1
|
Tornifoglio B, Hughes C, Digeronimo F, Guendouz Y, Johnston RD, Lally C. Imaging the microstructure of the arterial wall - ex vivo to in vivo potential. Acta Biomater 2025; 199:18-34. [PMID: 40348073 DOI: 10.1016/j.actbio.2025.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Microstructural imaging enables researchers to visualise changes in the arterial wall, allowing for (i) a deeper understanding of the role of specific components in arterial mechanics, (ii) the observation of cellular responses, (iii) insights into pathological alterations in tissue microstructure, and/or (iv) advancements in tissue engineering aimed at replicating healthy native tissue. In this prospective review, we present various imaging modalities spanning from ex vivo to in vivo applications within arterial tissue. The pros, cons, and sensitivities of these modalities are highlighted. By consolidating the latest advancements in microstructural imaging of arterial tissue, the authors aim for this paper to serve as a guide for researchers designing experiments at various stages. Furthermore, the integration of non-invasive, non-destructive imaging techniques into studies provides an additional layer of microstructural information, enhancing scientific findings, improving our understanding of disease, and potentially enabling earlier or more effective diagnostic capabilities. STATEMENT OF SIGNIFICANCE: Imaging the specific microstructural components of the arterial wall provides critical insights into vascular biology, mechanics, and pathology. It enables the visualisation of key structural components and their roles in arterial function, supports the analysis of cell-matrix interactions, and reveals microarchitectural changes associated with disease progression. This level of specificity also informs the design of biomimetic materials and scaffolds in tissue engineering, facilitating the replication of native arterial properties. By synthesising recent developments in microstructural imaging techniques, this paper serves as a reference for investigators designing experiments across a range of vascular research applications. Moreover, the incorporation of non-invasive, non-destructive imaging methods offers a means to acquire detailed microstructural data without compromising tissue integrity. This enhances the interpretability and translational potential of findings, deepens our understanding of vascular disease mechanisms, and may ultimately contribute to the development of earlier and more precise diagnostic approaches.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland.
| | - C Hughes
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - F Digeronimo
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Y Guendouz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - R D Johnston
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Chan JMS, Park SJ, Ng M, Chen WC, Chan WY, Bhakoo K, Chong TT. Translational Molecular Imaging Tool of Vulnerable Carotid Plaque: Evaluate Effects of Statin Therapy on Plaque Inflammation and American Heart Association-Defined Risk Levels in Cuff-Implanted Apolipoprotein E-Deficient Mice. Transl Stroke Res 2024; 15:110-126. [PMID: 36481841 PMCID: PMC10796420 DOI: 10.1007/s12975-022-01114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Identification of high-risk carotid plaques in asymptomatic patients remains a challenging but crucial step in stroke prevention. The challenge is to accurately monitor the development of high-risk carotid plaques and promptly identify patients, who are unresponsive to best medical therapy, and hence targeted for carotid surgical interventions to prevent stroke. Inflammation is a key operator in destabilisation of plaques prior to clinical sequelae. Currently, there is a lack of imaging tool in routine clinical practice, which allows assessment of inflammatory activity within the atherosclerotic plaque. Herein, we have used a periarterial cuff to generate a progressive carotid atherosclerosis model in apolipoprotein E-deficient mice. This model produced clinically relevant plaques with different levels of risk, fulfilling American Heart Association (AHA) classification, at specific timepoints and locations, along the same carotid artery. Exploiting this platform, we have developed smart molecular magnetic resonance imaging (MRI) probes consisting of dual-targeted microparticles of iron oxide (DT-MPIO) against VCAM-1 and P-selectin, to evaluate the anti-inflammatory effect of statin therapy on progressive carotid atherosclerosis. We demonstrated that in vivo DT-MPIO-enhanced MRI can (i) quantitatively track plaque inflammation from early to advanced stage; (ii) identify and characterise high-risk inflamed, vulnerable plaques; and (iii) monitor the response to statin therapy longitudinally. Moreover, this molecular imaging-defined therapeutic response was validated using AHA classification of human plaques, a clinically relevant parameter, approximating the clinical translation of this tool. Further development and translation of this molecular imaging tool into the clinical arena may potentially facilitate more accurate risk stratification, permitting timely identification of the high-risk patients for prophylactic carotid intervention, affording early opportunities for stroke prevention in the future.
Collapse
Affiliation(s)
- Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore.
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Way Cherng Chen
- Bruker Singapore Pte. Ltd, 30 Biopolis Street, #09-01, Singapore, 138671, Matrix, Singapore
| | - Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Singapore, 138667, Helios, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore
| |
Collapse
|
3
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
4
|
Sobhani T, Shahbazi-Gahrouei D, Zahraei M, Hejazi SH, Dousti F, Rostami M. Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese-zinc ferrite nanoparticles: in vitro and in vivo assessments. J Cancer Res Clin Oncol 2023; 149:4939-4957. [PMID: 36309602 DOI: 10.1007/s00432-022-04427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Achieving new contrast enhancer agents that can produce high-resolution images in magnetic resonance imaging (MRI) with a minimum dose and side effects has always been important. METHODS Herein, the pegylated curcumin-coated manganese-zinc ferrite nanoparticles (MZF@CA-PEG-CUR NPs) have been reported as an MR imaging nanoprobe in hepatocellular carcinoma detection in the murine model for the first time. In vitro studies were done on HEPA 1-6 cancer cells and L929 as normal cells, and in vivo studies were done on hepatocellular carcinoma (HCC) using xenograft models of HCC. RESULTS The prepared NP had a diameter of 105 nm with narrow size distribution and was superparamagnetic with a saturated magnetization (Ms) of 39 emu/g. The NP was biocompatible without any significant hemolysis and cytotoxicity. Prussian blue staining showed more cellular uptake of HEPA 1-6 compared to L929 control cells after incubation (P < 0.05). The concentration of Fe in mice blood confirmed the plasma half-life of about 3 h; it seems the PEGylation increased the circulation time. ICP-OES of Fe showed the highest tumor localization for MZF@CA-CUR-PEG NPs, due to passive accumulation, compared to the other mice studied organs. The r2 relaxivity of NPs was 134.89 mM- 1 s- 1, and in vitro MRI demonstrated better effects in HEPA 1-6 cells than in L929 (P < 0.05). Also, in vivo MR images showed signal enhancement efficacy in tumor-bearing mice. CONCLUSION This study demonstrated that the MZF@CA-CUR-PEG nanoprobe could be a promising candidate as an MR imaging agent in hepatocellular carcinoma early detection.
