N-cadherin, BCL-2, and p53. Changes in cell morphology over time were observed using holotomographic microscopy. The study provides insights into the modulation of key cellular processes, indicating that nsPEF technology could improve the outcomes of conventional cancer treatments through enhanced efficacy and potentially mitigating drug resistance mechanisms. The promising results advocate for further research to optimize nsPEF protocols for clinical application, highlighting the potential of electrical fields in advancing cancer therapy.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland.
| | - Julia Kucharczyk
- The Students' Research Group, UMW, SKN No. 148, Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland.
| | - Eivina Radzevičiūtė-Valčiukė
- Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Margherita Tonci
- Faculty of Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Ata Dündar
- Faculty of Medicine, Istanbul University Cerrahpaşa, Istanbul, Turkey.
| | - Julita Kulbacka
- Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Wojciech Szlasa
- Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; Medical University Hospital, Wroclaw, Poland.
| |
Collapse
|
5
|
Campana LG, Tauceri F, Bártolo J, Calabrese S, Odili J, Carrara G, Farricha V, Piazzalunga D, Bottyán K, Bisarya K, Mascherini M, Clover JA, Sestini S, Bošnjak M, Kis E, Fantini F, Covarelli P, Brizio M, Sayed L, Cabula C, Careri R, Fabrizio T, Eisendle K, MacKenzie Ross A, Schepler H, Borgognoni L, Sersa G, Valpione S. Treatment strategies with electrochemotherapy for limb in-transit melanoma: Real-world outcomes from a European, retrospective, cohort study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108740. [PMID: 39448361 DOI: 10.1016/j.ejso.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND This study analysed treatment strategies with electrochemotherapy (ECT) in melanoma with limb in-transit metastases (ITM). METHODS We audited AJCC v.8 stage IIIB-IIID patients treated across 22 centres (2006-2020) within the International Network for Sharing Practices of ECT (InspECT). RESULTS 452 patients were included, 58 % pre-treated (93 % had lower limb ITM, 44 % had ≤10 metastases [median size 1.5 cm]. Treatment strategies included first-line ECT (n = 145, 32 %), ECT with concurrent locoregional/systemic treatment (n = 163, 36 %), and salvage ECT (n = 144, 32 %). The objective response rate was 63 % (complete response [CR], 24 %), increasing to 74 % (CR, 39 %) following retreatment (median two ECT, range 1-8). CR rate in treatment-naïve and pre-treated patients was 50 % vs 32 % (p < 0.001). Bleomycin de-escalation was associated with lower CR (p = 0.004). Small tumour number and size, hexagonal electrode, retreatment, and post-ECT skin ulceration predicted response in multivariable analysis. At a median follow-up of 61 months, local and locoregional recurrence occurred in 55 % and 81 % of patients. Median local progression-free, new lesions-free, and regional recurrence-free survival were 32.9, 6.9, and 7.7 months. Grade-3 toxicity was 15 %. Concurrent treatment and CR correlated with improved regional control and survival. Concomitant checkpoint inhibition did not impact toxicity or survival outcomes. The median overall survival was 5.7 years. CONCLUSIONS Among patients with low-burden limb-only ITM, standard-dose bleomycin ECT results in durable local response. Treatment naivety, low tumour volume, hexagonal electrode application, retreatment, and post-ECT ulceration predict response. CR and concurrent treatment correlate with improved regional control and survival outcomes. Combination with checkpoint inhibitors is safe but lacks conclusive support.
Collapse
Affiliation(s)
- Luca G Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester, UK; Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | - Francesca Tauceri
- General and Oncological Surgery Unit, Morgagni-Pierantoni Hospital, Forli, Italy
| | - Joana Bártolo
- Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Sarah Calabrese
- Department of Plastic Surgery, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Joy Odili
- Department of Plastic and Reconstructive Surgery, St Georges University Hospitals NHS Foundation Trust, London, UK
| | - Giulia Carrara
- General and Emergency Surgery Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Victor Farricha
- Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Dario Piazzalunga
- General and Emergency Surgery Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Kriszta Bottyán
- Department of Dermatology and Allergology, University of Szeged, H-6720, Szeged, Hungary
| | - Kamal Bisarya
- Department of Plastic Surgery, Hull Royal Infirmary, Hull, UK
| | - Matteo Mascherini
- Department of Surgery, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - James A Clover
- Department of Plastic Surgery, Cork University Hospital, Cork, Ireland
| | - Serena Sestini
- Plastic and Reconstructive Surgery, Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, Florence, Italy
| | - Maša Bošnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Erika Kis
- Department of Dermatology and Allergology, University of Szeged, H-6720, Szeged, Hungary
| | - Fabrizio Fantini
- Dermatology Unit, ASST Lecco, Alessandro Manzoni Hospital, Lecco, Italy
| | - Piero Covarelli
- Surgical Oncology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Brizio
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Italy
| | - Leela Sayed
- Plastic Surgery Unit, Salisbury District Hospital, Salisbury, UK
| | - Carlo Cabula
- Chirurgia Senologica Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Rosanna Careri
- Department of Dermatology and Plastic Surgery, University La Sapienza, Rome, Italy
| | - Tommaso Fabrizio
- Plastic Surgery Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Klaus Eisendle
- Department of Dermatology and Venerology, Central Teaching Hospital Bolzano, Bolzano, Italy
| | | | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Lorenzo Borgognoni
- Plastic and Reconstructive Surgery, Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, Florence, Italy
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Valpione
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Oncological Sciences, The University of Manchester, Manchester, UK; Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Wu Z, Tao C, Yang L, Yan Y, Pan L, Zhang L. Treatment benefit of electrochemotherapy for superficial squamous cell carcinoma: a systematic review and single-arm meta-analysis. Clin Transl Oncol 2024; 26:2608-2617. [PMID: 38758386 DOI: 10.1007/s12094-024-03522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Treating aggressive superficial squamous cell carcinoma (SCC) poses challenges due to invasiveness. Palliative care is recommended for inoperable cases with extensive tumors near vital organs, risking disfigurement or functional impairment. Electrochemotherapy (ECT) is an emerging cutaneous tumor treatment, but its efficacy against superficial SCC remains uncertain. This study conducts a systematic review and single-arm meta-analysis to evaluate ECT's effectiveness against superficial SCC and provide current evidence for clinical practice. METHODS Embase, PubMed and Cochrane Library were searched for studies up to May 2023. The random effects model analyzed complete response (CR) and partial response (PR), with subgroup assessment based on drug dosage, treatment response evaluation, tumor size, primary/recurrent status, and tumor location. RESULTS Ten studies involving 162 patients and 208 tumors were included. Pooled CR and PR rates for ECT-treated superficial SCC were 66.5% (95% CI 48.4%-82.5%; I2 = 84%) and 20.3% (95% CI 10.5%-32.3%; I2 = 70%), respectively. Subgroup analysis indicated ECT's superiority in treating primary tumors (PR: 70%, CR: 30%) and tumors ≤ 3 cm (PR: 81.3%, CR: 10.1%) compared to recurrent tumors (PR: 56.7%, CR: 36.5%) and tumors > 3 cm (PR: 45.2%, CR: 34.4%). CONCLUSION This single-arm meta-analysis confirms ECT's efficacy against superficial SCC, especially in primary tumors and those ≤ 3 cm in diameter. The study highlights the impact of tumor location and response evaluation on ECT's benefits, warranting further investigation through additional research.
Collapse
Affiliation(s)
- Zhuoxia Wu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Chen Tao
- School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Liehao Yang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yan Yan
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Lingfeng Pan
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| |
Collapse
|
7
|
Russano F, Brugnolo D, Bisetto G, Del Fiore P, Rastrelli M, Mocellin S, Dall'Olmo L. Electrochemotherapy Treatment in a Patient with an Extended Basal Cell Carcinoma of the Face: A Case Report. J Pers Med 2024; 14:984. [PMID: 39338238 PMCID: PMC11432816 DOI: 10.3390/jpm14090984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Basal cell carcinomas (BCCs) are common human malignancies with a rising incidence in recent years. While BCCs have a low mortality rate, they are often associated with significant local skin damage characterized by erythema, skin ulceration, and persistent pigmentation. Surgery, radiotherapy, and systemic chemotherapy have traditionally been the principal treatments for these skin injuries. However, electrochemotherapy has recently been proposed as a novel local treatment with promising results for various skin cancers, including BCC, while avoiding the side effects of conventional therapies. ECT involves a local electrical stimulus that enhances cell membrane permeability, thereby enabling the targeted intracellular accumulation of the chemotherapeutic agent. CASE REPORT We report a case of a 68-year-old man with an ulcerated BCC, following his progress up to 14 months post-ECT treatment, with positive outcomes. DISCUSSION AND CONCLUSIONS We achieved a complete clinical response and noted an improvement in the patient's quality of life. This technique is fast, repeatable, requires minimal hospitalization, and reduces healthcare costs and adverse effects compared to major surgery. Therefore, it can be considered an alternative or complementary approach to traditional surgery for treating BCC of the head and neck.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology (IOV), 35128 Padua, Italy
| | - Davide Brugnolo
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Giovanni Bisetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology (IOV), 35128 Padua, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology (IOV), 35128 Padua, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology (IOV), 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Luigi Dall'Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology (IOV), 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| |
Collapse
|
8
|
Bougandoura O, Achour Y, Zaoui A. Electroporation in Cancer Therapy: A Simplified Model Derived from the Hodgkin-Huxley Model. Bioelectricity 2024; 6:181-195. [PMID: 39372085 PMCID: PMC11447485 DOI: 10.1089/bioe.2023.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a global health challenge, necessitating effective treatments with fewer side effects. Traditional methods such as chemotherapy and surgery often have complications. Pulsed electric fields and electroporation have emerged as promising approaches to mitigate these challenges. This study presents a comprehensive overview of electroporation as an innovative tool in cancer therapy, encompassing critical elements such as pulse generators and delivery devices. Furthermore, it introduces a simplified reversible electroporation model grounded in the Hodgkin-Huxley model. This model ensures resting potential stability by regulating ionic currents. When membrane charges reach the electroporation threshold, the model swiftly increases the fraction of open pores, resulting in a rapid rise in electroporation current. Conversely, as the transmembrane potential drops below the threshold, the model gradually reduces the fraction of open pores, leading to a gradual decline in electroporation current, indicating pore resealing. This model contributes to easier modeling and implementation of reversible electroporation dynamics, providing a valuable tool for further exploration of electroporation for cancer therapy.
Collapse
Affiliation(s)
| | - Yahia Achour
- UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria
| | - Abdelhalim Zaoui
- Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieure des Technologies Avancées, Algiers, Algeria
| |
Collapse
|
9
|
Bougandoura O, Achour Y, Zaoui A, Starzyński J. Characterizing parameters and incorporating action potentials via the Hodgkin-Huxley model in a novel electric model for living cells. Electromagn Biol Med 2024; 43:187-203. [PMID: 38990565 DOI: 10.1080/15368378.2024.2372107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.
Collapse
Affiliation(s)
| | - Yahia Achour
- UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria
| | - Abdelhalim Zaoui
- Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieur de Technologie, Algiers, Algeria
| | - Jacek Starzyński
- Faculty of Electrical Engineering, Warsaw University of Technology, Warszawa, Poland
| |
Collapse
|
10
|
Giri P, Camarillo I, Sundararajan R. Synergistic Enhancement of TNBC Treatment in African American Women: Integrating Resveratrol with Electrical Pulse Therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039456 DOI: 10.1109/embc53108.2024.10782423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
African American women face a disproportionately big challenge from Triple Negative Breast Cancer (TNBC), the deadliest form of breast cancer, marking a critical issue in the fields of women's health and oncology in the United States. This group experiences a 40% higher mortality rate compared to women of other ethnicities, highlighting a significant disparity, and underscoring the urgent need for the development of targeted, effective treatments, specifically tailored to address these demographic women. Towards this, the efficacy of high intensity, short duration electrical pulses combined with Resveratrol (Resv), a natural polyphenol, as a novel therapeutic agent against TNBC is investigated. Electrical pulses facilitate enhanced drug transport through the opening of pores in cell membrane for those molecules that are normally non-permeable. This approach addresses the challenge of Resv's limited bioavailability and enhances its apoptotic potential. Employing MDA-MB-468 cell line, derived from an African American woman, this study investigates the effects of Resv and electrical pulses (EP) on TNBC cells. The TNBC cells were treated with Resv and subjected to eight pulses of multiple electric fields ranging from 500V/cm to 1200V/cm at 100μs, and at 1Hz, followed by assessments monitoring viability, colony formation, and intracellular reactive oxygen species (ROS) levels. The results indicate an 84% reduction in live cancer cell viability and a 4-fold increase in ROS levels with the combined treatment, suggesting a promising approach to alternative TNBC therapy. This research evaluates a natural bio compound, along with an advanced drug delivery system, targeting a reduction in mortality rates and improved quality of life for TNBC patients.
Collapse
|
11
|
Scuderi M, Dermol-Cerne J, Scancar J, Markovic S, Rems L, Miklavcic D. The equivalence of different types of electric pulses for electrochemotherapy with cisplatin - an in vitro study. Radiol Oncol 2024; 58:51-66. [PMID: 38378034 PMCID: PMC10878774 DOI: 10.2478/raon-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 μs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT. MATERIALS AND METHODS We performed in vitro experiments, exposing Chinese hamster ovary (CHO) cells to conventional ECT pulses, high-frequency bipolar pulses, and millisecond pulses in the presence of different concentrations of cisplatin. We determined cisplatin uptake by inductively coupled plasma mass spectrometry and cisplatin cytotoxicity by the clonogenic assay. RESULTS We observed that the three tested types of pulses potentiate the uptake and cytotoxicity of cisplatin in an equivalent manner, provided that the electric field is properly adjusted for each pulse type. Furthermore, we quantified that the number of cisplatin molecules, resulting in the eradication of most cells, was 2-7 × 107 per cell. CONCLUSIONS High-frequency bipolar pulses and millisecond pulses can potentially be used in ECT to reduce pain and muscle contraction and increase the effect of the immune response in combination with gene electrotransfer, respectively.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Dermol-Cerne
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Stefan Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Bauri S, Tripathi S, Choudhury AM, Mandal SS, Raj H, Maiti P. Nanomaterials as Theranostic Agents for Cancer Therapy. ACS APPLIED NANO MATERIALS 2023; 6:21462-21495. [DOI: 10.1021/acsanm.3c04235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swikriti Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Subham Sekhar Mandal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hans Raj
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
13
|
Qian K, Zhong Z. Research frontiers of electroporation-based applications in cancer treatment: a bibliometric analysis. BIOMED ENG-BIOMED TE 2023; 68:445-456. [PMID: 37185096 DOI: 10.1515/bmt-2023-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Electroporation, the breakdown of the biomembrane induced by external electric fields, has increasingly become a research hotspot for its promising related methods in various kinds of cancers. CONTENT In this article, we utilized CiteSpace 6.1.R2 to perform a bibliometric analysis on the research foundation and frontier of electroporation-based applications in cancer therapy. A total of 3,966 bibliographic records were retrieved from the Web of Science Core Collection for the bibliometric analysis. Sersa G. and Mir L. M. are the most indispensable researchers in this field, and the University of Ljubljana of Slovenia is a prominent institution. By analyzing references and keywords, we found that, with a lower recurrence rate, fewer severe adverse events, and a higher success rate, irreversible electroporation, gene electrotransfer, and electrochemotherapy are the three main research directions that may influence the future treatment protocol of cancers. SUMMARY This article visualized relevant data to synthesize scientific research on electroporation-based cancer therapy, providing helpful suggestions for further investigations on electroporation. OUTLOOK Although electroporation-based technologies have been proven as promising tools for cancer treatment, its radical mechanism is still opaque and their commercialization and universalization need further efforts from peers.