Collapse
Affiliation(s)
- Tayebe Sobhani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Zahraei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dousti
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Shen R, Tong X, Li D, Ning Z, Han H, Han Y, Yang D, Du C, Wang T, Cao J, Xu Y, Huo R, Qiao H, Zhao X. Slice-based and time-specific hemodynamic measurements discriminate carotid artery vulnerable atherosclerotic plaques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107050. [PMID: 35985150 DOI: 10.1016/j.cmpb.2022.107050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Hemodynamic patterns play key roles in progression of carotid vulnerable plaques. However, most of previous studies utilized maximum or averaged value of hemodynamic measurements which is not an ideal representative of hemodynamic patterns. This study aimed to investigate the association of slice-based and time-specific hemodynamic measurements with carotid vulnerable plaque using magnetic resonance (MR) vessel wall imaging and histology. METHODS Thirty-two patients (mean age: 63.9±8.1 years; 25 males) with carotid atherosclerotic stenosis (≥50% stenosis) referred to carotid endarterectomy were recruited and underwent MR vessel wall imaging. Carotid plaque burden was evaluated on MR images and vulnerable plaque features including calcification, lipid-rich necrotic core, and intra-plaque hemorrhage (IPH) were identified by histology. The slice-based and time-specific hemodynamic measurements were extracted from computational fluid dynamics simulation of 3D carotid arterial model. Correlation coefficients between hemodynamic measurements and carotid plaque features were calculated and the logistic regressions with generalized estimating equation (GEE) were conducted. The value in discriminating carotid vulnerable plaque features was determined by receiver-operating-characteristic analysis. RESULTS Of 102 MR-histology matched slices from 32 patients, time-averaged wall shear stress (TAWSS) (r=0.263, p=0.008), oscillatory shear index (OSI) (r=-0.374, p<0.001), and peakWSS (r=0.232, p=0.019) were significantly associated with carotid IPH. The logistic regression with GEE revealed that peakWSS (OR, 1.206; 95% CI, 1.026-1.418; p, 0.023) and TAWSS (OR, 0.364, 95% CI, 0.138-0.959; p, 0.041) were significantly associated with presence of IPH after adjusting for age and BMI. In discriminating carotid IPH, the AUC of TAWSS, OSI, combined TAWSS with maximum wall thickness (MWT) and combined OSI with MWT was 0.656, 0.722, 0.761, and 0.764, respectively. CONCLUSIONS Slice-based and time-specific hemodynamic characteristics could effectively discriminate carotid IPH. Combination of hemodynamic measurements with carotid plaque burden might be a stronger indicator for carotid vulnerable plaque features than each measurement alone.
Collapse
Affiliation(s)
- Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyu Tong
- Department of Biomedical Engineering, School of Life and Science, Beijing Institute of Technology, Beijing, China
| | - Dongye Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yongjun Han
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Dandan Yang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Chenlin Du
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jingli Cao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilan Xu
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Sanghvi D, Shrivastava M. Carotid plaque imaging: Strategies beyond stenosis. Ann Indian Acad Neurol 2022; 25:11-14. [PMID: 35342272 PMCID: PMC8954334 DOI: 10.4103/aian.aian_483_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022] Open
|
7
|
Montenegro A, Patiño Rodriguez H, Katherine Mantilla D, Balderrama J, Díaz C, Zenteno M. Update on diagnostic approach of carotid disease: From stenosis to atherosclerotic plaque morphology. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
The prognostic value of the serum inflammatory biomarkers in patients with carotid atherosclerosis. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
20 % of ischemic stroke appear to originate from carotid artery atherosclerotic disease. Serum biomarkers reflecting the activity of atherosclerotic process and may help for estimate risk of acute cerebrovascular events. Several serum inflammatory markers have been proposed for risk assessment, but their prognostic role less known.
The aim of this study is to clarify the prognostic value of biomarkers of atherosclerosis lipoprotein-associated phospholipase A2 (Lp-PLA2) and E-selectin in patients with symptomatic and asymptomatic carotid stenosis.
Materials and methods. The study involved 106 patients with atherosclerotic carotid stenosis >50 % (74 men and 32 women, mean age 62.6±0.9) from which 76 symptomatic (35 with acute ipsilateral atherothrombotic stroke and 41 after carotid endarterectomy) and 30 asymptomatic patients. The control group consisted of age- and sex-matched 20 healthy subjects. The level of serum Lp-PLA2 and E-selectin was determined using a commercially available enzyme-linked immunosorbent assay kit.
Results. The level of Lp-PLA 2 was in general significantly higher (p<0.05) in patients groups than in the control group and most high Lp-PLA2 concentration was in groups of symptomatic patients who underwent carotid endarterectomy. The level of E-selectin in the study patients was significantly higher than in the control group (p<0.05). The correlation of Lp-PLA 2 with E-selectin was significant for total patients (R=0.365664, p=0.00085) and group after carotid endarterectomy (R=0.429143, p=0.01796), but not for asymptomatic group (p>0.05). Receiver Operating Characteristics curves of logistic regression models which takes into joint both indicators was specificity and sensitive for predicting the occurrence of ischemic stroke.
Conclusion. Conducted study show that the levels of Lp-PLA 2 and E-selectin have a significant impact on the development of stroke in patients with atherosclerotic carotid stenosis and can be used to predict it. A multidimensional model of the dependence of the probability of stroke on a linear combination of Lp-PLA 2 and E-selectin allows to obtaining significantly higher characteristics of the accuracy of stroke prediction than models with each factor alone.