Collapse
Affiliation(s)
- Kun Qian
- Department of High-voltage and Insulation, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Zilong Zhong
- Research Institute of Foreign Languages, Beijing Foreign Studies University, Beijing, China
| |
Collapse
|
14
|
Bocchi MB, Meschini C, Pietramala S, Perna A, Oliva MS, Matrangolo MR, Ziranu A, Maccauro G, Vitiello R. Electrochemotherapy in the Treatment of Bone Metastases: A Systematic Review. J Clin Med 2023; 12:6150. [PMID: 37834793 PMCID: PMC10573742 DOI: 10.3390/jcm12196150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND AND AIM Cancers are one of the most frequent causes of death and disability in humans. Skeletal involvement has a major impact on the quality of life and prognosis of cancer patients. Electrochemotherapy is a palliative and minimally invasive oncologic treatment that was first used to treat subcutaneous nodules for malignant tumors. The aim of our review is to evaluate the results of electrochemotherapy in the treatment of bone metastases. METHODS A systematic review of the literature indexed in the PubMed MEDLINE and Cochrane Library databases using the search key words "electrochemotherapy" AND ("metastasis" OR "metastases") was performed. The Preferred Reporting Items for Systematic Reviews and MetaAnalyses was followed. Inclusion criteria were proven involvement of the appendicular skeleton in metastatic carcinoma or melanoma, through at least one percutaneous electrochemotherapy session on the metastatic bone lesion. The exclusion criterion was no skeletal metastatic involvement. RESULTS Eight articles were finally included. We reached a population of 246 patients. The mean age and follow up were 60.1 years old and 11.4 months, respectively. The most represented primary tumor was breast cancer (18.9%). A total of 250 bone lesions were treated with electrochemotherapy. According to RECIST criteria, in our population we observed 55.5% stable diseases. The mean pre-electrochemotherapy VAS value was 6.9, which lowered to 2.7 after treatment. Adverse events occurred in 3.4% of patients. CONCLUSIONS Electrochemotherapy as a minimally invasive and tissue-sparing treatment should be considered for patients with no other alternative to obtain tumor control and improvement in quality of life.
Collapse
Affiliation(s)
- Maria Beatrice Bocchi
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cesare Meschini
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Silvia Pietramala
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Perna
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Serena Oliva
- Departement of Orthopaedics, Ospedale San Giovanni Evangelista, 00019 Tivoli, Italy
| | - Maria Rosaria Matrangolo
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ziranu
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Raffaele Vitiello
- Department of Orthopaedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Miglbauer E, Abdullaeva OS, Gryszel M, Głowacki ED. Faradaic Fenton Pixel: Reactive Oxygen Species Delivery Using Au/Cr Electrochemistry. Chembiochem 2023; 24:e202300353. [PMID: 37184620 DOI: 10.1002/cbic.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
Collapse
Affiliation(s)
- Eva Miglbauer
- Laboratory of Organic Electronics, Linköping University, Bredgatan 33, 60174, Norrköping, Sweden
| | - Oliya S Abdullaeva
- Division of Nursing and Medical Technology, Luleå University of Technology, 97187, Luleå, Sweden
| | - Maciej Gryszel
- Laboratory of Organic Electronics, Linköping University, Bredgatan 33, 60174, Norrköping, Sweden
| | - Eric Daniel Głowacki
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| |
Collapse
|
16
|
Jacobs IV EJ, Graybill PM, Jana A, Agashe A, Nain AS, Davalos RV. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry 2023; 152:108415. [PMID: 37011476 DOI: 10.1016/j.bioelechem.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
The impact of cell shape on cell membrane permeabilization by pulsed electric fields is not fully understood. For certain applications, cell survival and recovery post-treatment is either desirable, as in gene transfection, electrofusion, and electrochemotherapy, or is undesirable, as in tumor and cardiac ablations. Understanding of how morphology affects cell viability post-electroporation may lead to improved electroporation methods. In this study, we use precisely aligned nanofiber networks within a microfluidic device to reproducibly generate elongated cells with controlled orientations to an applied electric field. We show that cell viability is significantly dependent on cell orientation, elongation, and spread. Further, these trends are dependent on the external buffer conductivity. Additionally, we see that cell survival for elongated cells is still supported by the standard pore model of electroporation. Lastly, we see that manipulating the cell orientation and shape can be leveraged for increased transfection efficiencies when compared to spherical cells. An improved understanding of cell shape and pulsation buffer conductivity may lead to improved methods for enhancing cell viability post-electroporation by engineering the cell morphology, cytoskeleton, and electroporation buffer conditions.
Collapse
|
17
|
Kranjc Brezar S, Medved A, Matkovic U, Sersa G, Markelc B, Bozic T, Jurdana M, Cemazar M. Effect of electrochemotherapy on myogenesis of mouse C2C12 cells in vitro. Bioelectrochemistry 2023; 153:108487. [PMID: 37354641 DOI: 10.1016/j.bioelechem.2023.108487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Electrochemotherapy (ECT) is a local ablative therapy for the treatment of different skin and subcutaneous tumors and certain tumors in internal organs. Skeletal muscle represents a major tumor- surrounding tissue, exposed to side effects of ECT. At the cellular level, side-effects of ECT on skeletal muscle and underlying mechanisms have not been examined yet. Thus, we aimed to determine the effect of ECT in the mouse muscle cell line C2C12 during in vitro myogenesis. We evaluated the electroporation efficiency and viability of C2C12 myotubes at increasing voltages (200-1300 V/cm) using propidium iodide (PI). Permeabilization of PI into the cells was voltage-dependent accounting up to 97 % efficiency at the highest voltage. High cell viability and myotube integrity were maintained until 4 days after electroporation. ECT with the cytostatic drugs bleomycin and cisplatin decreased the viability of C2C12 myoblasts and myotubes in a dose-dependent manner. However, myoblasts were more sensitive to ECT than myotubes. Increased secretion of IL-6, observed 3 days after ECT, confirming its effects on early myogenesis. Only minor effects of ECT were observed in treated myotubes. These results contribute to the safety profile of ECT in tumor treatment.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Ajda Medved
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Urska Matkovic
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Tim Bozic
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Mihaela Jurdana
- University of Primorska, Faculty of Health Sciences, Polje 42, Izola, Slovenia.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, Izola, Slovenia.
| |
Collapse
|
18
|
Perera-Bel E, Aycock KN, Salameh ZS, Gomez-Barea M, Davalos RV, Ivorra A, Ballester MAG. PIRET-A Platform for Treatment Planning in Electroporation-Based Therapies. IEEE Trans Biomed Eng 2023; 70:1902-1910. [PMID: 37015676 PMCID: PMC10281020 DOI: 10.1109/tbme.2022.3232038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue electroporation is the basis of several therapies. Electroporation is performed by briefly exposing tissues to high electric fields. It is generally accepted that electroporation is effective where an electric field magnitude threshold is overreached. However, it is difficult to preoperatively estimate the field distribution because it is highly dependent on anatomy and treatment parameters. OBJECTIVE We developed PIRET, a platform to predict the treatment volume in electroporation-based therapies. METHODS The platform seamlessly integrates tools to build patient-specific models where the electric field is simulated to predict the treatment volume. Patient anatomy is segmented from medical images and 3D reconstruction aids in placing the electrodes and setting up treatment parameters. RESULTS Four canine patients that had been treated with high-frequency irreversible electroporation were retrospectively planned with PIRET and with a workflow commonly used in previous studies, which uses different general-purpose segmentation (3D Slicer) and modeling software (3Matic and COMSOL Multiphysics). PIRET outperformed the other workflow by 65 minutes (× 1.7 faster), thanks to the improved user experience during treatment setup and model building. Both approaches computed similarly accurate electric field distributions, with average Dice scores higher than 0.93. CONCLUSION A platform which integrates all the required tools for electroporation treatment planning is presented. Treatment plan can be performed rapidly with minimal user interaction in a stand-alone platform. SIGNIFICANCE This platform is, to the best of our knowledge, the most complete software for treatment planning of irreversible electroporation. It can potentially be used for other electroporation applications.
Collapse
|
19
|
Mendoza-Tinoco TP, Sánchez-Vázquez V, Del Carmen Fajardo-Ortiz M, González I, Beristain-Cardoso R. How does a low-magnitude electric field influence anaerobic digestion in wastewater treatment? A review. CHEMOSPHERE 2023; 325:138402. [PMID: 36921776 DOI: 10.1016/j.chemosphere.2023.138402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) is a physio-biochemical process widely used for treating industrial or municipal wastewater with concomitant methane production. Several technologies have been tested to improve AD's efficiency, like pretreatments and co-digestion, among others. Recently the imposition of a low-magnitude electric field (LMEF) has been applied at the AD to improve methane yield. Despite the positive results of imputing an electric field, many gaps are not understood yet. Therefore, this review focuses on the biochemical aspects of AD and electric field for a better understanding of the effect of the LMEF on the metabolisms of the AD during wastewater treatment and its application in methane production enhancement.