Collapse
|
9
|
Chan JMS, Jin PS, Ng M, Garnell J, Ying CW, Tec CT, Bhakoo K. Development of Molecular Magnetic Resonance Imaging Tools for Risk Stratification of Carotid Atherosclerotic Disease Using Dual-Targeted Microparticles of Iron Oxide. Transl Stroke Res 2021; 13:245-256. [PMID: 34304360 PMCID: PMC8918460 DOI: 10.1007/s12975-021-00931-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Identification of patients with high-risk asymptomatic carotid plaques remains a challenging but crucial step in stroke prevention. Inflammation is the key factor that drives plaque instability. Currently, there is no imaging tool in routine clinical practice to assess the inflammatory status within atherosclerotic plaques. We have developed a molecular magnetic resonance imaging (MRI) tool to quantitatively report the inflammatory activity in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) against P-selectin and VCAM-1 as a smart MRI probe. A periarterial cuff was used to generate plaques with varying degree of phenotypes, inflammation and risk levels at specific locations along the same single carotid artery in an Apolipoprotein-E-deficient mouse model. Using this platform, we demonstrated that in vivo DT-MPIO-enhanced MRI can (i) target high-risk vulnerable plaques, (ii) differentiate the heterogeneity (i.e. high vs intermediate vs low-risk plaques) within the asymptomatic plaque population and (iii) quantitatively report the inflammatory activity of local plaques in carotid artery. This novel molecular MRI tool may allow characterisation of plaque vulnerability and quantitative reporting of inflammatory status in atherosclerosis. This would permit accurate risk stratification by identifying high-risk asymptomatic individual patients for prophylactic carotid intervention, expediting early stroke prevention and paving the way for personalised management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore.
| | - Park Sung Jin
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joanne Garnell
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chan Wan Ying
- Division of Oncologic Imaging, National Cancer Centre, SingHealth, Singapore, Singapore
| | - Chong Tze Tec
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
10
|
Lin L, Xie Z, Xu M, Wang Y, Li S, Yang N, Gong X, Liang P, Zhang X, Song L, Cao F. IVUS\IVPA hybrid intravascular molecular imaging of angiogenesis in atherosclerotic plaques via RGDfk peptide-targeted nanoprobes. PHOTOACOUSTICS 2021; 22:100262. [PMID: 33868920 PMCID: PMC8040266 DOI: 10.1016/j.pacs.2021.100262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 05/03/2023]
Abstract
Current intravascular imaging modalities face hurdles in the molecular evaluation of progressed plaques. This study aims to construct a novel hybrid imaging system (intravascular ultrasound/intravascular photoacoustic, IVPA/IVUS) via RGDfk peptide-targeted nanoparticles for monitoring angiogenesis in progressed atherosclerotic plaques in a rabbit model. An atherosclerotic rabbit model was induced by abdominal aorta balloon de-endothelialization followed by a high-fat diet. A human serum albumin (HSA)-based nanoprobe modified with RGDfk peptide was constructed by encapsulating indocyanine green (ICG) via electrostatic force (ICG-HSA-RGDfk NPs, IHR-NPs). A hybrid intravascular imaging system that combined IVUS and IVPA was self-assembled for RGDfk visualization within atherosclerotic plaques in the rabbit abdominal aorta. Through IHR-NPs and the hybrid IVUS/IVPA imaging platform, multiple comprehensive pieces of information on progressed plaques, including anatomical information, composition information and molecular information, can be obtained simultaneously, which may improve the precise diagnosis of plaque characteristics and the evaluation of early interventions for atherosclerosis.
Collapse
Affiliation(s)
- Lejian Lin
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhihua Xie
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengqi Xu
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yabin Wang
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Sulei Li
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ning Yang
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaojing Gong
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ping Liang
- The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu Zhang
- The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liang Song
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Feng Cao
- Department of Cardiology, National Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
11
|
The composition of vulnerable plaque and its effect on arterial waveforms. J Mech Behav Biomed Mater 2021; 119:104491. [PMID: 33901965 DOI: 10.1016/j.jmbbm.2021.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Carotid plaque composition is a key factor of plaque stability and it carries significant prognostic information. The carotid unstable plaques are characterized by a thin fibrous cap (FC) ≤65μm with large lipid core (LC), while stable plaques have a thicker FC and less LC. Identifying the percentage of plaque compositions could help surgeons to make a precise decision for their patients' treatment protocol. This study aims to distinguish between stable and unstable plaque by defining the relationship between plaque composition and arterial waveform non-invasively. An in-vitro arterial system, composed of a Harvard pulsatile flow pump and artificial circulation system, was used to investigate the effect of the plaque compositions on the pulsatile arterial waveforms. Five types of arterial plaques, composed of the LC, FC, Collagen (Col) and Calcium (Ca), were implemented into the artificial carotid artery to represent the diseased arterial system with 30% of blockage. The pulsatile pressure, velocity and arterial wall movement were measured simultaneously at the site proximal to the plaque. Non-invasive wave intensity analysis (Non-WIA) was used to separate the waves into forward and backward components. The correlation between the plaque compositions and the reflected waveforms was quantitatively analysed. The experimental results indicate that the reflected waveforms are strongly correlated with the plaque compositions, where the percentages of the Col are linearly correlated with the amplitude of the backward diameter (correlation coefficient, r = 0.74) and the lipid content has a strong negative correlation with the backward diameter (r = 0.82). A slight weak correlation exists between the reflected waveform and the percentage of Ca. The strong correlation between the compositions of the plaques with the backward waveforms observed in this study demonstrates that the components of the arterial plaques could be distinguished by the arterial waveforms. This finding might lead to a potential novel non-invasive clinical tool to determine the composition of the plaques and distinguish between stable and vulnerable arterial plaques at the early stage.
Collapse
|
12
|
Xu L, Wang R, Liu H, Wang J, Liang W, Mang J, Xu Z. Comparison of the Diagnostic Performances of Ultrasound, High-Resolution Magnetic Resonance Imaging, and Positron Emission Tomography/Computed Tomography in a Rabbit Carotid Vulnerable Plaque Atherosclerosis Model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2201-2209. [PMID: 32395879 DOI: 10.1002/jum.15331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/25/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Our study aimed to evaluate the diagnostic performances of 3 routine examination methods for cerebrovascular disease in a rabbit carotid artery atherosclerosis model. METHODS A total of 12 New Zealand rabbits were included: 4 in a control group and 8 in an experimental group. A clinically relevant atherosclerosis rabbit model was induced by left common carotid artery ligation and a 12-week high-fat diet. Atherosclerosis was further confirmed by a histopathologic analysis. Then carotid ultrasound (US) imaging, high-resolution magnetic resonance imaging (HRMRI), and positron emission tomography (PET)/computed tomography (CT) were performed on this model to evaluate the diagnostic performances. RESULTS Carotid US showed plaque formation in the left common carotid artery and little plaque in the right common carotid artery in the experimental group. In addition, HRMRI showed stenosis formation in the left common carotid artery in the experimental group. At the horizontal level, plaques were found in the left common carotid artery, and no plaques were found in the right common carotid artery in the experimental group. Also, PET/CT showed local hypermetabolism and vulnerable plaques in the left common carotid artery of the experimental group, whereas no hypermetabolism was found in the right common carotid artery of the experimental group. Moreover, the soft plaques detected by carotid US were different from the vulnerable plaques detected by PET/CT. The unstable plaques on HRMRI were the same as the hypermetabolic vulnerable plaques on PET/CT. CONCLUSIONS High-resolution MRI is recommended for the evaluation of neck and intracranial vascular stenosis and plaque properties in patients with stroke.