Collapse
Affiliation(s)
- Tania Paola Mendoza-Tinoco
- Departamento de Biotecnología, Av. San Rafael Atlixco, No. 186, Col. Leyes de Reforma, C.P. 09310, Ciudad de México, Mexico
| | - Víctor Sánchez-Vázquez
- Departamento de Ingeniería de Procesos e Hidráulica, Av. San Rafael Atlixco, No. 186, Col. Leyes de Reforma, C.P. 09310, Ciudad de México, Mexico
| | - María Del Carmen Fajardo-Ortiz
- Departamento de Biotecnología, Av. San Rafael Atlixco, No. 186, Col. Leyes de Reforma, C.P. 09310, Ciudad de México, Mexico
| | - Ignacio González
- Departamento de Química, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco, No. 186, Col. Leyes de Reforma, C.P. 09310, Ciudad de México, Mexico
| | - Ricardo Beristain-Cardoso
- Departamento de Recursos de La Tierra, Universidad Autónoma Metropolitana Unidad Lerma, Av. De Las Garzas, No, 10, Col. El Panteón, C.P.52005, Municipio Lerma de Villada, Estado de México, Mexico.
| |
Collapse
|
20
|
Kesar U, Markelc B, Jesenko T, Ursic Valentinuzzi K, Cemazar M, Strojan P, Sersa G. Effects of Electrochemotherapy on Immunologically Important Modifications in Tumor Cells. Vaccines (Basel) 2023; 11:vaccines11050925. [PMID: 37243029 DOI: 10.3390/vaccines11050925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Electrochemotherapy (ECT) is a clinically acknowledged method that combines the use of anticancer drugs and electrical pulses. Electrochemotherapy with bleomycin (BLM) can induce immunogenic cell death (ICD) in certain settings. However, whether this is ubiquitous over different cancer types and for other clinically relevant chemotherapeutics used with electrochemotherapy is unknown. Here, we evaluated in vitro in the B16-F10, 4T1 and CT26 murine tumor cell lines, the electrochemotherapy triggered changes in the ICD-associated damage-associated molecular patterns (DAMPs): Calreticulin (CRT), ATP, High Mobility Group Box 1 (HMGB1), and four immunologically important cellular markers: MHCI, MHC II, PD-L1 and CD40. The changes in these markers were investigated in time up to 48 h after ECT. We showed that electrochemotherapy with all three tested chemotherapeutics induced ICD-associated DAMPs, but the induced DAMP signature was cell line and chemotherapeutic concentration specific. Similarly, electrochemotherapy with CDDP, OXA or BLM modified the expression of MHC I, MHC II, PD-L1 and CD40. The potential of electrochemotherapy to change their expression was also cell line and chemotherapeutic concentration specific. Our results thus put the electrochemotherapy with clinically relevant chemotherapeutics CDDP, OXA and BLM on the map of ICD inducing therapies.
Collapse
Affiliation(s)
- Ursa Kesar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Sremački I, Asadian M, De Geyter N, Leys C, Geris L, Nikiforov A. Potentials of a Plasma-Aerosol System for Wound Healing Advanced by Drug Introduction: An In Vitro Study. ACS Biomater Sci Eng 2023; 9:2392-2407. [PMID: 37129346 DOI: 10.1021/acsbiomaterials.2c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cold plasmas have found their application in a wide range of biomedical fields by virtue of their high chemical reactivity. In the past decades, many attempts have been made to use cold plasmas in wound healing, and within this field, many studies have focused on plasma-induced cell proliferation mechanisms. In this work, one step further has been taken to demonstrate the advanced role of plasma in wound healing. To this end, the simultaneous ability of plasma to induce cell proliferation and permeabilize treated cells has been examined in the current study. The driving force was to advance the wound healing effect of plasma with drug delivery. On this subject, we demonstrate in vitro the healing effect of Ar, Ar+N2 plasma, and their aerosol counterparts. A systematic study has been carried out to study the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cell adhesion, signaling, differentiation, and proliferation. An additional investigation was also performed to study the permeabilization of cells and the delivery of the modeled drug carrier fluorescein isothiocyanate (FITC) labeled dextran into cells upon plasma treatment. Short 35 s plasma treatments were found to promote fibroblast adhesion, migration, signaling, proliferation, and differentiation by means of reactive oxygen and nitrogen species (RONS) created by plasma and deposited into the cell environment. The impact of the plasma downstream products NO2- and NO3- on the expressions of the focal adhesion's genes, syndecans, and collagens was observed to be prominent. On the other hand, the differentiation of fibroblasts to myofibroblasts was mainly initiated by ROS produced by the plasma. In addition, the ability of plasma to locally permeabilize fibroblast cells was demonstrated. During proliferative cell treatment, plasma can simultaneously induce cell membrane permeabilization (d ∼ 7.3 nm) by the species OH and H2O2. The choice for a plasma or a plasma-aerosol configuration thus allows the possibility to change the spatial chemistry of drug delivery molecules and thus to locally deliver drugs. Accordingly, this study offers a pivotal step toward plasma-assisted wound healing advanced by drug delivery.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Mahtab Asadian
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
- Biomechanics Research Unit, Liège University, GIGA In Silico Medicine, Quartier Hôpital avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|
22
|
Niccolò A, Elena M, Nadiane P, Barbara M, Gianlorenzo I, Dario P. Electrochemotherapy with bleomycin as an effective local treatment for Kaposi's sarcoma: a case report. Anticancer Drugs 2023; 34:589-591. [PMID: 36730383 PMCID: PMC9997621 DOI: 10.1097/cad.0000000000001427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/01/2022] [Indexed: 02/04/2023]
Abstract
An elderly female patient with a long-standing history of Kaposi's sarcoma of the lower limbs was referred to the Surgical Department after the subsequential failure of multiple lines of systemic chemotherapy. The patient was also complaining of increasing symptoms including intractable pruritus, which negatively impacted her quality of life. She underwent palliative electrochemotherapy with bleomycin (15 g/m 2 ) on the sarcomatous lesions of the left foot and ankle, which lead to complete clinical response and resolution of symptoms; no adverse events were reported. Electrochemotherapy is a valid option in the palliative treatment of Kaposi's sarcoma, as it may lead to satisfactory clinical response and symptom control.
Collapse
|
23
|
de Castro Cunha RM, Lavalle GE, Nunes FC, de Oliveira AR, de Lima Santos R, de Araújo RB. Canine squamous cell carcinoma: Electrochemotherapy association with surgery and correlation with overall survival. Vet Comp Oncol 2023; 21:240-254. [PMID: 36745052 DOI: 10.1111/vco.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
Squamous cell carcinoma (SCC) is an important malignancy in dogs, due to its incidence and clinical presentation, which can be of locally aggressive single or multiple lesions with a metastatic potential. The objective of this investigation was to evaluate SCC response to treatment, anatomopathological and immunohistochemical characteristics, disease-free interval and overall survival time. 54 dogs with histopathologically diagnosed SCC were included in this study. Their mean age was 9.16 years with a range of 1-14 years. Of the 54 animals in the study, 34 (65.4%) had white skin and white fur coats. There was a significant correlation between fur coat colour and the development of tumours in areas of sun exposure (p = .001). Animals with tumours in areas of the body exposed to the sun had longer overall survival time than animals with tumours in areas not associated with sun exposure (p = .001). Surgery combined with electrochemotherapy (ECT) yielded a survival rate 32% higher than using a surgical approach alone (HR = 0.32, p = .038, IC = 0.11-0.94). ECT, with or without surgery, had an objective response rate of 90.9%. Local lymph node and/or distant site metastasis at diagnosis, or at some point during follow-up, occurred in 34.6% (18/52) of animals. Animals with tumours in sun exposed locations had more aggressive histopathological characteristics but had longer overall survival time. This is probably due to individualised therapeutic treatment with both surgery and ECT.
Collapse
Affiliation(s)
- Rúbia Monteiro de Castro Cunha
- Department of Veterinary Clinic and Surgery, Veterinary School, Veterinary Hospital, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gleidice Eunice Lavalle
- Department of Veterinary Clinic and Surgery, Veterinary School, Veterinary Hospital, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Ayisa Rodrigues de Oliveira
- Department of Veterinary Pathology, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renato de Lima Santos
- Department of Veterinary Pathology, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roberto Baracat de Araújo
- Department of Veterinary Clinic and Surgery, Veterinary School, Veterinary Hospital, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
24
|
Heinzelmann J, Hecht S, Vogt AR, Siebolts U, Kaatzsch P, Viestenz A. Repetitive Bleomycin-Based Electrochemotherapy Improves Antitumor Effectiveness in 3D Tumor Models of Conjunctival Melanoma. J Clin Med 2023; 12:jcm12031087. [PMID: 36769736 PMCID: PMC9917688 DOI: 10.3390/jcm12031087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Conjunctival melanoma (CM) is associated with a high rate of local recurrence and poor survival rate. Novel therapeutic options are needed to reduce recurrence rate. The objective of the study was to demonstrate the improved effectiveness of electrochemotherapy (ECT) on CM using repetitive application. METHODS Tumor spheroids of three CM cell lines (CRMM1, CRMM2, CM2005.1) were treated repetitively with ECT using the chemotherapeutic agent bleomycin on days 3, 5, and 7 of culture. Application of bleomycin alone and electroporation alone served as controls. The cytotoxic effect was analyzed on day 10 compared to untreated control using an independent t-test. The spheroid outgrowth rate was measured. RESULT CM tumor spheroid size (median value: 78%, SD: 32%) and viability (median value: 11%, SD: 11%) were dramatically reduced after repetitive ECT treatment (p-value < 0.001). Decreased proliferation capacity (down to 8%) and an increase of apoptotic cells were observed. In most repetitive ECT-treated spheroids, no viable or proliferating cells were detected. Only 33-40% of repetitive ECT-treated spheroids exhibited single outgrowing cells with a delay of time up to 38 days. CONCLUSION Repetitive ECT application effectively induces cytotoxic effects in CM spheroids by inducing apoptosis, inhibiting proliferation and decreasing the percentage of surviving tumor cells. Thus, repetitive ECT results in improved antitumor effectiveness in CM and could be an alternative therapy option.