Collapse
Affiliation(s)
- Lei Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Renjie Wang
- Department Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenzhao Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Gresele P, Paciullo F, Migliacci R. Antithrombotic treatment of asymptomatic carotid atherosclerosis: a medical dilemma. Intern Emerg Med 2020; 15:1169-1181. [PMID: 32405817 DOI: 10.1007/s11739-020-02347-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Carotid artery atherosclerosis (CAAS) is a common finding in asymptomatic subjects evaluated for cardiovascular (CV)-risk stratification. Besides the careful control of CV-risk factors, antithrombotic agents, and in particular aspirin, may be considered for primary prevention in patients at CV-risk. However, there is strong controversy on the use of aspirin in primary prevention. Even if several studies confirmed the association between CAAS and CV-events, CAAS is not universally recognized as an independent risk factor and the choice to use aspirin as primary prevention in these patients remains a medical dilemma. Here we review the available evidence on the prognostic value of asymptomatic CAAS for major CV-events and on the utility of antithrombotic agents in this population. We conclude that the detection of asymptomatic CAAS can not be considered as a direct indication to carry out primary prophylaxis with antithrombotic drugs, and the choice to use aspirin should be made only after the careful estimate of the individual's CV-and hemorrhagic risk.
Collapse
Affiliation(s)
- Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Strada Vicinale Via Delle Corse, S. Andrea della Fratte, 06132, Perugia, Italy.
| | - Francesco Paciullo
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Strada Vicinale Via Delle Corse, S. Andrea della Fratte, 06132, Perugia, Italy
| | - Rino Migliacci
- Division of Internal Medicine, Ospedale Della Valdichiana "S. Margherita", Cortona, Italy
| |
Collapse
|
14
|
Kassem M, Florea A, Mottaghy FM, van Oostenbrugge R, Kooi ME. Magnetic resonance imaging of carotid plaques: current status and clinical perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1266. [PMID: 33178798 PMCID: PMC7607136 DOI: 10.21037/atm-2020-cass-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rupture of a vulnerable carotid plaque is one of the leading causes of stroke. Carotid magnetic resonance imaging (MRI) is able to visualize all the main hallmarks of plaque vulnerability. Various MRI sequences have been developed in the last two decades to quantify carotid plaque burden and composition. Often, a combination of multiple sequences is used. These MRI techniques have been extensively validated with histological analysis of carotid endarterectomy specimens. High agreement between the MRI and histological measures of plaque burden, intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC) status, inflammation and neovascularization has been demonstrated. Novel MRI sequences allow to generate three-dimensional isotropic images with a large longitudinal coverage. Other new sequences can acquire multiple contrasts using a single sequence leading to a tremendous reduction in scan time. IPH can be easily identified as a hyperintense signal in the bulk of the plaque on strongly T1-weighted images, such as magnetization-prepared rapid acquisition gradient echo images, acquired within a few minutes with a standard neurovascular coil. Carotid MRI can also be used to evaluate treatment effects. Several meta-analyses have demonstrated a strong predictive value of IPH, LRNC, thinning or rupture of the FC for ischemic cerebrovascular events. Recently, in a large meta-analysis based on individual patient data of asymptomatic and symptomatic individuals with carotid artery stenosis, it was shown that IPH on MRI is an independent risk predictor for stroke, stronger than any known clinical risk parameter. Expert recommendations on carotid plaque MRI protocols have recently been described in a white paper. The present review provides an overview of the current status and applications of carotid plaque MR imaging and its future potential in daily clinical practice.
Collapse
Affiliation(s)
- Mohamed Kassem
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Robert van Oostenbrugge
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, MUMC+, Maastricht, The Netherlands
| | - M Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
15
|
Porcu M, Mannelli L, Melis M, Suri JS, Gerosa C, Cerrone G, Defazio G, Faa G, Saba L. Carotid plaque imaging profiling in subjects with risk factors (diabetes and hypertension). Cardiovasc Diagn Ther 2020; 10:1005-1018. [PMID: 32968657 PMCID: PMC7487374 DOI: 10.21037/cdt.2020.01.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Carotid artery stenosis (CAS) due to the presence of atherosclerotic plaque (AP) is a frequent medical condition and a known risk factor for stroke, and it is also known from literature that several risk factors promote the AP development, in particular aging, smoke, male sex, hypertension, hyperlipidemia, smoke, diabetes type 1 and 2, and genetic factors. The study of carotid atherosclerosis is continuously evolving: even if the strategies of treatment still depends mainly on the degree of stenosis (DoS) determined by the plaque, in the last years the attention has moved to the study of the plaque components in order to identify the so called "vulnerable" plaque: features like the fibrous cap status and thickness, the volume of the lipid-rich necrotic core and the presence of intraplaque hemorrhage (IPH) are risk factors for plaque rupture, that can be studied with modern imaging techniques. The aim of this review is to give a general overview of the principle histological and imaging features of the subcomponent of carotid AP (CAP), focalizing in particular on the features of CAP of patients affected by hypertension and diabetes (in particular type 2 diabetes mellitus).