Collapse
Affiliation(s)
- Joana Heinzelmann
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
- Correspondence:
| | - Sabine Hecht
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| | - Alexander Ruben Vogt
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| | - Udo Siebolts
- Institute of Pathology, University Hospital Halle-Wittenberg, 06112 Halle, Germany
- Institute of Pathology, University Hospital Köln, 50996 Köln, Germany
| | - Peter Kaatzsch
- Institute of Pathology, University Hospital Halle-Wittenberg, 06112 Halle, Germany
| | - Arne Viestenz
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
25
|
Malyško-Ptašinskė V, Staigvila G, Novickij V. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments. Front Bioeng Biotechnol 2023; 10:1094968. [PMID: 36727038 PMCID: PMC9885012 DOI: 10.3389/fbioe.2022.1094968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Electroporation is an effective physical method for irreversible or reversible permeabilization of plasma membranes of biological cells and is typically used for tissue ablation or targeted drug/DNA delivery into living cells. In the context of cancer treatment, full recovery from an electroporation-based procedure is frequently dependent on the spatial distribution/homogeneity of the electric field in the tissue; therefore, the structure of electrodes/applicators plays an important role. This review focuses on the analysis of electrodes and in silico models used for electroporation in cancer treatment and gene therapy. We have reviewed various invasive and non-invasive electrodes; analyzed the spatial electric field distribution using finite element method analysis; evaluated parametric compatibility, and the pros and cons of application; and summarized options for improvement. Additionally, this review highlights the importance of tissue bioimpedance for accurate treatment planning using numerical modeling and the effects of pulse frequency on tissue conductivity and relative permittivity values.
Collapse
Affiliation(s)
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
26
|
Giri P, Camarillo IG, Sundararajan R. Enhancement of reactive oxygen species production in triple negative breast cancer cells treated with electric pulses and resveratrol. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:42-56. [PMID: 36937321 PMCID: PMC10017187 DOI: 10.37349/etat.2023.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 03/04/2023] Open
Abstract
Aim Triple negative breast cancer (TNBC) is difficult to treat since it lacks all the three most commonly targeted hormone receptors. Patients afflicted with TNBC are treated with platinum core chemotherapeutics, such as cisplatin. Despite the initial effective anticancer effects of cisplatin, TNBC attenuates its effect and develops resistance eventually, which results in tumor reoccurrence. Hence, there is a critical demand for effective, alternative, and natural ways to treat TNBC. Towards this, a promising technique for inhibiting TNBC cell proliferation involves promoting the production of reactive oxygen species (ROS), which triggers pro-apoptotic caspases 9 and 3. Resveratrol (RESV), an active bio compound found in naturally available fruits, such as grapes, is utilized in this research for that. In addition, electrochemotherapy (ECT), which involves the application of electrical pulses (EP), was utilized to enhance the uptake of RESV. Methods MDA-MB-231, human TNBC cells were treated with/out RESV, and eight 600-1,000 V/cm, 100 μs pulses at 1 Hz. The cells were characterized by using various assays, including viability assay, and ROS assay. Results A TNBC cell viability of as low as 20% was obtained at 24 h (it was 13% at 60 h), demonstrating the potential of this novel treatment. ROS production was the highest in the combination of EP at 1,000 V/cm along with RESV at 100 μmol/L. Conclusions Results indicate that RESV has the potential as an anti-TNBC agent and that EP + RESV can significantly enhance the cell death to reduce MDA-MB-231 cell viability by increasing ROS production and triggering apoptosis.
Collapse
Affiliation(s)
- Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G. Camarillo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: Raji Sundararajan, School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
28
|
High-Frequency Nanosecond Bleomycin Electrochemotherapy and its Effects on Changes in the Immune System and Survival. Cancers (Basel) 2022; 14:cancers14246254. [PMID: 36551739 PMCID: PMC9776811 DOI: 10.3390/cancers14246254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4+ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4+ Tr1 cells, increased the expansion of splenic CD8+ T, CD4+CD8+ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Lin- population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
Collapse
|
29
|
Novickij V, Rembiałkowska N, Kasperkiewicz-Wasilewska P, Baczyńska D, Rzechonek A, Błasiak P, Kulbacka J. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184055. [PMID: 36152727 DOI: 10.1016/j.bbamem.2022.184055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Pulsed electric fields (PEFs) are commonly used to facilitate the delivery of various molecules, including pharmaceuticals, into living cells. However, the applied protocols still require optimization regarding the conditions of the permeabilization process, i.e., pulse waveform, voltage, duration, and the number of pulses in a burst. This study highlights the importance of electrochemical processes involved in the electropermeabilization process, known as electroporation. This research investigated the effects of electroporation on human non-small cell lung cancer cells (A549) in potassium (SKM) and HEPES-based buffers (SHM) using sub-microsecond and microsecond range pulses. The experiments were performed using 100 ns - 100 μs (0.6-15 kV/cm) bursts with 8 pulses in a sequence. It was shown that depending on the buffer composition, the susceptibility of cells to PEF varies, while calcium enhances the cytotoxic effects of PEF, if high cell membrane permeabilization is triggered. It was also determined that electroporation with calcium ions induces oxidative stress in cells, including lipid peroxidation (LPO), generation of reactive oxygen species (ROS), and neutral lipid droplets. Here, we demonstrated that calcium ions and optimized pulse parameters could potentiate PEF efficacy and oxidative alternations in lung cancer cells. Thus, the anticancer efficacy of PEF in lung cancers in combination with standard cytostatic drugs or calcium ions should be considered, but this issue still requires in-depth detailed studies with in vivo models.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
30
|
Krt A, Cemazar M, Lovric D, Sersa G, Jamsek C, Groselj A. Combining superselective catheterization and electrochemotherapy: A new technological approach to the treatment of high-flow head and neck vascular malformations. Front Oncol 2022; 12:1025270. [PMID: 36523962 PMCID: PMC9745808 DOI: 10.3389/fonc.2022.1025270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION The study aims to demonstrate a combination of superselective catheterization and electrochemotherapy as a feasible and effective new technological approach in treating high-flow vascular malformations of the head and neck region. PATIENTS AND METHODS In the patient with high-flow arteriovenous malformation of the lower lip, superselective catheterization was performed under general anesthesia. The microcatheter was used to administer 750 IU BLM intra-arterially into the feeding vessel. The whole malformation surface was then covered with 15 applications of electric pulses using the plate electrode. RESULTS Excellent response, without functional or aesthetic deficits, was obtained in 10 weeks. During this period, debridement and necrectomy were performed regularly on follow-up visits. The pain was managed with oral paracetamol and sodium metamizole. CONCLUSION Combining electrochemotherapy using bleomycin with superselective catheterization and arteriography is a feasible treatment option for high-flow vascular malformations in the head and neck region and could play a significant role in managing these challenging lesions.