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | | | - Marta Melis
- Department of Neurology, AOU of Cagliari, University of Cagliari, Italy
| | - Jasjit S. Suri
- Diagnostic and Monitoring Division, AtheroPoint, Roseville, California, USA
| | - Clara Gerosa
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giulia Cerrone
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Neurology, AOU of Cagliari, University of Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| |
Collapse
|
16
|
Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019; 16:729-745. [PMID: 31243334 DOI: 10.1038/s41571-019-0238-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
|
17
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
18
|
Li RX, Apostolakis IZ, Kemper P, McGarry MDJ, Ip A, Connolly ES, McKinsey JF, Konofagou EE. Pulse Wave Imaging in Carotid Artery Stenosis Human Patients in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:353-366. [PMID: 30442386 PMCID: PMC6375685 DOI: 10.1016/j.ultrasmedbio.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 05/03/2023]
Abstract
Carotid stenosis involves narrowing of the lumen in the carotid artery potentially leading to a stroke, which is the third leading cause of death in the United States. Several recent investigations have found that plaque structure and composition may represent a more direct biomarker of plaque rupture risk compared with the degree of stenosis. In this study, pulse wave imaging was applied in 111 (n = 11, N = 13 plaques) patients diagnosed with moderate (>50%) to severe (>80%) carotid artery stenosis to investigate the feasibility of characterizing plaque properties based on the pulse wave-induced arterial wall dynamics captured by pulse wave imaging. Five (n = 5 patients, N = 20 measurements) healthy volunteers were also imaged as a control group. Both conventional and high-frame-rate plane wave radiofrequency imaging sequences were used to generate piecewise maps of the pulse wave velocity (PWV) at a single depth along stenotic carotid segments, as well as intra-plaque PWV mapping at multiple depths. Intra-plaque cumulative displacement and strain maps were also calculated for each plaque region. The Bramwell-Hill equation was used to estimate the compliance of the plaque regions based on the PWV and diameter. Qualitatively, wave convergence, elevated PWV and decreased cumulative displacement around and/or within regions of atherosclerotic plaque were observed and may serve as biomarkers for plaque characterization. Intra-plaque mapping revealed the potential to capture wave reflections between calcified inclusions and differentiate stable (i.e., calcified) from vulnerable (i.e., lipid) plaque components based on the intra-plaque PWV and cumulative strain. Quantitatively, one-way analysis of variance indicated that the pulse wave-induced cumulative strain was significantly lower (p < 0.01) in the moderately and severely calcified plaques compared with the normal controls. As expected, compliance was also significantly lower in the severely calcified plaques regions compared with the normal controls (p < 0.01). The results from this pilot study indicated the potential of pulse wave imaging coupled with strain imaging to differentiate plaques of varying stiffness, location and composition. Such findings may serve as valuable information to compensate for the limitations of currently used methods for the assessment of stroke risk.
Collapse
Affiliation(s)
- Ronny X Li
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iason Z Apostolakis
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Paul Kemper
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Matthew D J McGarry
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Ada Ip
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Edward S Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - James F McKinsey
- Division of Vascular Surgery and Endovascular Interventions, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
19
|
An innovative flow cytometry method to screen human scFv-phages selected by in vivo phage-display in an animal model of atherosclerosis. Sci Rep 2018; 8:15016. [PMID: 30302027 PMCID: PMC6177473 DOI: 10.1038/s41598-018-33382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic, progressive inflammatory disease that may develop into vulnerable lesions leading to thrombosis. This pathology is characterized by the deposition of lipids within the arterial wall and infiltration of immune cells leading to amplification of inflammation. Nowadays there is a rising interest to assess directly the molecular and cellular components that underlie the clinical condition of stroke and myocardial infarction. Single chain fragment variable (scFv)-phages issuing from a human combinatorial library were selected on the lesions induced in a rabbit model of atherosclerosis after three rounds of in vivo phage display. We further implemented a high-throughput flow cytometry method on rabbit protein extracts to individually test one thousand of scFv-phages. Two hundred and nine clones were retrieved on the basis of their specificity for atherosclerotic proteins. Immunohistochemistry assays confirmed the robustness of the designed cytometry protocol. Sequencing of candidates demonstrated their high diversity in VH and VL germline usage. The large number of candidates and their diversity open the way in the discovery of new biomarkers. Here, we successfully showed the capacity of combining in vivo phage display and high-throughput cytometry strategies to give new insights in in vivo targetable up-regulated biomarkers in atherosclerosis.
Collapse
|
20
|
Koenig W, Giovas P, Nicholls SJ. Combining cholesterol-lowering strategies with imaging data: a visible benefit? Eur J Prev Cardiol 2018; 26:365-379. [PMID: 30160512 DOI: 10.1177/2047487318798059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronary artery disease is characterised by the development of atherosclerotic plaques and is associated with significant morbidity and mortality on a global level. However, many patients with atherosclerosis are asymptomatic and the prediction of acute coronary events is challenging. The role of imaging studies in characterising plaque morphology and stability is emerging as a valuable prognostic tool, while providing evidence for the beneficial effects of cholesterol-lowering therapy on plaque burden. This review provides an overview of contemporary studies describing the value of imaging strategies for atherosclerotic plaques. Coronary angiography is commonly used in the clinical setting, but requires a significant radiation dose (similar to computed tomography). Magnetic resonance imaging evaluation of coronary vessels would avoid exposure to ionising radiation, but is not yet feasible due to motion artefacts. The roles of alternative imaging techniques, including grey-scale intravascular ultrasound, optical coherence tomography and near-infrared spectroscopy have emerged in recent years. In particular, grey-scale intravascular ultrasound has been effectively applied to detect changes in plaque burden and features of plaques predictive of rupture, as well as plaque characteristics during cholesterol-lowering therapy, providing novel insights into factors that may contribute to treatment effectiveness. Challenges and limitations to the use of imaging techniques are considered in this context, along with future imaging strategies.
Collapse
Affiliation(s)
- Wolfgang Koenig
- 1 Deutsches Herzzentrum München, Technische Universität München, Germany.,2 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany
| | | | - Stephen J Nicholls
- 4 South Australian Health and Medical Research Institute, University of Adelaide, Australia
| |
Collapse
|
21
|
Narayan P. Looking beyond luminal stenosis in carotid artery disease. Int J Cardiol 2018; 260:52. [PMID: 29622453 DOI: 10.1016/j.ijcard.2018.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Affiliation(s)
- P Narayan
- Department of Cardiac Surgery, NH Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, India.
| |
Collapse
|
22
|
Chan JMS, Monaco C, Wylezinska-Arridge M, Tremoleda JL, Cole JE, Goddard M, Cheung MSH, Bhakoo KK, Gibbs RGJ. Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging. J Vasc Surg 2018; 67:1571-1583.e3. [PMID: 28648478 DOI: 10.1016/j.jvs.2017.04.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/01/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. METHODS DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. RESULTS Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. CONCLUSIONS These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future.
Collapse
Affiliation(s)
- Joyce M S Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, United Kingdom; Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare National Health Service Trust, Imperial College London, London, United Kingdom; The Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), Singapore.
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Marzena Wylezinska-Arridge
- Neuroradiological Academic Unit, University of College London Institute of Neurology, University College London, London, United Kingdom
| | - Jordi L Tremoleda
- Medical Research Council-Clinical Sciences Centre, Imperial College London, and Centre for Trauma Sciences, Queen Mary University of London, London, United Kingdom
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Maggie S H Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, United Kingdom
| | - Kishore K Bhakoo
- The Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare National Health Service Trust, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Saba L, Yuan C, Hatsukami TS, Balu N, Qiao Y, DeMarco JK, Saam T, Moody AR, Li D, Matouk CC, Johnson MH, Jäger HR, Mossa-Basha M, Kooi ME, Fan Z, Saloner D, Wintermark M, Mikulis DJ, Wasserman BA. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018; 39:E9-E31. [PMID: 29326139 DOI: 10.3174/ajnr.a5488] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of carotid artery atherosclerosis is conventionally based on measurements of luminal stenosis and surface irregularities using in vivo imaging techniques including sonography, CT and MR angiography, and digital subtraction angiography. However, histopathologic studies demonstrate considerable differences between plaques with identical degrees of stenosis and indicate that certain plaque features are associated with increased risk for ischemic events. The ability to look beyond the lumen using highly developed vessel wall imaging methods to identify plaque vulnerable to disruption has prompted an active debate as to whether a paradigm shift is needed to move away from relying on measurements of luminal stenosis for gauging the risk of ischemic injury. Further evaluation in randomized clinical trials will help to better define the exact role of plaque imaging in clinical decision-making. However, current carotid vessel wall imaging techniques can be informative. The goal of this article is to present the perspective of the ASNR Vessel Wall Imaging Study Group as it relates to the current status of arterial wall imaging in carotid artery disease.
Collapse
Affiliation(s)
- L Saba
- From the Department of Medical Imaging (L.S.), University of Cagliari, Cagliari, Italy
| | - C Yuan
- Departments of Radiology (C.Y., N.B., M.M.-B.)
| | - T S Hatsukami
- Surgery (T.S.H.), University of Washington, Seattle, Washington
| | - N Balu
- Departments of Radiology (C.Y., N.B., M.M.-B.)
| | - Y Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - J K DeMarco
- Department of Radiology (J.K.D.), Walter Reed National Military Medical Center, Bethesda, Maryland
| | - T Saam
- Department of Radiology (T.S.), Ludwig-Maximilian University Hospital, Munich, Germany
| | - A R Moody
- Department of Medical Imaging (A.R.M.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - D Li
- Biomedical Imaging Research Institute (D.L., Z.F.), Cedars-Sinai Medical Center, Los Angeles, California
| | - C C Matouk
- Departments of Neurosurgery, Neurovascular and Stroke Programs (C.C.M., M.H.J.).,Radiology and Biomedical Imaging (C.C.M., M.H.J.)
| | - M H Johnson
- Departments of Neurosurgery, Neurovascular and Stroke Programs (C.C.M., M.H.J.).,Radiology and Biomedical Imaging (C.C.M., M.H.J.).,Surgery (M.H.J.), Yale University School of Medicine, New Haven, Connecticut
| | - H R Jäger
- Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, London, UK
| | | | - M E Kooi
- Department of Radiology (M.E.K.), CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Z Fan
- Biomedical Imaging Research Institute (D.L., Z.F.), Cedars-Sinai Medical Center, Los Angeles, California
| | - D Saloner
- Department of Radiology and Biomedical Imaging (D.S.), University of California, San Francisco, California
| | - M Wintermark
- Department of Radiology (M.W.), Neuroradiology Division, Stanford University, Stanford, California
| | - D J Mikulis
- Division of Neuroradiology (D.J.M.), Department of Medical Imaging, University Health Network
| | - B A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | | |
Collapse
|
24
|
Liu T, Liu H, Feng L, Xiao B. Kinin B1 receptor as a novel, prognostic progression biomarker for carotid atherosclerotic plaques. Mol Med Rep 2017; 16:8930-8936. [PMID: 28990089 PMCID: PMC5779976 DOI: 10.3892/mmr.2017.7694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Stroke caused by atherosclerosis remains a leading cause of morbidity and mortality worldwide, associated with carotid plaque rupture and inflammation progression. However, the inflammatory biomarkers which aid in predicting the future course of plaques are less detailed. The present study investigated the association between plaque vulnerable and inflammatory biomarkers using blood and plaque specimens. Carotid plaque specimens were obtained from 80 patients following stroke, 14 patients suffering from transient ischaemic attack and 17 asymptomatic patients that underwent carotid endarterectomy. To assess changes in plaque characteristics at histological levels, plaques were categorized by the time between the latest ischemic stroke and surgical intervention within 30, 30‑90, 90‑180 and over 180 days following stroke. Serum levels of inflammatory biomarkers interleukin (IL)‑6, IL‑10 and kinin B1 receptor (B1R) were measured by ELISA. Histological assessment of plaque was used to evaluate the plaque stability, progression and the inflammatory biomarker levels. Comparisons of histological characteristics demonstrated that plaques revealed an unstable phenotype following stroke within 30, 30‑90 days and then remodeled into more stable plaques following stroke at 90‑180 and over 180 days. By comparing the serum levels of inflammatory biomarkers, it was observed that IL‑6 and B1R levels tended to decline whereas IL‑10 levels increased in stroke patients from <30 days to over 180 days. Immunohistochemical analysis of IL‑6, IL‑10 and B1R demonstrated similar alterations in serum levels. Correlation analyses revealed that only B1R serum level was significantly correlated with histological level in patients with carotid atherosclerosis. The findings revealed that serum B1R levels may provide prognostic information and currently act as potential indicators for progression in atherosclerosis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hengfang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
Nguyen LT, Muktabar A, Tang J, Dravid VP, Thaxton CS, Venkatraman S, Ng KW. Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: how close are we? Drug Discov Today 2017; 22:1438-1446. [DOI: 10.1016/j.drudis.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
|
26
|
Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 2017; 117:7-18. [PMID: 27683760 DOI: 10.1160/th16-08-0593] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Macrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immune-complex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HA-mac/M(Hb)), and heme (Mhem). Such macrophage polarization was described as a progression among multiple phenotypes, which reflect the activity of different transcriptional factors and the cross-talk between intracellular signalling. Finally, the distribution of macrophage subsets within different plaque areas was markedly associated with cardiovascular (CV) vulnerability. The aim of this review is to update the current knowledge on the role of macrophage subsets in atherogenesis. In addition, the molecular mechanisms underlying macrophage phenotypic shift will be summarised and discussed. Finally, the role of intraplaque macrophages as predictors of CV events and the therapeutic potential of these cells will be discussed.