Collapse
Affiliation(s)
- Aljosa Krt
- Department of Otorhinolaryngology, Izola General Hospital, Izola, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dimitrij Lovric
- Department of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Crt Jamsek
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Groselj
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Benedik J, Ogorevc B, Brezar SK, Cemazar M, Sersa G, Groselj A. Comparison of general anesthesia and continuous intravenous sedation for electrochemotherapy of head and neck skin lesions. Front Oncol 2022; 12:1011721. [PMID: 36465339 PMCID: PMC9717680 DOI: 10.3389/fonc.2022.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
BackgroundElectrochemotherapy of cutaneous tumor nodules requires local or general anesthesia. For multiple and larger nodules, general anesthesia is recommended by standard operating procedures. The choice of general anesthesia is at the discretion of the treating center. Continuous intravenous sedation is also an option. Our study aimed to elucidate the tolerability, safety and possible advantages of continuous intravenous sedation in comparison to general anesthesia in patients undergoing electrochemotherapy.Patients and methodsIn the prospective study, 27 patients undergoing electrochemotherapy were either under general anesthesia or under continuous intravenous sedation. Evaluated were different endpoints, such as feasibility and safety, duration of anesthesia and compliance with the patients.ResultsTen patients were treated under general anesthesia, and 17 patients were under continuous intravenous sedation. The comparison of the approaches indicated that continuous intravenous sedation required a lower overall dosage of propofol, a shorter duration of anesthesia, a shorter time to reach an Aldrete score >8, and greater satisfaction of the patients with the procedure compared to general anesthesia.ConclusionThe results indicate the feasibility and safety of continuous intravenous sedation for patients undergoing electrochemotherapy of cutaneous tumor nodules. This proved the preferred choice of anesthesia due to its shorter duration and better compliance with the patients compared to general anesthesia.
Collapse
Affiliation(s)
- Janez Benedik
- Department of Anesthesiology and Perioperative Intensive Care Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Ogorevc
- Department of Anesthesiology and Perioperative Intensive Care Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Ales Groselj, ; Gregor Sersa,
| | - Ales Groselj
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: Ales Groselj, ; Gregor Sersa,
| |
Collapse
|
32
|
Kulbacka J, Rembiałkowska N, Szewczyk A, Rossowska J, Drąg-Zalesińska M, Kulbacki M, Choromańska A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int J Mol Sci 2022; 23:12943. [PMID: 36361727 PMCID: PMC9657809 DOI: 10.3390/ijms232112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Division of Human Morpholog and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Kulbacki
- Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
- DIVE IN AI, 53-307 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
33
|
Michel O, Szlasa W, Baczyńska D, Saczko J, Tarek M, Kulbacka J. The role of catechin in electroporation of pancreatic cancer cells - Effects on pore formation and multidrug resistance proteins. Bioelectrochemistry 2022; 147:108199. [PMID: 35841647 DOI: 10.1016/j.bioelechem.2022.108199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Catechin is a bioflavonoid known for its anti-cancer properties. In the present study, we combined theoretical and experimental approaches to reveal the potential of catechin application in the electroporation (EP) or electrochemotherapy (ECT) of pancreatic cancer cells. The molecular dynamics simulations were implemented to examine the interactions of catechin with a model of a membrane, its influence on the membrane's thickness, and the impact of the catechin-membrane interaction on the pore formation. The data were confronted with experimental measurement of the threshold electric field required for permeabilization of pancreatic cancer cells to a fluorescent dye YO-PRO-1. Further, we examined the influence of catechin on cell viability following electroporation with cisplatin or calcium ions. Finally, we investigated the catechin impact on four proteins associated with multidrug resistance: P-glycoprotein, MRP1, BCRP, and LRP. We demonstrated that catechin may boost the effects of electroporation through various mechanisms: i) increasing the cell permeability prior to electroporation ii) increasing the electroporation threshold iii) sensitization of cells to chemotherapeutic compounds. We showed that catechin incubation influences mRNA levels and mitigates the immunoreactivity of Pgp, MRP1, BCRP, and LRP but these changes did not translate to the efficacy of electrochemotherapy.
Collapse
Affiliation(s)
- Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Mounir Tarek
- CNRS, Université de Lorraine, Campus Sciences BP 70239 54506, Vandœuvre-lès-Nancy, France.
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
34
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
35
|
Tellado M, Mir LM, Maglietti F. Veterinary Guidelines for Electrochemotherapy of Superficial Tumors. Front Vet Sci 2022; 9:868989. [PMID: 35968026 PMCID: PMC9363792 DOI: 10.3389/fvets.2022.868989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Electrochemotherapy (ECT) consists in the application of electric pulses to increase chemotherapeutic drug intake (bleomycin, cisplatin, or calcium) into the tumor cells. It has become a very valuable treatment option in veterinary oncology. It is an effective and safe treatment modality, which is not only beneficial as a palliative treatment, but also for a curative approach. Performing the treatment adequately will ensure the best results possible, in the minimum number of sessions, and reduce complications. Usually, only one session is enough to achieve excellent results, but the treatment can be repeated. Several sessions can be necessary in the case of incompletely treated or very extended lesions, as well as in the occurrence of new lesions. ECT is effective for superficial or oral tumors of any histology that are accessible to the electrodes. Intravenous bleomycin is the preferred drug and route of administration, leaving other ways of administration and drugs for selected cases. The guidelines presented here are destined to veterinarians who want to develop their understanding of the basis of ECT and wish to perform it adequately and effectively. In this paper, we also discuss common problems and how to solve them, and we include practical tips to improve the treatment results based on common questions and mistakes of beginner users.
Collapse
Affiliation(s)
| | - Lluis M. Mir
- Université Paris-Saclay, CNRS, Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis (METSY), Île-de-France, France
| | - Felipe Maglietti
- Instituto Universitario del Hospital Italiano-CONICET, Buenos Aires, Argentina
- *Correspondence: Felipe Maglietti
| |
Collapse
|
36
|
Campana LG, Quaglino P, de Terlizzi F, Mascherini M, Brizio M, Spina R, Bertino G, Kunte C, Odili J, Matteucci P, MacKenzie Ross A, Schepler H, Clover JAP, Kis E. Health-related quality of life trajectories in melanoma patients after electrochemotherapy: real-world insights from the InspECT register. J Eur Acad Dermatol Venereol 2022; 36:2352-2363. [PMID: 35870122 DOI: 10.1111/jdv.18456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Electrochemotherapy (ECT) effectively controls skin metastases from cutaneous melanoma. OBJECTIVES This study aimed to evaluate health-related quality of life (HRQoL) in melanoma patients pre-/post-ECT and its effect on treatment outcome. METHODS The analysis included prospective data from the International Network for Sharing Practices of ECT register. Following the Standard Operating Procedures, patients received intravenous or intratumoural bleomycin (15,000 IU/m2 ; 1000 IU mL/cm3 ) followed by 100-microsecond, 1000-V/cm electric pulses. Endpoints included response (RECIST v3.0), local progression-free survival (LPFS), toxicity (CTCAE v5.0), and patient-reported HRQoL at baseline, one, two, four and ten months (EuroQol [EQ-5D-3L], including 5-item utility score [EQ-5D] and visual analogue scale for self-reported health state [EQ-VAS]). Comparisons within/between subgroups were made for statistical and minimal important differences (MID). HRQoL scores and clinical covariates were analysed to identify predictors of response in multivariate analysis. RESULTS Median tumour size was 2 cm. Complete response rate, G3 toxicity and one-year LPFS in 378 patients (76% of the melanoma cohort) were 47%, 5%, and 78%. At baseline, age-paired HRQoL did not differ from the general European population. Following ECT, both EQ-5D and EQ-VAS scores remained within MID boundaries, particularly among complete responders. A subanalysis of the EQ-5D items revealed a statistically significant deterioration in pain/discomfort and mobility (restored within four months), and self-care and usual activities (throughout the follow-up) domains. Concomitant checkpoint inhibition correlated with better EQ-5D and EQ-VAS trajectories. Baseline EQ-5D was the exclusive independent predictor for complete response (RR 14.76, p=0.001). CONCLUSIONS HRQoL of ECT melanoma patients parallels the general population and is preserved in complete responders. Transient deterioration in pain/discomfort and mobility and persistent decline in self-care and usual activities may warrant targeted support interventions. Combination with checkpoint inhibitors is associated with better QoL outcomes. Baseline HRQoL provides predictive information which can help identify patients most likely to respond.