Collapse
Affiliation(s)
| | | | - Fabrizio Montecucco
- Fabrizio Montecucco, MD, PhD, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 16132 Genoa, Italy, Tel.: +39 010 353 8694, Fax: +39 010 353 8686, E-mail:
| | | |
Collapse
|
27
|
Chan JMS, Cheung MSH, Gibbs RGJ, Bhakoo KK. MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO). Clin Transl Med 2017; 6:1. [PMID: 28044245 PMCID: PMC5206220 DOI: 10.1186/s40169-016-0134-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023] Open
Abstract
Background There is currently no clinical imaging technique available to assess the degree of inflammation associated with atherosclerotic plaques. This study aims to develop targeted superparamagnetic particles of iron oxide (SPIO) as a magnetic resonance imaging (MRI) probe for detecting inflamed endothelial cells. Methods The in vitro study consists of the characterisation and detection of inflammatory markers on activated endothelial cells by immunocytochemistry and MRI using biotinylated anti-P-selectin and anti-VCAM-1 (vascular cell adhesion molecule 1) antibody and streptavidin conjugated SPIO. Results Established an in vitro cellular model of endothelial inflammation induced with TNF-α (tumor necrosis factor alpha). Inflammation of endothelial cells was confirmed with both immunocytochemistry and MRI. These results revealed both a temporal and dose dependent expression of the inflammatory markers, P-selectin and VCAM-1, on exposure to TNF-α. Conclusion This study has demonstrated the development of an in vitro model to characterise and detect inflamed endothelial cells by immunocytochemistry and MRI. This will allow the future development of contrast agents and protocols for imaging vascular inflammation in atherosclerosis. This work may form the basis for a translational study to provide clinicians with a novel tool for the in vivo assessment of atherosclerosis.
Collapse
Affiliation(s)
- Joyce M S Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK. .,Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore.
| | - Maggie S H Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Kishore K Bhakoo
- Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore
| |
Collapse
|
28
|
Kroll AV, Fang RH, Zhang L. Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2016; 28:23-32. [PMID: 27798829 DOI: 10.1021/acs.bioconjchem.6b00569] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell membrane-coated nanoparticle is a biomimetic platform consisting of a nanoparticulate core coated with membrane derived from a cell, such as a red blood cell, platelet, or cancer cell. The cell membrane "disguise" allows the particles to be perceived by the body as the source cell by interacting with its surroundings using the translocated surface membrane components. The newly bestowed characteristics of the membrane-coated nanoparticle can be utilized for biological interfacing in the body, providing natural solutions to many biomedical issues. This Review will cover the interactions of these cell membrane-coated nanoparticles and their applications within three biomedical areas of interest, including (i) drug delivery, (ii) detoxification, and (iii) immune modulation.
Collapse
Affiliation(s)
- Ashley V Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Liu C, Zhang X, Song Y, Wang Y, Zhang F, Zhang Y, Zhang Y, Lan X. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis 2016; 254:263-270. [PMID: 27680307 DOI: 10.1016/j.atherosclerosis.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Early detection and evaluation of vulnerable atherosclerotic plaque are important for risk stratification and timely intervention, and vascular cell adhesion molecule 1 (VCAM1) assists in adhesion and recruitment of inflammatory cells to vulnerable lesions. We labeled a single-chain variable fragment (scFv) of VCAM1 with 99mtechnetium (99mTc) and fluorescent markers to investigate its potential utility in detecting vulnerable plaques in animal models of atherosclerosis. METHODS We labeled VCAM1 scFv with 99mTc and cyanine5 (CY5) and evaluated the probes on apolipoprotein E gene-deficient mice and New Zealand White rabbits with induced atherosclerosis. Histopathology and Western blot examinations confirmed atherosclerotic plaque and VCAM1 expression in the aortas. In vivo biodistribution of 99mTc-scFv-VCAM1 was studied. Abdominal organs of mice were removed after CY5-scFv-VCAM1 administration for aortic fluorescence imaging. Rabbits SPECT imaging of 99mTc-scFv-VCAM1 was performed and autoradiography (ARG) of the aortas was checked to confirm the tracer uptake. RESULTS The radiochemical purity of 99mTc-scFv-VCAM1 was 98.72± 1.04% (n = 5) and its specific activity was 7.8 MBq/μg. Biodistribution study indicated predominant probe clearance by kidneys. In fluorescence imaging, stronger signal from CY5-scFv-VCAM1 in the aorta was observed in atherosclerotic mice than that in controls. SPECT imaging with 99mTc-scFv-VCAM1 showed tracer uptake in the abdominal aorta and the aortic arch of atherosclerotic animals. ARG confirmed tracer uptake in the aortas of atherosclerotic rabbits, with higher uptake ratios of aortic arch/descending aorta in experimental animals (4.45 ± 0.63, n = 5) than controls (1.12 ± 0.15, n = 5; p < 0.05). CONCLUSIONS SPECT and fluorescence imaging results showed the feasibility and effectiveness of detecting vulnerable plaque with scFv of VCAM1, indicating its potential for early diagnosis and evaluation of atherosclerosis.
Collapse
Affiliation(s)
- Chunbao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingying Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Koga JI, Matoba T, Egashira K. Anti-inflammatory Nanoparticle for Prevention of Atherosclerotic Vascular Diseases. J Atheroscler Thromb 2016; 23:757-65. [PMID: 27108537 DOI: 10.5551/jat.35113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technical innovation has enabled chemical modifications of small materials and various kinds of nanoparticles have been created. In clinical settings, nanoparticle-mediated drug delivery systems have been used in the field of cancer care to deliver therapeutic agents specifically to cancer tissues and to enhance the efficacy of drugs by gradually releasing their contents. In addition, nanotechnology has enabled the visualization of various molecular processes by targeting proteinases or inflammation. Nanoparticles that consist of poly (lactic-co-glycolic) acid (PLGA) deliver therapeutic agents to monocytes/macrophages and function as anti-inflammatory nanoparticles in combination with statins, angiotensin receptor antagonists, or agonists of peroxisome proliferator-activated receptor-γ (PPARγ). PLGA nanoparticle-mediated delivery of pitavastatin has been shown to prevent inflammation and ameliorated features associated with plaque ruptures in hyperlipidemic mice. PLGA nanoparticles were also delivered to tissues with increased vascular permeability and nanoparticles incorporating pitavastatin, injected intramuscularly, were retained in ischemic tissues and induced therapeutic arteriogenesis. This resulted in attenuation of hind limb ischemia. Ex vivo treatment of vein grafts with imatinib nanoparticles before graft implantation has been demonstrated to inhibit lesion development. These results suggest that nanoparticle-mediated drug delivery system can be a promising strategy as a next generation therapy for atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Jun-Ichiro Koga
- The Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| | | | | |
Collapse
|
31
|
Speelman L, Teng Z, Nederveen AJ, van der Lugt A, Gillard JH. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment. Thromb Haemost 2016; 115:493-500. [PMID: 26791734 DOI: 10.1160/th15-09-0712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022]
Abstract
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.
Collapse
Affiliation(s)
- Lambert Speelman
- Dr. Lambert Speelman, Department of Biomedical Engineering, Ee 23.38B, P.O Box 2040, 3000 CA Rotterdam, the Netherlands, Tel.: +31 10 70 44039, Fax: +31 10 70 44720, E-mail:
| | | | | | | | | |
Collapse
|
32
|
Brinjikji W, Huston J, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg 2016. [DOI: 10.3171/2015.1.jns142452.test] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
33
|
Wang Y, Chen J, Yang B, Qiao H, Gao L, Su T, Ma S, Zhang X, Li X, Liu G, Cao J, Chen X, Chen Y, Cao F. In vivo MR and Fluorescence Dual-modality Imaging of Atherosclerosis Characteristics in Mice Using Profilin-1 Targeted Magnetic Nanoparticles. Theranostics 2016; 6:272-86. [PMID: 26877785 PMCID: PMC4729775 DOI: 10.7150/thno.13350] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/29/2015] [Indexed: 01/27/2023] Open
Abstract
Aims: This study aims to explore non-invasive imaging of atherosclerotic plaque through magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) by using profilin-1 targeted magnetic iron oxide nanoparticles (PF1-Cy5.5-DMSA-Fe3O4-NPs, denoted as PC-NPs) as multimodality molecular imaging probe in murine model of atherosclerosis. Methods and Results: PC-NPs were constructed by conjugating polyclonal profilin-1 antibody and NHS-Cy5.5 fluorescent dye to the surface of DMSA-Fe3O4-nanoparticles via condensation reaction. Murine atherosclerosis model was induced in apoE-/- mice by high fat and cholesterol diet (HFD) for 16 weeks. The plaque areas in aortic artery were detected with Oil Red O staining. Immunofluorescent staining and Western blot analysis were applied respectively to investigate profilin-1 expression. CCK-8 assay and transwell migration experiment were performed to detect vascular smooth muscle cells (VSMCs) proliferation. In vivo MRI and NIRF imaging of atherosclerotic plaque were carried out before and 36 h after intravenous injection of PC-NPs. Oil Red O staining showed that the plaque area was significantly increased in HFD group (p<0.05). Immunofluorescence staining revealed that profilin-1 protein was highly abundant within plaque in HFD group and co-localized with α-smooth muscle actin. Profilin-1 siRNA intervention could inhibit VSMCs proliferation and migration elicited by ox-LDL (p<0.05). In vivo MRI and NIRF imaging revealed that PC-NPs accumulated in atherosclerotic plaque of carotid artery. There was a good correlation between the signals of MRI and ex vivo fluorescence intensities of NIRF imaging in animals with PC-NPs injection. Conclusion: PC-NPs is a promising dual modality imaging probe, which may improve molecular diagnosis of plaque characteristics and evaluation of pharmaceutical interventions for atherosclerosis.
Collapse
|
34
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|
35
|
Brinjikji W, Huston J, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg 2015; 124:27-42. [PMID: 26230478 DOI: 10.3171/2015.1.jns142452] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Carotid artery stenosis is a well-established risk factor of ischemic stroke, contributing to up to 10%-20% of strokes or transient ischemic attacks. Many clinical trials over the last 20 years have used measurements of carotid artery stenosis as a means to risk stratify patients. However, with improvements in vascular imaging techniques such as CT angiography and MR angiography, ultrasonography, and PET/CT, it is now possible to risk stratify patients, not just on the degree of carotid artery stenosis but also on how vulnerable the plaque is to rupture, resulting in ischemic stroke. These imaging techniques are ushering in an emerging paradigm shift that allows for risk stratifications based on the presence of imaging features such as intraplaque hemorrhage (IPH), plaque ulceration, plaque neovascularity, fibrous cap thickness, and presence of a lipid-rich necrotic core (LRNC). It is important for the neurosurgeon to be aware of these new imaging techniques that allow for improved patient risk stratification and outcomes. For example, a patient with a low-grade stenosis but an ulcerated plaque may benefit more from a revascularization procedure than a patient with a stable 70% asymptomatic stenosis with a thick fibrous cap. This review summarizes the current state-of-the-art advances in carotid plaque imaging. Currently, MRI is the gold standard in carotid plaque imaging, with its high resolution and high sensitivity for identifying IPH, ulceration, LRNC, and inflammation. However, MRI is limited due to time constraints. CT also allows for high-resolution imaging and can accurately detect ulceration and calcification, but cannot reliably differentiate LRNC from IPH. PET/CT is an effective technique to identify active inflammation within the plaque, but it does not allow for assessment of anatomy, ulceration, IPH, or LRNC. Ultrasonography, with the aid of contrast enhancement, is a cost-effective technique to assess plaque morphology and characteristics, but it is limited in sensitivity and specificity for detecting LRNC, plaque hemorrhage, and ulceration compared with MRI. Also summarized is how these advanced imaging techniques are being used in clinical practice to risk stratify patients with low- and high-grade carotid artery stenosis. For example, identification of IPH on MRI in patients with low-grade carotid artery stenosis is a risk factor for failure of medical therapy, and studies have shown that such patients may fair better with carotid endarterectomy (CEA). MR plaque imaging has also been found to be useful in identifying revascularization candidates who would be better candidates for CEA than carotid artery stenting (CAS), as high intraplaque signal on time of flight imaging is associated with vulnerable plaque and increased rates of adverse events in patients undergoing CAS but not CEA.
Collapse
Affiliation(s)
| | | | | | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
36
|
Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes 2015; 6:792-806. [PMID: 26131322 PMCID: PMC4478576 DOI: 10.4239/wjd.v6.i6.792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.
Collapse
|