Collapse
Affiliation(s)
- L G Campana
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, UK
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - P Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Italy
| | - F de Terlizzi
- Biophysics Department, IGEA S.p.A., 41012 Carpi, Modena, Italy
| | - M Mascherini
- Department of Surgical Sciences, Polyclinic Hospital San Martino, Genoa, Italy
| | - M Brizio
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Italy
| | - R Spina
- Psychology Unit, University Hospital of Padua, Padua, Italy
| | - G Bertino
- Department of Otolaryngology-Head Neck Surgery, Policlinico San Matteo Foundation IRCCS, Pavia University, Pavia, Italy
| | - C Kunte
- Department of Dermatosurgery and Dermatology, Artemed Fachklinik, Munich, Germany
| | - J Odili
- Department of Plastic Surgery, St. Georges University Hospitals NHS Trust, London, UK
| | - P Matteucci
- Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - A MacKenzie Ross
- Department of Plastic and Reconstructive Surgery, St Thomas' Hospital, UK
| | - H Schepler
- Department of Dermatology, University Medical Center, Johannes Gutenberg University KöR, Mainz, Germany
| | - J A P Clover
- Department of Plastic Surgery, Cork University Hospital, Cork, Ireland
- Cancer Research, University College Cork, Cork, Ireland
| | - E Kis
- Department of Dermatology and Allergology, University of Szeged, Hungary
| |
Collapse
|
37
|
|
38
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
39
|
Landström FJ, Jakobsson FE, Kristiansson SJ. Successful electrochemotherapy treatment of a large bleeding lymph node melanoma metastasis. Melanoma Manag 2022; 9:MMT61. [PMID: 35813184 PMCID: PMC9260494 DOI: 10.2217/mmt-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Despite the progress in immunotherapy and targeted therapy for patients with cutaneous malignant melanoma not all patients with loco-regional recurrences will respond to treatment. Electrochemotherapy is a relatively new treatment modality where the efficacy of a chemotherapeutic drug is enhanced by an electrical field. Here we report a case of a 68-year-old woman with a large therapy resistant inguinal lymph node melanoma metastasis complicated by bleeding that was successfully treated with electrochemotherapy.
Collapse
Affiliation(s)
- Fredrik J Landström
- Department of Otolaryngology, Örebro University Hospital, Örebro, Sweden.,Örebro University, Örebro, Sweden
| | | | | |
Collapse
|
40
|
Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2536. [PMID: 35626139 PMCID: PMC9139557 DOI: 10.3390/cancers14102536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Harold W. Davis
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Andrei B. Kogan
- Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
41
|
Electroporation and Electrochemotherapy in Gynecological and Breast Cancer Treatment. Molecules 2022; 27:molecules27082476. [PMID: 35458673 PMCID: PMC9026735 DOI: 10.3390/molecules27082476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022] Open
Abstract
Gynecological carcinomas affect an increasing number of women and are associated with poor prognosis. The gold standard treatment plan is mainly based on surgical resection and subsequent chemotherapy with cisplatin, 5-fluorouracil, anthracyclines, or taxanes. Unfortunately, this treatment is becoming less effective and is associated with many side effects that negatively affect patients’ physical and mental well-being. Electroporation based on tumor exposure to electric pulses enables reduction in cytotoxic drugs dose while increasing their effectiveness. EP-based treatment methods have received more and more interest in recent years and are the subject of a large number of scientific studies. Some of them show promising therapeutic potential without using any cytotoxic drugs or molecules already present in the human body (e.g., calcium electroporation). This literature review aims to present the fundamental mechanisms responsible for the course of EP-based therapies and the current state of knowledge in the field of their application in the treatment of gynecological neoplasms.
Collapse
|
42
|
Zhao C, Yang Y, Cui X, Shan Y, Xue J, Jiang D, Sun J, Li N, Li Z, Yang A. Self-Powered Electrical Impulse Chemotherapy for Oral Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2060. [PMID: 35329513 PMCID: PMC8954269 DOI: 10.3390/ma15062060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 01/13/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common oral cancer of the head and neck, which causes tremendous physical and mental pain to people. Traditional chemotherapy usually results in drug resistance and side effects, affecting the therapy process. In this study, a self-powered electrical impulse chemotherapy (EIC) method based on a portable triboelectric nanogenerator (TENG) was established for OSCC therapy. A common chemotherapeutic drug, doxorubicin (DOX), was used in the experiment. The TENG designed with zigzag structure had a small size of 6 cm × 6 cm, which could controllably generate the fixed output of 200 V, 400 V and 600 V. The electrical impulses generated by the TENG increased the cell endocytosis of DOX remarkably. Besides, a simply and ingeniously designed microneedle electrode increased the intensity of electric field (EF) between two adjacent microneedle tips compared with the most used planar interdigital electrode at the same height, which was more suitable for three-dimensional (3D) cells or tissues. Based on the TENG, microneedle electrode and DOX, the self-powered EIC system demonstrated a maximal apoptotic cell ratio of 22.47% and a minimum relative 3D multicellular tumor sphere (MCTS) volume of 160% with the drug dosage of 1 μg mL-1.
Collapse
Affiliation(s)
- Chaochao Zhao
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China; (C.Z.); (J.S.); (N.L.)
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
| | - Yuan Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Xi Cui
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Jiangtao Xue
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dongjie Jiang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Jinyan Sun
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China; (C.Z.); (J.S.); (N.L.)
| | - Na Li
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China; (C.Z.); (J.S.); (N.L.)
| | - Zhou Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.Y.); (X.C.); (Y.S.); (J.X.); (D.J.); (Z.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 101400, China
| | - Anping Yang
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China; (C.Z.); (J.S.); (N.L.)
| |
Collapse
|
43
|
Alkis ME, Akdag MZ, Kandemir I. Influence of extremely low-frequency magnetic field on chemotherapy and electrochemotherapy efficacy in human Caco-2 colon cancer cells. Electromagn Biol Med 2022; 41:177-183. [PMID: 35261297 DOI: 10.1080/15368378.2022.2046047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although chemotherapy (CT) has some adverse effects on healthy tissues and cells, it is widely preferred for treating patients with cancer. Drug resistance is one of the major impediments to successful cancer treatment. Electrochemotherapy (ECT) is a technique where cancer cells are rendered permeable to medications. Thanks to this permeability, the dose of the medication required for cancer treatment decreases. Our aim in this study is to examine the effects of short-term extremely low-frequency magnetic fields (ELF-MFs) on CT and ECT treatments in Caco-2 colon cancer cells. The Caco-2 cancer cells were treated with 5-fluorouracil (5-FU, 50 µM) and ECT (strength:1125 V/cm, duration:100 µs, frequency:1 Hz), alone as well as in combinations with ELF-MF (4 mT, 10 min). MTT assay was used to determine the efficacy of the treatments. Our findings in the study showed that ECT was much more successful than 5-FU treatment alone in Caco-2 colon cancer cells. Application of 4 mT ELF-MF after CT significantly increased the viability of the Caco-2 cancer cells compared to the CT group alone (p < .05). An increase in the viability of cells treated with 4 mT after ECT was observed compared to ECT alone. Similarly, there was an increase in the viability of cells treated with MF prior to ECT treatment (p < .05). The results show that exposure to ELF-MF at 4 mT flux density significantly reduces CT and ECT treatment efficacy in Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
44
|
Tyson Doneley RJ, Spröhnle-Barrera CH, Jones EE, Sula MJM, Allavena RE. The use of electrochemotherapy to treat an oral mucocutaneous fibrosarcoma in a Central Bearded dragon (Pogona vitticeps). J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Becker SM. Theoretical model of the influence of irreversibly electroporated cells on post pulse drug delivery to reversibly electroporated cells. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3564. [PMID: 34913266 DOI: 10.1002/cnm.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
This study numerically investigates the drug uptake by a population that includes both reversibly and irreversibly electroporated cells. A theoretical continuum model is developed and simulations are conducted in conditions representing low porosity (cells in tissues) and high porosity (cells in suspension). This model considers only passive diffusion following the electroporation pulse and estimates the permeability increases of reversibly electroporated cells using empirically based predictions that relate the long-lived electropore density to the electric field magnitude. A parametric study investigates whether the permeability and resealing rate of irreversibly electroporated cells influence the delivery to the surviving reversibly electroporated cells. The results show that this influence is negligible when the cell number density is low (cells in dilute suspensions). For conditions of cells in tissue when both the fraction of the total cells that are irreversibly electroporated and the permeability of the irreversibly electroporated cells are high enough, the irreversibly electroporated cells rapidly take up the drug and deplete the extracellular space of the available drug. This lowered extracellular concentration can result in less drug delivery to reversibly electroporated cells.
Collapse
Affiliation(s)
- Sid M Becker
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
46
|
Ahamed MK, Ahmed M, Karal MAS. Quantification of pulsed electric field for the rupture of giant vesicles with various surface charges, cholesterols and osmotic pressures. PLoS One 2022; 17:e0262555. [PMID: 35025973 PMCID: PMC8757908 DOI: 10.1371/journal.pone.0262555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.
Collapse
Affiliation(s)
- Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
47
|
Song Y, Sun Y, Tang M, Yue Z, Ni J, Zhao J, Wang W, Sun T, Shi L, Wang L. Polyoxometalate Modified by Zeolite Imidazole Framework for the pH-Responsive Electrodynamic/Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4914-4920. [PMID: 35050579 DOI: 10.1021/acsami.1c19985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrodynamic therapy (EDT) and chemodynamic therapy (CDT) have the potential for future tumor treatment; however, their underlying applications are greatly hindered owing to their inherent drawbacks. The combination of EDT and CDT has been considered to be an effective way to maximize the superiorities of these two ROS-based methodologies. However, the development of novel nanomaterials with "one-for-all" functions still remains a big challenge. In this work, the polyoxometalate nanoparticles (NPs) were decorated using the zeolite imidazole framework (POM@ZIF-8) in order to integrate the EDT with CDT. The resulting POM@ZIF-8 NPs can effectively induce the generation of reactive oxygen species (ROS) via a catalytic reaction on the surface of POM NPs induced by an electric field (E). At the same time, POM@ZIF-8 NPs can catalyze the intracellular H2O2 into ROS via a Fenton-like reaction, thereby achieving the combination of EDT and CDT. Besides, since ZIF-8 is acid-responsive, it can protect normal tissues and avoid side effects. Of great note is that the cytotoxicity and the apoptosis rate of the POM@ZIF-8+E group (80%) were found to be significantly higher than that of the E group (55%). As a result, a high tumor inhibition phenomenon can be observed both in vitro and in vivo. The present study thus provides an alternative concept for combinational therapeutic modality with exceptional efficacy.
Collapse
Affiliation(s)
- Yan Song
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; College of Pharmacy; Harbin University of Commerce, Harbin 150076, P. R. China
| | - Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengya Yue
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Junge Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Wenxin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Lianxu Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
48
|
Mansourian M, Firoozabadi SMP, Hassan ZM. The investigation of Pulse-Modulated GSM-900 MHz electromagnetic field effects on the electrochemotherapy mechanisms in vivo. Electromagn Biol Med 2022; 41:71-79. [PMID: 34839760 DOI: 10.1080/15368378.2021.2006689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Electrochemotherapy (ECT) as a tumor treatment modality is approved for cutaneous and subcutaneous tumors. The purpose of the present study was to examine the effect of 900 MHz radiofrequency (RF) pulse-modulated by 217 Hz EMFs similar to those emitted by mobile phones on the mechanisms of ECT in vivo including: tumor hypoxia and immune system response, and on tumor volume.4 T1 cells were injected subcutaneously into the right flank of Balb/c mice. The mice were exposed to RF fields at specific absorption rate (SAR) 2 W/kg for 10 min/day and then treated with ECT. Two protocols of ECT were used: ((70 V/cm-5 kHz) and 70 V/cm-4 kHz)). Tumor hypoxia was analyzed through HIF-1α immuonohistochemistry assay. Interleukin 4 (IL-4) and IFN-γ levels were estimated by enzyme-linked immunosorbent assay (ELISA) technique to evaluate immune system response. Also, tumors volume changes were measured for 24 days following the treatment. The results showed that pulse-modulated RF fields could increase hypoxia induced by ECT, significantly (about 13% in ECT (70 V/cm-5 kHz) and 11% in ECT (70 V/cm-4 kHz)). However, these fields did not have significant effect on immune system response (the levels of IL-4 and IFN-γ) and tumor volume changes induced by ECT. Our results indicated that pulse-modulated RF fields could not affect tumor volume changes in ECT with the frequency of 5 kHz and voltage of 70 V/cm efficacy in vivo. However, investigating the role of other environmental intervening factors on this protocol of ECT is recommended in further studies.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - S M P Firoozabadi
- Biomedical Engineering, Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Immunonology, Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
Russano F, Del Fiore P, Di Prata C, Pasqual A, Marconato R, Campana LG, Spina R, Gianesini CM, Collodetto A, Tropea S, Dall’Olmo L, Carraro S, Parisi A, Galuppo S, Scarzello G, De Terlizzi F, Rastrelli M, Mocellin S. The Role of Electrochemotherapy in the Cutaneous and Subcutaneous Metastases From Breast Cancer: Analysis of Predictive Factors to Treatment From an Italian Cohort of Patients. Front Oncol 2021; 11:772144. [PMID: 34993137 PMCID: PMC8724516 DOI: 10.3389/fonc.2021.772144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
The treatment of cutaneous and subcutaneous localizations from breast cancer (BC) is still a therapeutic challenge. Electrochemotherapy (ECT) is one of the available options, and it is characterized by the association between the administration of a chemotherapic agent (Bleomycin) with the temporary raise of permeability of the cellular membrane induced by the local administration of electrical impulses (electroporation). ECT represents an effective therapy for loco-regional control of this disease. This study aimed to investigate the predictive factors of response in cutaneous and subcutaneous localizations from breast cancer treated with ECT. We decided to evaluate the response to this treatment in 55 patients who underwent ECT between January 2013 and March 2020 at our Institute. We performed a monocentric retrospective cohort study. ECT was administered following the ESOPE (European Standard Operative Procedure of Electrochemotherapy) guidelines, a set of criteria updated in 2018 by a panel of European experts on ECT who defined the indications for selecting the patients who can benefit from the ECT treatment and the ones for technically performing the procedure. The responses were evaluated with the RECIST criteria (Response Evaluation Criteria in Solid Tumor). We found after 12 weeks of treatment a complete response (CR) in 64% of our patients. From the analysis divided for subgroups of covariates is emerged that lower BMI, reduced body surface, and absence of previous radiation treatment could be predictive for a better complete response. This study suggests that the efficacy of the ECT treatment is related to the concurrent systemic therapies while administering ECT. The association between ECT and immunotherapy has offered better results than the association between ECT and chemotherapy (p-value = 0.0463). So, ECT is a valuable tool in the treatment of cutaneous and subcutaneous metastases from breast cancer and its efficacy in local control of these lesions improves when it is well planned in a therapeutic scenario.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- *Correspondence: Paolo Del Fiore,
| | - Claudia Di Prata
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Andrea Pasqual
- Department of Medicine, University of Padua, Padua, Italy
| | - Roberto Marconato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luca Giovanni Campana
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Romina Spina
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Carlo Maria Gianesini
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alessandra Collodetto
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Sabrina Carraro
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Alessandro Parisi
- Radiotherapy Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Sara Galuppo
- Radiotherapy Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Giovanni Scarzello
- Radiotherapy Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
50
|
Song Y, Zheng J, Fan L. Nonthermal Irreversible Electroporation to the Esophagus: Evaluation of Acute and Long-Term Pathological Effects in a Rabbit Model. J Am Heart Assoc 2021; 10:e020731. [PMID: 34726077 PMCID: PMC8751962 DOI: 10.1161/jaha.120.020731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Esophageal ulceration and fistula are severe complications of pulmonary vein isolation using thermal ablation. Nonthermal irreversible electroporation (NTIRE) is a promising new technology for pulmonary vein isolation in patients with atrial fibrillation. NTIRE ablation technology has been used to treat atrial fibrillation; however, the effects of NTIRE on esophageal tissue have not been clearly described. Methods and Results A typical NTIRE electrical protocol was directly applied to esophagi in 84 New Zealand rabbits. Finite element modeling and histological analysis with 120 slices were used to analyze electric field intensity distribution and subsequent tissue changes. A parameter combination of 2000 V/cm multiplied by 90 pulses output is determined to be an effective ablation parameters combination. Within 16 weeks after ablation, no obvious lumen stenosis, epithelial erythema, erosion, ulcer, or fistula was observed in the esophageal tissue. NTIRE effectively results in esophageal cell ablation to death, and subsequently, signs of recovery gradually appear: creeping replacement and regeneration of epithelial basal cells, repair and regeneration of muscle cells, structural remodeling of the muscle layer, and finally the restoration of clear anatomical structures in all layers. Conclusions Monophasic, bipolar NTIRE delivered using plate electrodes in a novel esophageal injury model demonstrates no histopathologic changes to the esophagus at 16 weeks. Data of this study suggest that electroporation ablation is a safe modality for pulsed electroporation ablation near the esophagus.
Collapse
Affiliation(s)
- Yue Song
- Department of Urology General Hospital of Northern Theater Command Shenyang China
| | - Jingjing Zheng
- Department of Anesthesia General Hospital of Northern Theater Command Shenyang China
| | - Lianhui Fan
- Department of Urology General Hospital of Northern Theater Command Shenyang China
| |
Collapse
|